
Formal Derivations and Natural Proofs
(Higher Set Theory)

by Peter Koepke

University of Bonn

Wintersemester 2011/12

Abstract

Remark: This interdisciplinary course is centered around many aspects of the topic

of “mathematical proof”, involving formal logic, linguistics, computer science, and even

philosophy of mathematics. It is recommended as a sequel to a standard Mathematical

Logic course as read at the University of Bonn, or as a general advanced logic course. Due

to its broad character it does not squarely fit into the classifications of Bachelor or Master

courses. For bureaucratic reasons the course is classified as the Master module Higher Set

Theory. The course includes a certain amount of set theory since set theory is a standard

background theory for mathematical proofs. It is understood that the course can also be

used for credits in the Bachelor of Mathematics programme at the University of Bonn.

Contents: Formal logic models argumentative methods (in idealised domains). Appar-

ently, formal derivations are very different from ordinary mathematical proofs. This lec-

ture course examines both perspectives in some detail, with the intention of bridging the

gap. On the formal side we present calculi and proof algorithms designed for naturality

and efficiency. We also present various systems of formal mathematics. On the other hand

we study the common language of mathematics and show how methods of formal lin-

guistics may be used to restrict to a controlled natural language with a definite formal

interpretation. The lecture course provides theoretical foundations for the Naproche

system (Natural language proof checking) which is being developed at Bonn (see

http://www.naproche.net). The course also introduces the theoretical basis of logic pro-

gramming and presents and applies the Prolog programming language.

Topics include

− review of standard first-order calculi

− a “natural language” first-order calculus

− analysing and processing simple natural language

− the resolution calculus and logic programming

− Prolog and natural language processing

− formal mathematics with a discussion of the underlying formal systems

− methods of automatic theorem proving

− ...

− the Naproche system

Table of contents

1 Some first-order calculi . 1

1.1 A Hilbert style calculus from the course by Geschke . 2
1.2 A sequent calculus . 2
1.3 A “natural language” calculus . 4

2 A completeness theorem . 4

1 Formal languages and grammars

Definition 1. An alphabet is a set Σ� ∅. Let

Σ∗= Σ<ω = {w |w is a finite sequence from Σ}.

A formal language over Σ is a set L⊆Σ∗.

Formal languages can be defined in various ways. One of the ways to define a language by
finitary means are grammars.

1

Definition 2. A grammar is a 4-tupel G=(V ,Σ, P , S) with

− V is a finite set of variables (non-terminals)

− Σ is a finite alphabet with Σ∩ V = ∅

− P ⊆ (V ∪Σ)∗× (V ∩Σ)∗ is a finite set of rules or productions

− S ∈V is the start variable

For u, v ∈ (V ∪Σ)∗ define u⇒G v iff there are x, y ∈ (V ∪Σ)∗ and a rule (y, y ′)∈P such that u=
xyz and v = xy ′ z . We also write y→ y ′. Let ⇒G

∗ be the reflexive and transitive hull of ⇒G .
Then the language represented, generated, or defined by G is

L(G) = {w ∈Σ∗|S⇒G
∗ w}.

If w ∈L(G) and S⇒Gw1⇒Gw2� � ⇒Gwn =w then (S,w1,� , wn) is a derivation of wn .

Examples are: some natural language sentences

− sentence → nounphrase verbphrase

− nounphrase → article noun

− article → the

− article → a

− nown → dog

− verbphrase → barks

First order formulas

− formula → ¬ formula etc

Well-formed bracketed formulas

−

We then follow the textbook
Uwe Schöning, Theoretische Informatik kurz gefasst

BI Wissenschaftsverlag, chapters 1.1.1 (grammars), 1.1.2 (Chomsky-hierarchy), 1.1.5.
(Backus-Naur notation), 1.4 (Turing machines and Type 0 languages).

2 Some first-order calculi

2.1 A Hilbert style calculus from the course by Geschke

The logic course of Stefan Geschke introduced the following first-order calculus:

2 Section 2

This calculus has the following features:

− every formula in a derivation of T ⊢ ϕ is a consequence of T

− propositional tautologies are immediately available, without derivation

− there is no hypothetical reasoning like proof by contradiction, or case distinction

− there can be no local assumptions in a proof like “Assume ϕ”, “Take x such that ...”

This makes proofs somewhat unnatural:

A (trivial) standard proof of this property would look like:

Lemma 3. A a group, ∀x(∀y: y ·x= y→ x= e).

Proof. Consider x and assume ∀y: y · x= y. Then

x= e · x= e.

�

The “bureaucratic” bookkeeping of tautologies makes the Geschke proof difficult to read and
obscures what a human reader may take as the real content of the argument. Maybe the book-
keeping can be handed over to a computer?

Some first-order calculi 3

2.2 A sequent calculus

The following was introduced in my course 2 years ago.

