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Abstract

Martin’s Axiom and applications, iterated forcing, forcing Martin’s axiom, adding var-
ious types of generic reals.

1 Introduction

2 Martin’s axiom

2.1 The definition

We have produced several different models of set theory by the forcing method. Take a
forcing partial order (P , 6 , 1) in a ground model M . Then take an M -generic filter G on
P . Infinitary combinatorics in the new model M [G] is determined by the combinatorics of
P in the ground model M . In particular it is important to control the collections of dense
subsets and antichains in P .

Recall

Definition 1. Let M be a ground model and (P , 6 , 1P)∈M be a forcing.

a) D ⊆P is dense in P iff ∀p∈P ∃q ∈D q 6 p.

b) A filter G on P is M-generic iff D∩G� ∅ for every D∈M which is dense in P.

If M [G] is an extension of M by an M-generic filter we call M [G] a generic extension.

We can define genericity for arbitrary collections of dense sets:

Definition 2. Let (P , 6 , 1P) be a forcing and D ∈ X be any set. Then a filter G on P is
D-generic iff D∩G� ∅ for every D∈D which is dense in P.

For any countable D we obtain the existence of generic filters just like in the case of
ground models.

Theorem 3. Let (P , 6 , 1P) be a partial order, let D be countable, and let p ∈ P. Then
there is a D-generic filter G on P with p∈G.
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Proof. Take an enumeration (Dn|n < ω) of all D ∈ D which are dense in P . Define an ω-
sequence p = p0 > p1 > p2 >� recursively, using the axiom of choice:

choose pn+1 such that pn+1 6 pn and pn+1∈Dn .

Then G = {p∈P |∃n< ω pn 6 p} is as desired. �

For larger sets D there is in general no D-generic filter. The arguments of the following
counterexamples correspond to certain arguments in our forcing constructions of ¬CH und
CH.

Example 4. Let (P , 6 , 1P) with

P =Fn(ω, 2,ℵ0)= {p|p: dom(p)→ 2∧ dom(p)⊆ ω∧ card(dom(p)) <ℵ0}

be Cohen forcing partially ordered by reverse inclusion

p6 q iff p⊇ q

and with weakest element 1P = ∅. Define D= {Dx|x∈R}∪ {Dn|n< ω}, where

Dx = {p∈P |p * x} and Dn = {p∈P |n∈dom(p)}.

For us, the set of real numbers is R= ω2 . We saw before that every Dx and Dn is dense in
P .

Now assume that G were D-generic. Define

c=
⋃

G.

The definition of the forcing relation and since every Dn is met by G imply that c behaves
like a Cohen real, i.e., c: ω→ 2 .

But on the other hand we have that G ∩ Dc � ∅. Take p ∈ G ∩ Dc . This implies p ⊆ c

and p * c , a contradiction.
So we have a set D of size 2ℵ0 such that there is no D-generic filter on P .

Example 5. Let (P , 6 , 1P) with

P =Fn(ω,ω1,ℵ0)= {p|p: dom(p)→ω1∧ dom(p)⊆ω ∧ card(dom(p))<ℵ0}

the forcing for “making ω1 countable”. Again P is partially ordered by reverse inclusion

p6 q iff p⊇ q

and with weakest element 1P = ∅. Define D= {Dα|α <ω1}, where

Dα = {p∈P |α∈ ran(p)}.

Now assume that G were D-generic. Define

f =
⋃

G.

The definition of the forcing relation imply that f : ω ⇀ω1 is a partial function.
We show that f is surjective: Let α < ω1 . By genericity, G∩Dα� ∅. Take p ∈G∩Dα .

Then α∈ ran(p)⊆ ran(f).
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But this is a contradiction since ω1 cannot be a surjective image of some smaller
ordinal.

So we have a set D of size ℵ1 such that there is no D-generic filter on P .

Exercise 1. Let M be a ground model with 2ℵ0 = ℵ2 . Define P = Fn(ω, ω1, ℵ0)
M and let M [G] be a

generic extension via P . Show that M [G] � 2ℵ0 =ℵ1 .

The second example shows that a forcing that collapses ω1 cannot have generic sets for
ℵ1 many dense sets. We know from forcing ¬CH that forcings with the countable chain
condition do not collapse ω1 . Cohen forcing satisfies the countable chain condition. The
first example shows that Cohen forcing cannot have generic sets for 2ℵ0 many dense sets.
This analysis leaves open the possibility of ccc-forcings and collections of dense sets of size
< 2ℵ0. Of course this only interesting in case that 2ℵ0 >ℵ1 :

Definition 6.

a) Let κ be a cardinal. Then Martin’s axiom MAκ is the property: for every ccc par-
tial order (P ,6 , 1P) and D with card(D)6κ there is a D-generic filter G on P.

b) Martin’s axiom MA postulates that MAκ holds for every κ < 2ℵ0.

