Hgher set theory
 FORMAL DERIVATIONS AND NATURAL PROOFS EXERCISE SHEET 2

1. Write a grammar that represents arithmetic expressions without superfluous brackets (i.e. expressions like $(a+b) \cdot(b-c))$.

Deterministic finite automata:

A deterministic finite automaton M is a 5 -tuple ($Z, \Sigma, \delta, z_{0}, E$), where Z is a finite set called the set of states, Σ is a finite set of input symbols called the alphabet $(Z \cap \Sigma=\emptyset), z_{0} \in Z$ is called the start state, E is a finite subset of Z called the set of accepted states or end states, and $\delta: Z \times \Sigma \rightarrow Z$ is called the transition function.
For this M we define a function $\hat{\delta}: Z \times \Sigma^{*} \rightarrow Z$ inductively as follows: $\hat{\delta}(z, \epsilon)=z$, and $\hat{\delta}(z, a x)=\hat{\delta}(\delta(z, a), x)$, where $z \in Z, x \in \Sigma^{*}$ (the set of all finite strings of elements of Σ), and $a \in \Sigma$. We say that the language that M accepts is the set $T(M):=\left\{x \in \Sigma^{*} ; \hat{\delta}\left(z_{0}, x\right) \in E\right\}$.
2. Write a deterministic finite automaton to accept all strings in the alphabet $\{0,1\}$ which do not contain three consecutive ones.
3. Write a Turing machine with the alphabet $\{0,1\}$ that transforms an input consisting of k consecutive 1 's to an input that consists of 2 k consecutive 1 's.

Extra points:
Given a deterministic finite automaton, write a Turing machine that simulates it.