Definition 4. A finite sequence (ϕ0, � , ϕn−1, ϕn) is called a sequent. The initial segment Γ =
(ϕ0, � , ϕn−1) is the antecedent and ϕn is the succedent of the sequent. We usually write
ϕ0 � ϕn−1 ϕn or Γϕn instead of (ϕ0, � , ϕn−1, ϕn). To emphasize the last element of the ante-
cedent we may also denote the sequent by Γ′ ϕn−1 ϕn with Γ′=(ϕ0,� , ϕn−2).

A sequent ϕ0� ϕn−1 ϕ is correct if {ϕ0� ϕn−1}� ϕ.

Definition 5. The sequent calculus consists of the following (sequent-)rules:

− monotonicity (MR)
Γ ϕ

Γ ψ ϕ

− assumption (AR)
Γ ϕ ϕ

− → -introduction (→ I)
Γ ϕ ψ

Γ ϕ→ ψ

− → -elimination (→E)
Γ ϕ

Γ ϕ→ ψ

Γ ψ

− ⊥-introduction (⊥I)
Γ ϕ

Γ ¬ϕ
Γ ⊥

− ⊥-elimination (⊥E)
Γ ¬ϕ ⊥
Γ ϕ

− ∀-introduction (∀I)
Γ ϕ

y

x

Γ ∀xϕ
, if y � free(Γ∪{∀xϕ})

− ∀-elimination (∀E)
Γ ∀xϕ

Γ ϕ
t

x

, if t∈ TS

− ≡ -introduction (≡ I)
Γ t≡ t

, if t∈TS

− ≡ -elimination (≡E)

Γ ϕ
t

x

Γ t≡ t′

Γ ϕ
t′

x

The deduction relation is the smallest subset ⊢ ⊆ Seq(S) of the set of sequents which is closed
under these rules. We write ϕ0� ϕn−1⊢ ϕ instead of ϕ0� ϕn−1 ϕ∈⊢ . For Φ an arbitrary set of
formulas define Φ ⊢ ϕ iff there are ϕ0,� , ϕn−1 ∈Φ such that ϕ0� ϕn−1 ⊢ ϕ . We say that ϕ can
be deduced or derived from ϕ0 � ϕn−1 or Φ, resp. We also write ⊢ ϕ instead of ∅ ⊢ ϕ and say
that ϕ is a tautology.

In the sequent calculus, tautologies have to be derived since they are no axioms. Let us first
give an ordinary proof of the tautology

Lemma 6. ¬¬ϕ→ ϕ.

Proof. Assume ¬¬ϕ. Assume for a contradiction that ¬ϕ. This is a contradiction to the
assumption. Thus ϕ holds. �

We model that argument as follows:

4 Section 2

1. ¬¬ϕ ¬¬ϕ “Assume ¬¬ϕ”
2. ¬¬ϕ ¬ϕ ¬¬ϕ
3. ¬¬ϕ ¬ϕ ¬ϕ “Assume for a contradiction that ¬ϕ”
4. ¬¬ϕ ¬ϕ ⊥ “This is a contradiction to the assumption”
5. ¬¬ϕ ϕ “Thus ϕ holds”
6. ¬¬ϕ→ ϕ “Lemma 4”

The sequent calculus has the following features:

− there can be hypothetical reasoning

− all local assumptions have to be carried along in the antecedens of the sequent

Sequents can be reduced to formulas in a Hilbert-style proof: the sequent ϕ1� ϕnψ corresponds
to (ϕ1∧� ∧ ϕn)→ ψ.

2.3 A “natural language” calculus

We consider a fragment of (mathematical) English formed by the words “contradiction”, “not”,
“implies”, “for all”, “holds”, “assume”, and “thus”:

Definition 7. The collection of (natural language) formulas is defined by:

− every relational formula R(x1, � , xn) is a formula; for specific relations like “odd” or “=”
one may also write as usual “x is odd” or “x< y” instead of R(x) or R(x, y);

− “contradiction” is a formula;

− if A is a formula then “not A” is a formula;

− if A and B are formulas then “ (A implies B)” is a formula;

− if A is a formula then “for all x (holds) A” is a formula.

Brackets in formulas may be omitted according to the usual conventions.

Consider a calculus for such formulas:

Definition 8. The basic proof rules are given by the rules of

a) contradiction
A not A

contradiction

b) proof by contradiction
not A implies contradiction

A

c) modus ponens
A implies B A

B

d) instantiation
for all x holds A(x)
A(y)

e) generalization
A(y)

for all x holds A(x)

Note that the first four rules are correct in the following sense: if the assumptions of the rule
hold in some structure then the conclusion also holds in the structure. The situation is more
complex for the generalization rule which can only be applied in certain proof situations.

Definition 9. A (mathematical) text is a sequence T = S1�Sl of statements where each state-
ment is of the form Sk = “Assume Ak .”, Sk = “Ak .”, or Sk = “Thus” for some formula Ak .

A text is a proof if every line within the text is formally justified, e.g., that it can be gener-
ated by a proof rule from previous lines which are “visible” to the present line. Visibility can be
calculated via indentation depths : a previous line is visible if it is not “blocked” by some “Thus”
which has the same indentation level as that previous line. This is formalized by the following
definitions.