MAℵ0
holds by Theorem 3. Thus the continuum hypothesis 2ℵ0 = ℵ1 trivially implies MA.

We shall later see by a forcing construction that 2ℵ0 = ℵ2 and MA are relatively consistent
with ZFC.

2.2 Consequences of MA+¬CH

2.2.1 Lebesgue measure

We shall not go into the details of Lebesgue measure, since we shall only consider mea-
sure zero sets. We recall some notions and facts from before. For s ∈ <ω2 = {t|t: dom(t)→
2∧ dom(t)∈ω} define the real interval

Is = {x∈R|s⊆ x}⊆R

with length(Is) = 2−dom(s). Note that Is = Is∪{(dom(s),0)} ∪ Is∪{(dom(s),1)} , length(R) = I∅ =

2−0 =1, and length(Is∪{(dom(s),0)})= length(Is∪{(dom(s),1)})=
1

2
length(Is).

Definition 7. Let ε > 0. Then a set X ⊆ R has measure < ε if there exists a sequence
(In|n < ω) of intervals in R such that X ⊆

⋃

n<ω
In and

∑

n<ω
length(In) 6 ε . A set X ⊆

R has measure zero if it has measure <ε for every ε> 0.

Theorem 8. Assume MAκ and let X ⊆R with card(X)6κ. Then X has measure zero.

Proof. Let ε > 0 be given. We want to cover X by a sequence (In|n < ω) of intervals as in
the definition of measure zero sets. The idea is to define the intervals I0, I1, I2, � of
lengths 2−i−1, 2−i−2, 2−i−3, � from some “Cohen generic” real c. Take i < ω such that
2−i < ε . For n< ω let In = Isn

, where the finite sequence sn: i+ n+1→ 2 is given by

sn(l) = c(n+ l).
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Then
∑

n<ω

length(In)=
∑

n<ω

2−i−n−1 =2−i < ε.

We shall apply MAκ to Cohen forcing P = Fn(ω, 2, ℵ0). Since P is countable it triv-
ially satisfies the ccc. For every x∈X let

Dx = {p∈P |∃n <ω ∀l < i + n+1(n+ l ∈dom(p)∧ p(n + l)=x(l))}.

(1) Dx is dense in P .
Proof . Let q ∈P . Take n <ω such that dom(q)⊆n. Set

p = q∪ {(n+ l, x(l))|l < i +n +1}.

Then p6 q and p∈Dx . qed(1)
For k < ω let Dk = {p ∈ P |k ∈ dom(p)}. Set D = {Dx|x ∈ X } ∪ {Dk|k < ω}. By MAκ

take a D-generic filter G on P . As in example 4 c =
⋃

G : ω → 2 is a real number. Define
(In|n< ω) from c as above. It suffices to show:

(2) X ⊆
⋃

n<ω
In .

Proof . Let x∈X. By the D-genericity of G take p∈G∩Dx . Take n <ω such that

∀l < i +n+1(n+ l∈dom(p)∧ p(n+ l)=x(l)).

Then

∀l < i +n+1 c(n + l) =x(l)

and

∀l < i +n+ 1 sn(l)=x(l).

Hence sn ⊆x and x∈ In ⊆
⋃

n<ω
In . �

To strengthen this theorem we need some more topological and measure theoretic
notions. The (standard) topology on R is generated by the basic open sets Is for s ∈ <ω2.
Hence every union

⋃

n<ω
In of basic open intervals is itself open. The basic open intervals

Is are also compact in the sense of the Heine-Borel theorem: every cover of Is by open
sets has a finite subcover.

Theorem 9. Assume MAκ and let (Xi|i < κ) be a family of measure zero sets. Then X =
⋃

i<κ
Xi has measure zero.

Proof. Fix ε > 0. We show that X =
⋃

i<κ
Xi has measure < 2ε. Let

I = {(a, b)|a, b∈Q, a < b}

the countable set of rational intervals (a, b)= {c∈R|a < c < b} in R. The length of (a, b) is
simply length((a, b))= b− a . We shall apply Martin’s axiom to the following forcing P =
(P ,⊇ , ∅) where

P = {p⊆I|
∑

I∈p

length(I) <ε}.
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(1) P is ccc.
Proof . Let {pi|i <ω1}⊆P . For every i < ω1 there is ni < ω such that pi has measure <ε−
1

ni
. By a pigeonhole principle we may assume that all ni are equal to a common value n <

ω. For every pi we have
∑

I∈pi

length(I)<ε−
1

n
.

For every i <ω1 take a finite set p̄i ⊆ pi such that

∑

I∈pi\ p̄i

length(I)<
1

n
.

