Higher Set Theory - Classical and Ordinal Computability

Exercise Sheet 1 due on Tuesday, 12 April 2011

- 1. a) Let $\mathbb{A} = \{a_0, a_1, \dots a_{k-1}\}$ be a finite alphabet. Write down explicitly an *n*-register program P over \mathbb{A} (for a suitable *n*) that determines the shortest of two words over \mathbb{A} : For any $v, w \in \mathbb{A}^*$ a computation by P on an initial register content (*input*) R(0), where $R(0)_1 = v$ and $R(0)_2 = w$ and all other registers are empty should halt and output a_0 if v is shorter (in the obvious sense) than w, and a_1 otherwise.
 - b) Let $\mathbb{A} = \{a, b\}$. Write down explicitly an *n*-register program *P* over \mathbb{A} (for a suitable *n*) that copies the content of one register to another: For any $w \in \mathbb{A}^*$ a computation by *P* on input R(0), where $R(0)_1 = v$ and all other registers are empty should halt and output *w* Can one modify the program to either have $R(\theta)_1 = v$ or $R(\beta)_1 = \Box$ at halting time θ ?

(4 points)

- 2. Now consider $\tilde{\mathbb{A}}$ for $\mathbb{A} = \{a, b\}$.
 - (a) Write down explicitly an *n*-register program P over $\tilde{\mathbb{A}}$ (for a suitable *n*) that recognizes numerals: Input: R(0) where $R(0)_1 = w$ for some word $w \in \tilde{\mathbb{A}}^*$ and all other registers empty Output: *a* if *w* is a numeral, *b* otherwise
 - (b) Write down explicitly an n-register program P over A (for a suitable n) that recognizes register-commands:
 Input: R(0) where R(0)₁ = w for some word w ∈ A^{*} and all other registers empty
 - Output: a if w is a register-command, b otherwise (antional no noints awarded) Give a sketch for a register program P over $\tilde{\mathbb{A}}$ (for a suital
 - (c*) (optional, no points awarded) Give a sketch for a register program P over $\tilde{\mathbb{A}}$ (for a suitable n) that recognizes register programs.

(4 points)

3. In 1989, Leonore Blum, Michael Shub, and Stephen Smale introduced a kind of register machines that handles computations on arbitrary rings and fields. Today, these machines, called *Blum-Shub-Smale* (*BSS*) machines, are a widely used model for computation on real numbers. We give the following definition of *n*-register-BSS machines somewhat resembling our definition of register machines:

Let R be a ring. Consider the alphabet $\mathbb{A} = R \cup \{g : R^n \to R^n \mid g \text{ is polynomial}\} \cup \{h : R^n \to R \mid h \text{ is polynomial}\} \cup \omega \cup \{x, :, =, \}, (, \to, h, a, l, t, ;\}$. An *n*-register-BSS command over R is a word over \mathbb{A} of the following form:

- x:=g(x) , where $g:R^n\to R^n$ is polynomial (replace the entire register content $x\in R^n$ by $g(x)\in R^n)$
- $h(x) := 0 \rightarrow k/l$, where $h : \mathbb{R}^n \rightarrow \mathbb{R}$ is polynomial, $k, l \in \omega$ (if h(x) = 0 where $x \in \mathbb{R}^n$ is the entire register content, then jump to k, else jump to l).
- halt (output x_0) An *n*-register-BSS program over R is a word over \mathbb{A} of the form

$$c_0; c_1; \ldots; c_m - 1; halt$$

where

- each c_i is a *n*-register-BSS command
- if c_i ends in $\rightarrow k/l$ then k, l < m

Give a definition of BSS-computations by a program P.

(4 points)