Some first-order calculi 5

Definition 10. Let T =S1�Sl be a mathematical text. Then define:

a) For k < l let

indT(k) = |{j6 k |Sj starts with “Assume” }|− |{j <k |Sj starts with “Thus” }|

be the (indentation) depth of Sk in T, it is given by the difference between the numbers of
previous assumptions (“Assume”) and the previous conclusions (“Thus”).

b) The text T is properly indented if indT(k) > 0 for all k < l, i.e., we cannot have more
conclusions than assumptions.

c) For i < k < l the line number i is visible from line number k if there is no j, i6 j < k such
that Sj = “Thus” and indT(i) = indT(j). In case i is visible from k we also say that the
formula Ai and the free variables of Ai are visible from k .

Definition 11. Let T =S1�Sl be a mathematical text. Let Φ be a set of formulas.

a) T is a (formal) proof from Φ if T is properly indented, and for all k < l one of the fol-
lowing holds:

i. Sk = “Assume Ak .”, or Sk = “Thus”; this means that we can introduce an assump-
tion or try to conclude a subargument at any place in a proof;

ii. Sk = “Ak .” where Ak ∈ Φ or Ak = Ai , i<k where the line Si is visible by Sk ; this
means that the “axioms” contained in Φ or visible statements established previously
can be used freely;

iii. Sk = “Ak .” where Ak can be produced by one of the basic proof rules from formulas
which are elements of Φ or which are visible from k; moreover, if Ak is of the
form Ak = “ for all x holds A(x)” and is produced by the rule of generalization from
the formula A(y), we also require that the variable y � free(Φ) and that y is not
visible from k as a free variable; so the generalization from A(y)
to “ for all x holds A(x)” is possible if y was a “general” variable without further
specifications in Φ or previous relevant formulas;

iv. Sk = “Ai implies Ak−2” where Sk−1 = “Thus” and i 6 k − 2 is the minimal line
number which is visible from k − 1; we say that Sk is produced by the rule of
implication; the result of a subargument from the assumption Ai to the conclusion
Ak−2 is the implication “Ai implies Ak−2”.

b) T is a (formal) proof of A from Φ if A = Al and indT (l) = 0; the latter means that all
subarguments have been concluded.

c) A is (formally) provable from Φ if there exists a proof of A from Φ.

d) A is (formally) provable if it is provable from the empty set ∅, i.e., without further hypo-
thesis.

We can then prove

Lemma 12. Not not ϕ implies ϕ.

as follows:

Proof. Assume not not ϕ. Assume not ϕ. Contradiction. Thus not ϕ implies contradiction. ϕ.
Thus not not ϕ implies ϕ. �

This calculus has the following features:

− the statements in the text approximate legitimate sentences of natural language

− the calculus does not contain equality and does not allow terms

6 Section 2

3 A completeness theorem

We prove a completeness theorem for the “natural language” calculus. We begin by proving some
derived rules which may also be used conveniently in further proofs.

Proposition 13. Let A, B be formulas. Then A is provable from “B implies A”, “ (not B)
implies A”. This justifies the use of the derived rule of case distinction:

B implies A not B implies A

A
.

Proof. The following is a proof of A from F1 = “B implies A” and F2 = “not B implies A”. We
also state the rules which are applied and the local depths and hypotheses.

k Statement Rule ... with hypothesis ... indT(k) visible lines
1 Assume not A. - 1 -
2 Assume not B. - 2 1

3 A. modus ponens with 2, F2 2 1,2
4 Contradiction. contradiction with 1, 3 2 1,2,3

5 Thus - 2 1,2,3,4
6 not B implies a contradiction. implication 1 1

7 B. proof by contradiction with 6 1 1,6
8 A. modus ponens with 7, F1 1 1,6,7
9 Contradiction. contradiction with 1, 8 1 1,6,7,8

10 Thus - 1 1,6,7,8,9
11 not A implies a contradiction. implication 0 -

12 A. proof by contradiction with 11 0 11
�

Proposition 14. Let A be a formula. Then A is provable from “contradiction”. This justifies
the use of the derived rule of ex falsum libenter:

contradiction

A
.

Proof. The following is a formal proof of A from F = “contradiction”.

k Statement Rule ... with hypothesis ... indT(k) visible lines
1 Assume not A. - 1 -

2 Contradiction. Copying F 1 1
3 Thus - 1 2

4 not A implies a contradiction. implication 0 -
5 A. proof by contradiction with 4 0 4

�

A formal proof as defined in Definition 11, though formulated in a “poor” vocabulary and
grammar, can be read as a proof in the ordinary mathematical sense. Since mathematical proofs
prove universally valid statements, we obtain the correctness theorem :

Theorem 15. If a formula A is provable then it is universally valid.

Our proof of Gödel’s completeness theorem uses the approach by L. Henkin [?]. Given a
formula which is not provable build a Henkin set of formulas (denoted by H in the subsequent
proof) which describes a structure in which A fails. Then build such a structure S out of the
terms of the language.

Theorem 16. If a formula A is universally valid it is provable.

A completeness theorem 7

Proof. Assume that A is not provable. It suffices to show that A is not universally valid by
constructing a structure S in which A does not hold.

