Higher Set Theory - Classical and Ordinal Computability

Exercise Sheet 2
due on Tuesday, 19 April 2011

Unless noted otherwise, from now on register programs need not be given explicitly and may be sketched in some suitable form of pseudo-code or in prose, making use of loops, subroutines etc..
4. Give a proof of theorem 9 and show that for the class \mathcal{B} of decidable subsets of \mathbb{A}^{*}
a) $\emptyset \in \mathcal{B}, \mathbb{A}^{*} \in \mathcal{B}$
b) \mathcal{B} is closed under \cup
c) \mathcal{B} is closed under \cap
d) \mathcal{B} is closed under \backslash
5. Let \mathbb{A} be finite. Let $\left.\right|_{\mathbb{A}} \in \mathbb{A}$ to form numerals $n=\left(\left.\right|_{\mathbb{A}}\right)^{n}$.
(a) Show that \mathbb{A}^{*} is computably enumerable.
(b) Let $F: \mathbb{A}^{*} \rightarrow \mathbb{A}^{*}$ be a function computable by the program P. Show that the function U_{P} is computable, where

$$
U_{P}(w, n)=\left\{\begin{array}{l}
\square, \text { if the computation by } P \text { on input } w \text { halts in at most } n \text { steps } \\
\left.\right|_{\mathbb{A}}, \text { else }
\end{array}\right.
$$

(c) Let $F: \mathbb{A}^{*} \rightarrow \mathbb{A}^{*}$ be bijective and computable. Show that the inverse function F^{-1} is computable. What would happen if one were to apply the resulting algorithm to an only injective function $G: \mathbb{A}^{*} \rightarrow \mathbb{A}^{*}$?
(d) A partial function $G: \mathbb{A}^{*} \rightharpoonup \mathbb{A}^{*}$ (i.e. a function with $\operatorname{dom}(G) \subseteq \mathbb{A}^{*}$) is called computable, if there is a program P s.t.
$-P: w \mapsto G(w)$ for $w \in \operatorname{dom}(G)$
$-P: w \uparrow$ for $w \notin \operatorname{dom}(G)$
Show that a set $W \subseteq \mathbb{A}^{*}$ is computably enumerable iff there is a partial computable function H s.t. $\operatorname{dom}(H)=W$.