There are only countably many such set p̄i , and again by a pigeonhole argument we may
assume that for all i <ω1

p̄i = p̄

takes a fixed value. Now consider i < j <ω1 . Then
∑

I∈pi∪pj

length(I) 6
∑

I∈pi

length(I)+
∑

I∈pj\p̄

length(I)

< ε−
1
n

+
1
n

= ε

Hence pi∪ pj ∈P and pi∪ pj 6 pi, pj , and so {pi|i <ω1} is not an antichain in P . qed(1)

For i < κ define

Di = {p∈P |Xi ⊆
⋃

p}.

(2) Di is dense in P .
Proof . Let q ∈P . Take n <ω such that

∑

I∈q

length(I)<ε−
1

n
.

Since Xi has measure zero, take r ⊆I such that Xi ⊆
⋃

p and
∑

I∈r
length(I)6

1

n
. Then

Xi ⊆
⋃

(q ∪ r) and
∑

I∈q∪r

length(I)6
∑

I∈q

length(I)+
∑

I∈r

length(I) <ε−
1

n
+

1

n
= ε.

Hence p = q∪ r ∈P , p ⊇ q, and p∈Di . qed(2)

By MAκ take a filter G on P which is {Di|i <κ}-generic. Let U =
⋃

G⊆I .

(3) X =
⋃

i<κ
Xi ⊆

⋃

I∈U
I.

Proof . Let i <κ. By the generity of G take p∈G∩Di . Then

Xi ⊆
⋃

p ⊆
⋃

U

qed(3)
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(4)
∑

I∈U
length(I)6 ε.

Proof . Assume for a contradiction that
∑

I∈U
length(I) > ε . Then take a finite set

Ū ⊆U such that
∑

I∈Ū
length(I) > ε . Let B̄ = {I0,� , Ik−1}. For every Ij ∈ Ū take pj ∈G

such that Ij ∈ pj . Since all elements of G are compatible within G there is a condition p∈
G such that p ⊇ p0,� , pk−1 . Hence Ū ⊆ p. But, since p∈P , we get a contradiction:

ε<
∑

I∈Ū

length(I)6
∑

I∈p

length(I) <ε.

�

An easy corollary is:

Theorem 10. Assume MA. Then 2ℵ0 is regular.

Proof. Assume instead that R=
⋃

i<κ
Xi for some κ < 2ℵ0, where card(Xi) < 2ℵ0 for every

i < κ. Every singleton {r} has measure zero. By Theorem 9, each Xi has measure zero.
Again by Theorem, R =

⋃

i<κ
Xi has measure zero. But measure theory (and also intu-

ition) shows that R does not have measure zero. �

2.2.2 Almost disjoint forcing

We intend to code subsets of κ by subsets of ω. If such a coding is possible then we shall
have

2ℵ0 6 2κ 6 2ℵ0, i.e. 2κ =2ℵ0.

We shall employ almost disjoint coding.

Definition 11. A sequence (xi|i∈ I) is almost disjoint if

a) xi is infinite

b) i� j <κ implies that xi∩xj is finite

Lemma 12. There is an almost disjoint sequence (xi|i < 2ℵ0) of subsets of ω.

Proof. For u ∈ ω2 let xu = {u ↾ m |m < ω}. xu is infinite. Consider u � v from ω2. Let n <

ω be minimal such that u ↾n� v ↾n. Then

xu∩ xv = {u ↾m |m <ω}∩{v ↾m |m <ω}= {u ↾m |m < n}

is finite. Thus (xu|u ∈ ω2) is almost disjoint. Using bijections ω ↔ <ω2 and 2ℵ0 ↔ ω2 one
can turn this into an almost disjoint sequence (xi|i < 2ℵ0) of subsets of ω. �

Theorem 13. Assume MAκ . Then 2κ =2ℵ0.

Proof. By a previous example, κ < 2ℵ0. By the lemma, fix an almost disjoint sequence
(xi|i <κ) of subsets of ω. Define a map c:P(ω)→P(κ) by

c(x) = {i <κ|x∩ xi is infinite}.
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We say that x codes c(x). We want to show that every subset of κ can be coded as some
c(x). We show this by proving that c:P(ω)→P(κ) is surjective.

Let A ⊆κ be given. We use the following forcing (P , 6 , 1) to code A:

P = {(a, z)|a ⊆ω, z ⊆κ, card(a)<ℵ0, card(z)<ℵ0},

partially ordered by

(a′, z ′)6 (a, z) iff a′⊇ a, z ′⊇ z, i∈ z ∩ (κ \A)→ a ′∩ xi = a∩xi .

