4. Problem set for "Models of set theory I", Summer 2011

Stefan Geschke, Philipp Schlicht, Anne Fernengel, Allard van Veen

Problem 13. The set Fn(X, 2) of finite partial functions from X to 2 is partially ordered by reverse inclusion, i.e. $p \leq q$ iff $p \supseteq q$. Show:

- (1) If $G \subseteq Fn(X, 2)$ is a filter, then $f_G := \bigcup G$ is a function.
- (2) For all $x \in X$ the set $D_x := \{p \in Fn(X, 2) : x \in dom(p)\}$ is dense in Fn(X, 2).
- (3) If $G \subseteq Fn(X, 2)$ is a $\{D_x : x \in X\}$ -generic filter, then $dom(f_G) = X$.
- (4) For every function $f: X \to 2$ the set $G_f := \{p \in Fn(X, 2) : p \subseteq f\}$ is a $\{D_x : x \in X\}$ -generic filter.

Problem 14. Let (A, \leq_A) and (B, \leq_B) be countably infinite, dense linear orders without endpoints. (Recall that a linear order is dense if strictly between any two elements there is another element of the linear order.) Show that (A, \leq_A) and (B, \leq_B) are isomorphic.

Hint: Use the Rasiowa-Sikorski Theorem. Consider the partial \mathbb{P} of isomorphisms between finite subsets of A and B, ordered by reverse inclusion. Find a countable family \mathcal{D} of dense subsets of \mathbb{P} such that for every \mathcal{D} -generic filter $G \subseteq \mathbb{P}$ the function $\bigcup G$ is an isomorphism from A to B. It might help to take another look at the previous problem.

Problem 15. Suppose \mathbb{P} is a partial order and $X \subseteq \mathbb{P}$. Use Zorn's Lemma to show that every antichain A with $A \subseteq X$ is contained in an antichain $B \subseteq X$ which is maximal with the property $B \subseteq X$. Show that every condition $p \in X$ is compatible with some condition $q \in B$.

Problem 16. Suppose \mathbb{P} is a partial order and A is an antichain in \mathbb{P} . A set $D \subseteq \mathbb{P}$ is *predense* if the set $\{p \in \mathbb{P} : \exists q \in D(p \leq q)\}$ is dense. Show:

- (1) A is a maximal antichain iff A is predense.
- (2) Suppose D is dense and $A \subseteq D$ is maximal among all antichains $B \subseteq D$, then A is a maximal antichain.

Please hand in your solutions on 04 May before the lecture.