Higher Set Theory - Classical and Ordinal Computability

Exercise Sheet 3

due on Thursday, 28 April 2011
6. Find a computable bijection $F: \omega \times \omega \rightarrow \omega$.
(4 points)
7. Universal register machines use a coding of finite tuples of words over $\tilde{\mathbb{A}}^{*}$ into a single word in $\tilde{\mathbb{A}}^{*}$. Such a coding has been outlined in the lecture. Show that the i-th projection (i.e. the function that retrieves from a word w that codes $\left(w_{0}, w_{1}, \ldots, w_{n-1}\right)$ the word w_{i} if $i<n$ and returns \square else) is computable.
8. Show that the 1-reducibility relation \leq_{1} induces the structure of an upper semilattice on $\mathcal{P}\left(\mathbb{A}^{*}\right)$, i.e. that $\left(\mathcal{P}\left(\mathbb{A}^{*}\right), \leq_{1}\right)$ has the following properties:
(a) Transitivity
(b) Reflexivity
(c) Existence of joins (least upper bounds): For any two sets $A, B \subseteq \mathbb{A}^{*}$ there is a set C with

- $A \leq_{1} C$ and $B \leq_{1} C$
- For any D with $A \leq_{1} D$ and $B \leq_{1} D$ we have $C \leq_{1} D$.