We shall recursively define a sequence A1, A2, A3, � of formulas which describe the structure
S. Along the recursion we maintain that A is not provable from A1, � , An. To extend the
sequence, we postulate two extension properties: by (1), every formula can be decided positively
or negatively in the construction; by (2), we can add a counterexample to every universal for-
mula which is not valid.
(1) Assume that A is not provable from A1, � , An and let B be a formula. Then A is not
provable from A1,� , An, B, or A is not provable from A1,� , An, “not B”.
Proof . Assume not. Assume that the mathematical text Proof1, A is a proof of A from
A1, � , An, B and that Proof2, A is a proof of A from A1, � , An, “not B”. Then the following
combined text is a proof of A from A1,� , An :

k Statement Rule ... with hypothesis ...
1 Assume B. -

2 Proof1 given
3 A given

4 Thus -
5 B implies A implication

6 Assume not B -
7 Proof2 given
8 A given

9 Thus -
10 not B implies A implication

11 A case distinction with 5, 10

This contradicts the initial assumption. qed(1)
(2) Assume that A is not provable from

A1,� , An, “not for all x holds B(x)”

and that y is a variable which does not occur in A1,� , An, “not for all x holds B(x)”. Then A is
not provable from

A1,� , An, “not for all x holds B(x)”, “not B(y)”.

Proof . Assume not and assume that the text Proof1,A is a proof of A from

A1,� , An, “not for all x holds B(x)”, “not B(y)”.

Then the following combined text is a proof of A from A1,� , An, “not for all x holds B(x)”:

k Statement Rule ... with hypothesis ...
1 Assume B(y). -

2 For all x holds B(x). generalization with 1
3 Contradiction. contradiction with 2 and “not for all x holds B(x)”
4 A ex falsum libenter with 3

5 Thus -
6 B(y) implies A. implication

7 Assume not B(y). -
8 Proof1 given

9 A. given
10 Thus -

11 not B(y) implies A. implication

12 A. case distinction with 6, 11

This contradicts the initial assumption. qed(2)

8 Section 3

The collection of formulas is countable since every formula is basically a finite sequence of
symbols taken from a countable or even finite alphabet. Let F1, F2, � be an enumeration of all
formulas.

Define a sequence A1, A2, � of formulas by recursion. At odd stages 1, 3, � , we ensure that
every formula is decided by the sequence; at even stages 2, 4, 6, � , we care about quantifiers. So
let 2m− 1 be an odd number, where m> 1, and assume that A1,� , A2m−2 are defined. We shall
define A2m−1 and A2m .

If A is not provable from {A1, � , A2m−2, Fm}, set A2m−1 = Fm ; otherwise set A2m−1 = “not
Fm”. Thereafter, if A2m−1 is of the form “not for all x holds B(x)”, choose a variable y which
does not occur in {A0,� , A2m−1} and set A2m = “not B(y)”; otherwise set A2m =A2m−1 .

We prove several claims about the set of formulas H = {A1, A2, � } which will correspond to
the fact that the sequence describes a certain structure S as desired.
(3) For all n, A is not provable from {A1,� , An}.
Proof . This follows immediately from the construction and properties (1) and (2). qed(3)
(4) For every formula B, “not B”∈H iff B � H.
Proof . Consider B = Fm . Assume that “not B” ∈ H. Assume for a contradiction that also
B ∈H . Choose a natural number n that B, “not B”∈ {A1,� , An}. Then A is immediately prov-
able from {A1, � , An} by the rules of contradiction and ex falsum libenter . But this contradicts
(3).

Conversely assume that “not B” � H . Then by construction of H , A2m−1 = Fm = B ∈ H .
qed(4)
(5) Let B be provable from H . Then B ∈H .
Proof . Let Proof1, B be a proof of B from H . Assume B � H . By (4), “not B” ∈ H . Then
the following text is a proof of A from H :

k Statement Rule ... with hypothesis ...
1 Proof1 given

2 B. given
3 not B. copying “not B” out of H
4 Contradiction. contradiction with 2, 3
5 A. ex falsum libenter with 4

This contradicts (3). qed(5).
(6) “not A”∈H .
Proof . By (3), A � H . The claim follows by (4). qed (6)
(7) “contradiction” � H .
Proof . If “contradiction” ∈ H, say “contradiction” = An then A is provable from {A1, � , An}
by the ex falsum libenter rule, which contradicts (3). qed(7)
(8) For all formulas B and C, we have “B implies C”∈H iff (B ∈H implies C ∈H).
Proof . Assume “B implies C” ∈ H and assume that B ∈ H . Then C is provable from H . By
(5), C ∈H , and thus B ∈H implies C ∈H .

Conversely assume that “B implies C” � H . By (4), “not (B implies C)” ∈ H . From “not (B
implies C)” one can prove B and “not C”. By (5), B ∈ H and C � H . Hence B ∈ H does not
imply C ∈H . qed(8)
(9) For all formulas B(x) we have: “for all x holds B(x)” ∈ H iff for all variables y holds
B(y)∈H .
Proof . Assume that “for all x holds B(x)” ∈ H . Then for all variables y, B(y) is provable
from H by the rule of instantiation. By (5), B(y)∈H .

