2-dimensional convexity revisited

Stefan Geschke

October 4, 2010

Convexity numbers, cliques, and the Kubiś set

Definition

Let $S \subseteq \mathbb{R}^{n}$. The convexity number $\gamma(S)$ of S is the least size of of a family \mathcal{F} of convex sets such that $S=\bigcup \mathcal{F}$.
S is countably convex if $\gamma(S) \leq \aleph_{0}$ and otherwise uncountably convex.

A set $A \subseteq S$ is defected in S if the convex hull of A is not a subset of S.

A set $C \subseteq S$ is an m-clique of S if all m-element subsets of C are defected in S.

Remark

By Caratheodory's theorem, the convex structure of a set $S \subseteq \mathbb{R}^{n}$ is determined by the $(n+1)$-uniform defectedness hypergraph

$$
G(S)=\left(S,\left\{A \in[S]^{n+1}: A \text { is defected in } S\right\}\right)
$$

The convexity number $\gamma(S)$ is the chromatic number of $G(S)$. An $(n+1)$-clique in S is a clique in $G(S)$.
The size of an infinite clique in $G(S)$ is a lower bound of $\gamma(S)$.

Theorem (Folklore?)
If a closed set $S \subseteq \mathbb{R}^{n}$ has an uncountable m-clique for any $m \in \omega$, then it has a perfect $(n+1)$-clique.

Remark

If $S \subseteq \mathbb{R}^{n}$ is closed, then (the edge relation of) $G(S)$ is open.
Since the Open Coloring Axiom holds for closed subsets of \mathbb{R}, every closed subset of \mathbb{R} is either countably convex or has a perfect 2-clique.

Definition

For all $\{x, y\} \in\left[\omega^{\omega}\right]^{2}$ let

$$
\Delta(x, y)=\min \{n \in \omega: x(n) \neq y(n)\}
$$

and

$$
c_{\min }(x, y)=\Delta(x, y) \quad \bmod 2
$$

Let $A \subseteq \mathbb{R}$ and let $f: A \rightarrow \mathbb{R}$ be a function. We say that $\{x, y\} \in[A]^{2}$ with $x<y$ is in configuration \sqcap (respectively \sqcup) if for all $z \in(x, y),(z, f(z))$ is either on or strictly above (below) the line segment joining $(x, f(x))$ and $(y, f(y))$.

Theorem (Kubiś)

There are a closed set $S \subseteq \mathbb{R}^{2}$, a topological embedding $e: 2^{\omega} \rightarrow \mathbb{R}$, and a differentiable function $f: e\left[2^{\omega}\right] \rightarrow \mathbb{R}$ with the following properties:

1. For all $\{x, y\} \in\left[2^{\omega}\right]^{2},\{e(x), e(y)\}$ is of configuration \sqcap if $c_{\text {min }}(x, y)=1$ and of configuration \sqcup otherwise.
2. $S \backslash f$ is countably convex.
3. For $x \in 2^{\omega}$ let $g(x)=(e(x), f(e(x)))$. Then for all $A \subseteq 2^{\omega}$, the set $g[A]$ is defected in S iff A is homogeneous with respect to $C_{\text {min }}$.

The set S is uncountably convex and does not have an uncountable 3-clique.

The Decomposition Theorem

Theorem (Kubiś)

Let $S \subseteq \mathbb{R}^{2}$ be closed, uncountably convex, and without a perfect 3-clique. Then there are a countably convex set $A \subseteq \mathbb{R}^{2}$ and a sequence $\left(B_{n}\right)_{n \in \omega}$ of G_{δ}-sets such that

$$
S=A \cup \bigcup_{n \in \omega} B_{n}
$$

and for each $n \in \omega$ there is a continuous coloring $c_{n}:\left[B_{n}\right]^{2} \rightarrow 2$ such that $B \subseteq B_{n}$ is not defected in S iff B is homogeneous wrt c_{n}.

Here the sets B_{n} are affinely isomorphic to graphs of Lipschitz functions and the colorings are colorings by configuration.

Lemma (Transitivity)

Let $C \subseteq \mathbb{R}$, let $f: C \rightarrow \mathbb{R}$ be a function such that every two-element set $\{x, y\} \subseteq C$ has a configuration, and let $c:[C]^{2} \rightarrow\{\sqcup, \sqcap\}$ be the coloring that assigns to each pair its configuration.
a) Let $x_{1}, x_{2}, x_{3} \in C$ be such that $x_{1}<x_{2}<x_{3}$. If $c_{K}\left(x_{1}, x_{2}\right)=c_{K}\left(x_{2}, x_{3}\right)=\sqcap$, then $c_{K}\left(x_{1}, x_{3}\right)=\Pi$. If $c_{K}\left(x_{1}, x_{2}\right)=c_{K}\left(x_{2}, x_{3}\right)=\sqcup$, then $c_{K}\left(x_{1}, x_{3}\right)=\sqcup$.
b) Let $x_{1}, x_{2}, x_{3}, x_{4} \in C$ be such that $x_{1}<x_{2}<x_{3}<x_{4}$. If $c_{K}\left(x_{1}, x_{3}\right)=c_{K}\left(x_{2}, x_{4}\right)=\sqcap$, then $c_{K}\left(x_{1}, x_{4}\right)=\sqcap$. If $c_{K}\left(x_{1}, x_{3}\right)=c_{K}\left(x_{2}, x_{4}\right)=\sqcup$, then $c_{K}\left(x_{1}, x_{4}\right)=\sqcup$.

