Übungen zur Mengenlehre

- 1. (a) Zeigen Sie: Ist C eine Klasse transitiver Mengen, so sind $\bigcup C$ und $\bigcap C$ transitiv.
- (b) Ist a eine transitive Menge, so sind auch $a \cup \{a\}$ und $\mathfrak{P}(a)$ transitiv. Ist a sogar Ordinalzahl, so auch $a \cup \{a\}$.
- (c) Jede natürliche Zahl ist transitiv.
- 2. Sei C eine transitive Klasse. Wieviele Bijektionen f von C auf sich selbst gibt es mit der Eigenschaft, dass $\forall x \in C \forall y \in C (x \in y \to f(x) \in f(y))$?
- 3. Zeigen Sie:
- (a) Eine Menge x ist eine Ordinalzahl genau dann, wenn x transitiv ist und alle Elemente von x ebenfalls transitiv sind.
- (b) Ist α eine Ordinalzahl, so ist $\alpha = \{\beta | \beta < \alpha \}$.
- (c) Ist C eine Menge von Ordinalzahlen, so sind auch $\bigcup C$ und $\bigcap C$ Ordinalzahlen. In welcher Beziehung stehen sie jeweils zu C?
- 4. Seien α , β , γ Ordinalzahlen. Zeigen Sie:
- (a) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.
- (b) $(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$.
- (c) $\alpha * (\beta + \gamma) = \alpha * \beta + \alpha * \gamma$.

Jede Aufgabe wird mit 8 Punkten bewertet.

Abgabe: am 10. 11. 2010 in der Vorlesung