Conversely assume that “for all x holds B(x)” � H . By (4), “not for all x holds B(x)” ∈ H .
Choose an index m such that Fm = “not for all x holds B(x)”. By construction, A2m−1 = Fm and
A2m = “not B(y)”∈H for some variable y. By (4), B(y) � H . qed(8)

Now define the structure S = (S, �) as follows. Let S be the set of all variables occuring in
A0, A1, � . For every n-ary relation symbol R occuring in A0, A1, � define an n-ary relation RS

on S by

RS(x1,� , xn) iff R(x1,� , xn)∈H .

A completeness theorem 9

(10) Let F be a formula. Then F holds in S iff F ∈H .
Proof . We prove the claim by induction on the length of F as a sequence of symbols. So assume
that the claim holds for all shorter F ′.
Case 1 . F is a relational formula of the form F =R(x1,� , xn).

Then by definition of the structure S, F holds in S iff RS(x1,� , xn) iff R(x1,� , xn)∈H .
Case 2 . F = “contradiction”.
Then F does not hold in S. Also, by (7), F � H .
Case 3 . F = “not B”.
Then by the inductive assumption and (4),

F holds in S

iff B does not hold in S

iff B � H

iff “not B”∈H .
Case 4 . F = “B implies C”.
Then by the inductive assumption and (8),

“B implies C” holds in S

iff B holds in S implies C holds in S

iff B ∈H implies C ∈H

iff “B implies C”∈H .
Case 5 . F = “for all x holds B(x)”.
Then by the inductive assumption and (9),

“for all x holds B(x)” holds in S

iff for all variables y ∈S, B(y) holds in S

iff for all variables y ∈S, B(y)∈H

iff “for all x holds B(x)”∈H . qed(9)

By (10) and (6), the initial formula A does not hold in S. Thus A is not universally valid. �

4 Normal forms

There are many motivations to transform formulas into equivalent normal forms. The motiva-
tion here will be that normal forms are important for automated theorem proving and for logic
programming .

We are particularly interested in transforming formulas ψ into formulas ψ ′ such that ψ is
consistent iff ψ ′ is consistent. This relates to provability as follows: Φ ⊢ ϕ iff Φ ∪ {¬ϕ} is not
satisfiable/inconsistent. So a check for provability can be based on inconsistency checks.

Work in some fixed language S.

Definition 17.

a) An S-formula is a literal if it is atomic or the negation of an atomic formula.

b) Define the dual of the literal L as

L̄ =

{

¬L, if L is an atomic formula;
K, if L is of the form ¬K.

c) A formula ϕ is in disjunctive normal form if it is of the form

ϕ=
∨

i<m

(
∧

j<ni

Lij)

where each Lij is a literal.

10 Section 4

d) A formula ϕ is in conjunctive normal form if it is of the form

ϕ=
∧

i<m

(
∨

j<ni

Lij)

where each Lij is a literal. Sometimes a disjunctive normal form is also written in set
notion as

ϕ= {{L00,� , L0n0−1},� , {Lm−1,0,� , Lm−1,nm−1
}}.

Theorem 18. Let ϕ be a formula without quantifiers. Then ϕ is equivalent to some ϕ′ in dis-
junctive normal form and to some ϕ′′ in conjunctive normal form.

Proof. By induction on the complexity of ϕ. Clear for ϕ atomic. The ¬ step follows from the
de Morgan laws:

¬
∨

i<m

(
∧

j<ni

Lij) ↔
∧

i<m

¬(
∧

j<ni

Lij)

↔
∧

i<m

(
∨

j<ni

¬Lij).

The ∧ -step is clear for conjunctive normal forms. For disjunctive normal forms the associativity
rules yield

∨

i<m

(
∧

j<ni

Lij)∧
∨

i<m′

(
∧

j<ni
′

Lij
′) ↔

∨

i<m,i′<m′

(
∧

j<ni

Lij ∧
∧

j<ni
′

Lij
′)

which is also in conjunctive normal form. �

Definition 19. A formula ϕ is in prenex normal form if it is of the form

ϕ=Q0x0Q1x1�Qm−1 xm−1 ψ

where each Qi is either the quantifier ∀ or ∃ and ψ is quantifier-free. Then the quantifier string
Q0x0Q1x1�Qm−1 xm−1 is called the prefix of ϕ and the formula ψ is the matrix of ϕ.

Theorem 20. Let ϕ be a formula. Then ϕ is equivalent to a formula ϕ′ in prenex normal form.

Proof. By induction on the complexity of ϕ. Clear for atomic formulas. If

ϕ↔Q0 x0Q1 x1�Qm−1xm−1 ψ

with quantifier-free ψ then by the de Morgan laws for quantifiers

¬ϕ↔ Q̄
0
x0 Q̄1x1� Q̄m−1xm−1¬ψ

where the dual quantifier Q̄ is defined by ∃̄= ∀ and ∀̄= ∃ .
For the ∧ -operation consider another formula

ϕ′↔Q0
′ x0

′ Q1
′ x1

′�Qm′−1
′ xm′−1

′ ψ ′.

