Formal derivations and natural proofs exercise sheet 1

1. In each of the three calculuses we defined, prove that $\forall x\phi \to \exists x\phi$ is a tautology. Moreover, in the sequent calculus show that $\phi \land \psi \to \phi$ and $((\phi \lor \psi) \to \chi) \to (\phi \to \chi)$ are tautologies.

2. In the sequent calculus, prove that \equiv is an equivalence relation.

3. There is an photocopied attachment, pages 102–105 of the "Collected works of Kurt Gödel, volume I", in which a *functional calculus* is introduced. Keeping in mind that (x) means $\forall x$, and (Ex) means $\exists x$ in the notation of the time, write down the calculus in modern notation and prove (1) and (2) of page 105 (page 104 in German).