Higher Set Theory - Classical and Ordinal Computability

Exercise Sheet 2 due on Tuesday, 19 April 2011

Unless noted otherwise, from now on register programs need not be given explicitly and may be sketched in some suitable form of pseudo-code or in prose, making use of loops, subroutines etc..

- 4. Give a proof of theorem 9 and show that for the class $\mathcal B$ of decidable subsets of $\mathbb A^*$
 - a) $\emptyset \in \mathcal{B}, \ \mathbb{A}^* \in \mathcal{B}$
 - b) \mathcal{B} is closed under \cup
 - c) \mathcal{B} is closed under \cap
 - d) \mathcal{B} is closed under \setminus

14	nointal
14	DOINTS

- 5. Let \mathbb{A} be finite. Let $|_{\mathbb{A}} \in \mathbb{A}$ to form numerals $n = (|_{\mathbb{A}})^n$.
 - (a) Show that \mathbb{A}^* is computably enumerable.
 - (b) Let $F : \mathbb{A}^* \to \mathbb{A}^*$ be a function computable by the program P. Show that the function U_P is computable, where

 $U_P(w,n) = \begin{cases} \Box, \text{ if the computation by } P \text{ on input } w \text{ halts in at most } n \text{ steps} \\ |_{\mathbb{A}}, \text{ else} \end{cases}$

- (c) Let $F : \mathbb{A}^* \to \mathbb{A}^*$ be bijective and computable. Show that the inverse function F^{-1} is computable. What would happen if one were to apply the resulting algorithm to an only injective function $G : \mathbb{A}^* \to \mathbb{A}^*$?
- (d) A partial function $G : \mathbb{A}^* \to \mathbb{A}^*$ (i.e. a function with $\operatorname{dom}(G) \subseteq \mathbb{A}^*$) is called computable, if there is a program P s.t.
 - $P: w \mapsto G(w)$ for $w \in \operatorname{dom}(G)$
 - $-P: w \uparrow$ for $w \notin$ dom(G)

Show that a set $W \subseteq \mathbb{A}^*$ is computably enumerable iff there is a partial computable function H s.t. $\operatorname{dom}(H) = W$.

(8 points)