Higher Set Theory - Classical and Ordinal Computability

Exercise Sheet 10 due on Tuesday, 28 June 2011

23.	Prove in	SO:	The r	eplacement	scheme	implies	the s	eparation	scheme.
-----	----------	-----	-------	------------	--------	---------	-------	-----------	---------

(2 points)

- 24. Define in SO:
 - (a) Sequences of ordinals (coded as ordinals).
 - (b) Functions and relations on ordinals.
 - (c) The range of a function on an initial segment of the ordinals (coded as an ordinal).

(4 points)

25. Prove a recursion theorem for SO: Let G be a function on ordinals. Then there is a function F defined on all ordinals with $F(\alpha) = G(F \upharpoonright \alpha)$.

(6 points)