Mathematisches Institüt der Universität Bonn winter semester 2010-11 Hand in at 28.10.2010

$^{\rm Higher\ set\ theory}_{\rm FORMAL\ DERIVATIONS\ AND\ NATURAL\ PROOFS\ EXERCISE\ SHEET\ 2$

1. Write a grammar that represents arithmetic expressions without superfluous brackets (i.e. expressions like $(a + b) \cdot (b - c)$).

Deterministic finite automata:

A deterministic finite automaton M is a 5-tuple $(Z, \Sigma, \delta, z_0, E)$, where Z is a finite set called the set of states, Σ is a finite set of input symbols called the alphabet $(Z \cap \Sigma = \emptyset)$, $z_0 \in Z$ is called the start state, E is a finite subset of Z called the set of accepted states or end states, and $\delta : Z \times \Sigma \to Z$ is called the transition function.

For this M we define a function $\hat{\delta} : Z \times \Sigma^* \to Z$ inductively as follows: $\hat{\delta}(z, \epsilon) = z$, and $\hat{\delta}(z, ax) = \hat{\delta}(\delta(z, a), x)$, where $z \in Z$, $x \in \Sigma^*$ (the set of all finite strings of elements of Σ), and $a \in \Sigma$. We say that the language that M accepts is the set $T(M) := \{x \in \Sigma^* ; \hat{\delta}(z_0, x) \in E\}$.

2. Write a deterministic finite automaton to accept all strings in the alphabet $\{0, 1\}$ which do not contain three consecutive ones.

3. Write a Turing machine with the alphabet $\{0, 1\}$ that transforms an input consisting of k consecutive 1's to an input that consists of 2k consecutive 1's.

Extra points:

Given a deterministic finite automaton, write a Turing machine that simulates it.