We may assume that the sets of bound variables of the prenex normal forms are disjoint. Then

ϕ∧ ϕ′↔Q0 x0Q1 x1�Qm−1xm−1Q0
′ x0

′ Q1
′ x1

′�Qm′−1
′ xm′−1

′ (ψ∧ ψ ′).

(semantic argument). �

Definition 21. A formula ϕ is universal if it is of the form

ϕ= ∀x0 ∀x1� ∀xm−1 ψ

where ψ is quantifier-free. A formula ϕ is existential if it is of the form

ϕ= ∃x0 ∃x1� ∃xm−1 ψ

where ψ is quantifier-free.

Normal forms 11

We show a quasi-equivalence with respect to universal (and existential) formulas which is not
a logical equivalence but concerns the consistency or satisfiability of formulas.

Theorem 22. Let ϕ be an S-formula. Then there is a canonical extension S∗ of the language S

and a canonical universal ϕ∗∈LS∗

such that

ϕ is consistent iff ϕ∗ is consistent.

The formula ϕ∗ is called the Skolem normal form of ϕ.

Proof. By a previous theorem we may assume that ϕ is in prenex normal form. We prove the
theorem by induction on the number of existential quantifiers in ϕ. If ϕ does not contain an
existential quantifier we are done. Otherwise let

ϕ= ∀x1� ∀xm∃yψ

where m<ω may also be 0. Introduce a new m-ary function symbol f (or a constant symbol in
case m=0) and let

ϕ′ =∀x1�∀xmψ
fx1�xm

y
.

By induction it suffices to show that ϕ is consistent iff ϕ′ is consistent.
(1) ϕ′→ ϕ.
Proof . Assume ϕ′. Consider x1,� , xm . Then ψ

fx1� xm

y
. Then ∃yψ. Thus ∀x1�∀xm∃yψ. qed(1)

(2) If ϕ′ is consistent then ϕ is consistent.
Proof . If ϕ→⊥ then by (1) ϕ′→⊥ . qed(2)
(3) If ϕ is consistent then ϕ′ is consistent.
Proof . Let ϕ be consistent and let M= (M,�) � ϕ . Then

∀a1∈M� ∀am∈M ∃b∈MM
aG b
xG y � ψ.

Using the axiom of choice there is a function h:Mm→M such that

∀a1∈M� ∀am∈MM
aG h(a1,� , am)

xG y
� ψ.

Expand the structure M to M′ = M∪ {(f , h)} where the symbol f is interpreted by the func-
tion h. Then h(a1,� , am) =M′aG

xG (fx1�xm) and

∀a1∈M� ∀am∈MM′
aG M′aG

xG (fx1�xm)

xG y
=M′aG

xG M′aG
xG (fx1� xm)

y
� ψ.

By the substitution theorem this is equivalent to

∀a1∈M� ∀am∈MM′aG
xG � ψ

fx1� xm

y
.

Hence

M′�∀x1�∀xmψ
fx1�xm

y
= ϕ′.

Thus ϕ′ is consistent. �

5 Herbrand’s theorem

By the previous chapter we can reduce the question whether a given finite set of formulas is
inconsistent to the question whether some universal formula is inconsistent. By the following
theorem this can be answered rather concretely.

Theorem 23. Let S be a language which contains at least one constant symbol. Let

ϕ= ∀x0 ∀x1� ∀xm−1 ψ

12 Section 5

be a universal S-sentence with quantifier-free matrix ψ . Then ϕ is inconsistent if there are vari-
able-free S-terms (“constant terms”)

t0
0,� , tm−1

0 ,� , t0N−1,� , tm−1
N−1

such that

ϕ′=
∧

i<N

ψ
t0
i ,� , tm−1

i

x0,� , xm−1

= ψ
t0
0,� , tm−1

0

x0,� , xm−1

∧� ∧ ψ
t0
N−1,� , tm−1

N−1

x0,� , xm−1

is inconsistent.

Proof. All sentences ϕ′, for various choices of constant terms, are logical consequences of ϕ. So
ϕ is consistent, all ϕ′ are consistent.

Conversely assume that all ϕ′ are consistent. Then by the compactness theorem

Φ = {ψ
t0,� , tm−1

x0,� , xm−1

|t0,� , tm−1 are constant S-terms}

is consistent. Let M= (M,�) �Φ. Let

H = {M(t)|t is a constant S-term}.

Then H � ∅ since S contains a constant symbol. By definition, H is closed under the functions
of M . So we let H= (H,�)⊆M be the substructure of M with domain H .
(1) H � ϕ .
Proof . Let M(t0),� ,M(tm−1)∈H where t0,� , tm−1 are constant S-terms. Then ψ

t0,� , tm−1

x0,� , xm−1

∈

Φ, M� ψ
t0,� , tm−1

x0,� , xm−1

, and by the substitution theorem

M
M(t0),� ,M(tm−1)

x0,� , xm−1

� ψ.