Definition

A graph $G=(V, E)$ is P_{4}-free if it does not contain an induced copy of the path of length 3 on 4 vertices.

Theorem

Let $C \subseteq \mathbb{R}$, let $f: C \rightarrow \mathbb{R}$ be a function such that every two-element set $\{x, y\} \subseteq C$ has a configuration. Let G be the graph on the set C of vertices where $\{x, y\}$ is an edge iff $\{x, y\}$ is in configuration \sqcap. Then G is P_{4}-free.

In particular, G is perfect (in the graph-theoretic sense).

Convexity numbers, cliques, and the Kubiś set

Homogeneity numbers

Definition

Let X be a Polish space and let $c:[X]^{2} \rightarrow 2$ be a continuous coloring. The homogeneity number $\mathfrak{h m}(c)$ is the least size of a family of homogeneous subsets of X that covers all of X.

The coloring c is uncountably homogeneous if $\mathfrak{h m}(c)>\aleph_{0}$.

Lemma (G., Kojman)

A continuous coloring $c:[X]^{2} \rightarrow 2$ on a Polish space X is uncountably homogeneous iff there is a topological embedding $e: 2^{\omega} \rightarrow X$ such that for all $\{x, y\} \in[X]^{2}$,

$$
c_{\min }(x, y)=c(e(x), e(y)) .
$$

In particular, the homogeneity number $\mathfrak{h m}=\mathfrak{h m}\left(c_{\text {min }}\right)$ is minimal among all uncountable homogeneity numbers of continuous colorings on Polish spaces.

Theorem

a) $\mathfrak{h m ^ { + }} \geq 2^{\aleph_{0}}$
b) $\mathfrak{h m}$ is an upper bound for all cardinal invariants in Cichon's diagram.
c) There is a continuous coloring $c_{\max }:\left[2^{\omega}\right]^{2} \rightarrow 2$ whose homogeneity number is maximal among all homogeneity numbers of continuous colorings on Polish spaces.
d) It is consistent that $\mathfrak{h m}\left(c_{\max }\right)<2^{\aleph_{0}}$ (G., Schipperus).
e) It is consistent that $\mathfrak{h m}<\mathfrak{h m}\left(c_{\max }\right)$ (G., Goldstern, Kojman).

Remark

In the model of $\mathfrak{h m}<\mathfrak{h m}\left(c_{\max }\right)$, the perfect continuous colorings have homogeneity numbers equal to $\mathfrak{h m}$.

By the Decomposition Theorem every uncountably convex, closed set $S \subseteq \mathbb{R}^{2}$ without a perfect 3-clique has $\gamma(S)=\mathfrak{h m}(c)$ for some P_{4}-free continuous coloring on a Polish space.

Corollary
It is consistent that $\gamma(S)<\mathfrak{h m}\left(c_{\max }\right)$ holds for every closed set
$S \subseteq \mathbb{R}^{2}$ without a perfect 3-clique.

P_{4}-free continuous colorings

Theorem (Seinsche)

The class of finite P_{4}-free graphs is the smallest class of graphs that contains the graph on a single vertex and is closed under complementation and disjoint union.

Corollary

A finite graph G is P_{4}-free iff it embeds into $G_{\text {min }}=\left(2^{\omega}, c_{\text {min }}^{-1}(1)\right)$.

Theorem

Let $c:[X]^{2} \rightarrow 2$ be a continuous coloring on a Polish space. If c is $P_{4}-f r e e$, then X is the union of not more than $\mathfrak{h m}$ sets $A \subseteq X$ such that $c \upharpoonright[A]^{2}$ embeds into $c_{\text {min }}$.

Corollary

If $c:[X]^{2} \rightarrow 2$ is an uncountably homogeneous, P_{4}-free, continuous coloring on a Polish space, then $\mathfrak{h m}(c)=\mathfrak{h m}$.

Corollary

If $S \subseteq \mathbb{R}^{2}$ is closed, uncountably convex, and does not contain a perfect 3 -clique, then $\gamma(S)=\mathfrak{h m}$.

Convexity numbers, cliques, and the Kubiś set

Thank you!

