Higher Set Theory - Classical and Ordinal Computability

Exercise Sheet 4

due on Tuesday, 3 May 2011
9. (a) Show that the remainder function $\operatorname{Rem}: \omega \times \omega \rightarrow \omega$,

$$
\operatorname{Rem}(x, y)=\text { "the remainder of the division of } \mathrm{x} \text { by } \mathrm{y} "
$$

is primitive recursive.
(b) Show that the Gödel β-function $\beta: \omega \times \omega \times \omega \rightarrow \omega$,

$$
\beta(c, d, i)=\operatorname{Rem}(c, 1+(i+1) d)
$$

is primitive recursive.
(c*) (optional, no points awarded) Show that for an arbitrary sequence $a_{0}, a_{1}, \ldots, a_{n-1} \in \omega$ there are $c, d \in \omega$ such that for $i=0, \ldots, n-1$ we have

$$
\beta(c, d, i)=a_{i} .
$$

Hint: Use the Chinese Remainder Theorem which states that for such $a_{0}, \ldots, a_{n-1} \in \omega$ and pairwise relatively prime numbers $m_{0}, \ldots, m_{n-1} \in \omega$ there is a number $c \in \omega$ s.t.

$$
c \equiv a_{i} \quad \bmod m_{i}
$$

10. (a) Show that there is a register computable function $F: \omega \times \omega \rightarrow \omega$ s.t.

$$
F(n, x)=F_{n}(x)
$$

where $F_{n}: \omega \rightarrow \omega$ is the n-th unary primitive recursive function in some feasible enumeration.
(b) Show, by a diagonal argument, that there is a register computable function that is not primitive recursive.