Since ψ is quantifier-free this transfers to H :

H
M(t0),� ,M(tm−1)

x0,� , xm−1

� ψ.

Thus

H �∀x0∀x1�∀xm−1 ψ= ϕ.

qed(1)
Thus ϕ is consistent. �

In case that the formula ψ does not contain the equality sign ≡ checking for inconsistency
of

ϕ′=
∧

i<N

ψ
t0
i ,� , tm−1

i

x0,� , xm−1

= ψ
t0
0,� , tm−1

0

x0,� , xm−1

∧� ∧ ψ
t0
N−1,� , tm−1

N−1

x0,� , xm−1

is in principle a straightforward finitary problem. ϕ′ contains finitely many constant S-terms. ϕ′

is consistent iff the relation symbols can be interpreted on appropriate tuples of the occuring S-
terms to make ϕ′ true. There are finitely many possibilities for the assignments of truth values
of relations. This leads to the following (theoretical) algorithm for automatic proving for for-
mulas without ≡ :

Let Ω⊆LS be finite and χ∈LS. To check whether Ω⊢ χ:

1. Form Φ = Ω ∪ {¬χ} and let ϕ= ∀(
∧

Φ) be the universal closure of
∧

Φ . Then Ω ⊢ χ iff
Φ=Ω∪{¬χ} is inconsistent iff (

∧

Φ)⊢⊥ iff ∀(
∧

Φ)⊢⊥ .

2. Transform ϕ into universal form ϕ∀ =∀x0∀x1�∀xm−1 ψ (Skolemization).

3. Systematically search for constant S-terms

t0
0,� , tm−1

0 ,� , t0N−1,� , tm−1
N−1

such that

ϕ′=
∧

i<N

ψ
t0
i ,� , tm−1

i

x0,� , xm−1

= ψ
t0
0,� , tm−1

0

x0,� , xm−1

∧� ∧ ψ
t0
N−1,� , tm−1

N−1

x0,� , xm−1

Herbrand’s theorem 13

is inconsistent.

4. If an inconsistent ϕ′ is found, output “yes”, otherwise carry on.

Obviously, if “yes” is output then Ω ⊢ χ . This is the correctness of the algorithm. On the other
hand, Herbrand’s theorem ensures that if Ω ⊢ χ then an appropriate ϕ′ will be found,
and “yes” will be output, i.e., the algorithm is complete.

Let us assume from now on, that the formulas considered do not contain the symbol ≡ .

We shall see that the search for those S-terms and the inconsistency-check can be further
systematized. We can assume that the quantifier-free formula ψ is in conjunctive normal form,
i.e., a conjunction of clauses ψ= c0∧ c1∧� ∧ cl−1. Then ∀x0∀x1�∀xm−1 ψ is inconsistent iff the
set

{ci
t0,� , tm−1

x0,� , xm−1

|t0,� , tm−1 are constant S-terms}

is inconsistent.

The method of resolution gives an efficient method for showing the inconsistency of sets of
clauses.

Definition 24. Let c+ = {K0, � , Kk−1} and c− = {L0, � , Ll−1} be clauses with literals Ki and
Lj . Note that {K0, � , Kk−1} stands for the disjunction K0 ∨ � ∨Kk−1 . Assume that K0 and
L0 are dual, i.e., L0 =¬K0 . Then the disjunction

{K1,� , Kk−1}∪ {L1,� , Ll−1}

is a resolution of c+ and c−.

Resolution is related to the application of modus ponens: ϕ → ψ and ϕ correspond to the
clauses {¬ϕ, ψ} and {ϕ}. {ψ} is a resolution of {¬ϕ, ψ} and {ϕ}.

Theorem 25. Let C be a set of clauses and let c be a resolution of two clauses c+, c−∈C. Then
if C ∪{c} is inconsistent then C is inconsistent.

Proof. Let c+ = {K0,� , Kk−1}, c− = {¬K0, L1� , Ll−1}, and c= {K1,� , Kk−1} ∪ {L1,� , Ll−1}.
Assume that M�C is a model of C.
Case 1 . M�K0 . Then M� c−, M� {L1� , Ll−1}, and

M� {K1,� ,Kk−1}∪ {L1,� , Ll−1}= c.

Case 2 . M�¬K0 . Then M� c+, M� {K1� , Kk−1}, and

M� {K1,� ,Kk−1}∪ {L1,� , Ll−1}= c.

Thus M�C ∪{c}. �

Theorem 26. Let C be a set of clauses closed under resolution. Then C is inconsistent iff ∅ ∈
C. Note that the empty clause {}↔⊥ .

Proof. If ∅∈C then C is clearly inconsistent.

