Higher Set Theory - Classical and Ordinal Computability

Exercise Sheet 3 due on Thursday, 28 April 2011

6. Find a computable bijection $F: \omega \times \omega \to \omega$.

(4 points)

7. Universal register machines use a coding of finite tuples of words over $\tilde{\mathbb{A}}^*$ into a single word in $\tilde{\mathbb{A}}^*$. Such a coding has been outlined in the lecture. Show that the *i*-th projection (i.e. the function that retrieves from a word w that codes $(w_0, w_1, \ldots, w_{n-1})$ the word w_i if i < n and returns \Box else) is computable.

(4 points)

- 8. Show that the 1-reducibility relation \leq_1 induces the structure of an *upper semilattice* on $\mathcal{P}(\mathbb{A}^*)$, i.e. that $(\mathcal{P}(\mathbb{A}^*), \leq_1)$ has the following properties:
 - (a) Transitivity
 - (b) Reflexivity
 - (c) Existence of joins (least upper bounds): For any two sets $A, B \subseteq \mathbb{A}^*$ there is a set C with
 - $-A \leq_1 C$ and $B \leq_1 C$
 - For any D with $A \leq_1 D$ and $B \leq_1 D$ we have $C \leq_1 D$.

(4 points)