Conversely assume that C is inconsistent. By the compactness theorem there is a finite set of
atomic formulas {ϕ0,� , ϕn−1} such that

C ′= {c∈C |for every literal L in c there exists i <n such that L= ϕi or L=¬ϕi},

the restriction of C to {ϕ0, � , ϕn−1} is inconsistent. Assume that the number n of atomic for-
mulas with that property is chosen minimally.
Case 1 . n = 0. Since the empty set of clauses is consistent, C ′ � ∅. On the other hand the only
clause built from no atomic formulas is the clause {}= ∅. Thus ∅∈C ′⊆C.
Case 2 . n=m+ 1> 0. Assume for a contradiction that ∅ � C. Let

C+ = {c∈C ′|¬ϕ0 � c}, C−= {c∈C ′|ϕ0 � c}

14 Section 5

and

C0
+ = {c \ {ϕ0}|c∈C+}, C0

−= {c \ {¬ϕ0}|c∈C−}.

(1) C0
+ and C0

− are closed under resolution.
Proof . Let d′′ be a resolution of d, d′ ∈ C0

+. Let d = c \ {ϕ0} and d′ = c′ \ {ϕ0} with c, c′ ∈ C+.
The resolution d′′ was based on some atomic formula ϕi � ϕ0 . Then we can also resolve c, c′ by
the same atomic formula ϕi . Let c′′ be that resolution of c, c′. Since C is closed under resolu-
tion, c′′∈C, c′′∈C+, and d′′= c′′ \ {ϕ0} ∈C0

+. qed(1)

(2) ∅ � C0
+ or ∅ � C0

−.

Proof . If ∅ ∈C0
+ and ∅ ∈C0

−, and since ∅ � C we have {ϕ0} ∈C+ and {¬ϕ0} ∈C−. But then the
resolution ∅ of {ϕ0} and {¬ϕ0} would be in C, contradiction. qed(2)

Case 1 . ∅ � C0
+. By the minimality of n and by (1), C0

+ is consistent. Let M � C0
+. Let the

atomic formula ϕ0 be of the form rt0� ts−1 where r is an n-ary relation symbol and t0,� , ts−1∈

TS. Since the formula rt0� ts−1 does not occur within C0
+, we can modify the model M to a

model M′ by only modifying the interpretation M(r) exactly at (M(t0), � , M(ts−1)). So let
M′(M(t0),� ,M(ts−1)) be false. Then M′ �¬ϕ0 . We show that M′�C ′.

Let c∈C ′. If ¬ϕ0 ∈ c then M′ � c . So assume that ¬ϕ0 � c . Then c∈C+ and c \ {ϕ0} ∈C0
+.

Then M� c \ {ϕ0}, M′� c \ {ϕ0}, and M′� c . But then C ′ is consistent, contradiction.

Case 2 . ∅ � C0
−. We can then proceed analogously to case 1, arranging that M′(M(t0), � ,

M(ts−1)) be true. So we get a contradiction again. �

This means that the inconsistency check in the automatic proving algorithm can be carried
out even more systematically: produce all relevant resolution instances until the empty clause is
generated. Again we have correctness and completeness for the algorithm with resolution.

Example 27. Already with a view towards logical applications of Prolog let us consider a
theory about the recursive definition of formulas. Let

fm(psi)

fm(phi)

∀X, Y (fm(X)∧ fm(Y)→ fm(and(X,Y)))

be a small axiom system concerning the formation of formulas; here “psi” and “phi” are constant
symbols, “and” is a binary function symbol, and “formula” is a unary relation symbol. To show
that ψ∧ (ψ∧ ψ) is a formula one has to derive

fm(and(psi, and(psi, psi)))

from the axioms. This is equivalent to showing that

fm(psi)

fm(phi)

∀X, Y (fm(X)∧ fm(Y)→ fm(and(X,Y)))

¬fm(and(psi, and(psi, psi)))

is inconsistent. We can write the matrix of the conjunction of these formulas in conjunctive
normal form as

C = {{fm(psi)}, {fm(psi)}, {¬fm(X),¬fm(Y), fm(and(X, Y))}, {¬fm(and(psi, and(psi, psi)))}}.

Obviously the universally quantified clause {¬fm(X), ¬fm(Y), fm(and(X, Y))} implies all its
instantiations by constant terms. So we close the set C under such instantiations and under res-
olution. Deriving the empty clause {} shows the desired inconsistency. We write the sequence of
derived clauses in the format of a formal proof:

Herbrand’s theorem 15

1 fm(psi) assumption
2 fm(phi) assumption
3 ¬fm(X),¬fm(Y), fm(and(X,Y)) assumption

4 ¬fm(and(psi, and(psi, psi))) assumption
5 ¬fm(psi),¬fm(and(psi,psi)), fm(and(psi, and(psi,psi))) instance of 3

6 ¬fm(psi),¬fm(and(psi,psi)) resolution of 4, 5
7 ¬fm(and(psi, psi)) resolution of 1, 6

8 ¬fm(psi), fm(and(psi,psi)) instance of 3
9 ¬fm(psi) resolution of 7, 8

10 {} resolution of 1, 9

The choice of instances of the universal clause {¬fm(X), ¬fm(Y), fm(and(X, Y))} was dir-
ected by the desire to resolve certain clauses along the derivation. It is possible to find “fitting”
instances by the method of unification which will be explained in the next chapter.

16 Section 5