The weakest element of P is 1 = (∅, ∅).
The idea of the forcing is to keep the intersection of the first component with xi fixed,

provided i � A has entered the second component. This will allow the almost disjoint
coding of A by the finite/infinite method.
(1) (P , 6 , 1) satisfies ccc.
Proof . Conditions (a, y) and (a, z) with equal first components are compatible, since
(a, y ∪ z) 6 (a, y) and (a, y ∪ z) 6 (a, z). Incompatibel conditions have different first com-
ponents. Since there are only countably many first components, an antichain in P can be
at most countable. qed(1)

The outcome of a forcing construction results from an interplay between the partial
order and some dense set arguments. We now define dense sets for our requirements.

For i < κ let Di = {(a, z)∈P |i∈ z}. Di is obviously dense in P . For i∈A and n∈ω let
Di,n = {(a, z)∈P |∃m >n: m∈ a∩ xi}.
(2) If i∈A and n∈ω then Di,n is dense in P .
Proof . Consider (a, z) ∈ P . For j ∈ z, j � i is the intersection xi ∩ xj finite. Take some
m∈xi , m >n such that m � xi∩ xj for j ∈ z, j � i. Then

(a∪ {m}, z) 6 (a, z) and (a∪{m}, z)∈Di,n .

qed(2)
By MAκ take a filter G on P which is generic for the dense sets in

{Di|i <κ}∪{Di,n|i∈A,n∈ω}.

Let

x =
⋃

{a|(a, y)∈G}⊆ω.

(3) Let i∈A. Then x∩xi is infinite.
Proof . Let n < ω. By genericity take (a, y)∈G ∩Di,n . By the definition of Di,n take m >

n such that m∈ a∩ xi . Then m∈ x∩xi , and so x∩xi is cofinal in ω. qed(3)
(4) Let i∈ κ \A. Then x∩ xi is finite.
Proof . By genericity take (a, y)∈G∩Di . Then i∈ y. We show that x ∩ xi ⊆ a∩ xi . Con-
sider n∈x∩ xi . Take (b, z)∈G such that n∈ b. By the filter properties of G take (a′, y ′)∈
P such that (a′, y ′) 6 (a, y) and (a ′, y ′) 6 (b, z). Then n ∈ a′, and by the definition of 6 ,
a′∩ xi = a∩ xi . Thus n∈ a∩ xi . qed(4)

So

c(x)= {i < κ|x∩xi is infinite}= A∈ range(c).

�
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2.2.3 Category

Lebesgue measure defines an ideal of “small” sets, namely the ideal of measure zero sets:
arbitrary subsets of measure zero sets are measure zero, and, under MA, every union of
less than 2ℵ0 measure zero sets is again measure zero.

We now look at another ideal of small sets, namely the ideal of subsets X of R which
are nowhere dense in R: every nonempty open interval in R has a nonempty open subin-
terval which is disjoint from X . The union of all such subintervals is open, dense in R,
and disjoint from X.

The Baire category theorem says that the intersection of countably many dense open
sets of reals in dense in R. We can strengthen this to:

Theorem 14. Assume MAκ . Then the intersection of κ many dense open sets of reals is
dense in R.

Proof. Consider a sequence (Oi|i < κ) of dense open subsets of R. We use standard
Cohen forcing P = Fn(ω, 2, ℵ0) for the density argument. Since P is countable it trivially
has the ccc. For i < κ define Di = {p ∈ P |∀x ∈ R(x ⊇ p → x ∈ Oi)}. This means that the
interval determined by p lies within Ai . The density of Di follows readily since Oi is open
dense. For n < ω let Dn = {p ∈ P |n∈ dom(p)}. Obviously, Dn is also dense in P . By MAκ

let G ⊆ P be {Di|i < κ}-{Dn|n < κ}generic. Let x =
⋃

G. p ∈ G ∩ Dn implies that n ∈
dom(p)⊆ dom(x). So x:ω→ 2 is a real number. �

Since MAℵ0
is always true in ZFC, we get the Baire category theorem:

Theorem 15. The intersection of countably many dense open sets of reals is dense in R.

This says that dense open sets (of reals) have a largeness property, and correspond-
ingly complements of dense open sets are small.

Definition 16. A set A ⊆ R is nowhere dense if there is a dense open set O ⊆ R such
that A ∩ O = ∅. A set A ⊆ R is meager or of 1st category if it is a union of countably
many nowhere dense sets.

Proposition 17.

a) A singleton set {x}⊆R is nowhere dense since R\ {x} is dense open in R.

b) A countable set C is meager.

c) A set A ⊆ R is meager iff there are open dense sets (On|n < ω) such that A ∩
⋂

n<ω
On = ∅.

d) R is not meager. Sets which are not meager are said to be of 2nd category.

Proof. c) Let A =
⋃

n<ω
An be meager where each An is nowhere dense. For each n

choose On dense open in R such that An∩On = ∅. Then

(
⋃

n<ω

An)∩ (
⋂

n<ω

On)=A∩ (
⋂

n<ω

On)= ∅.
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Conversely assume that A ∩ (
⋂

n<ω
On) = ∅ where each On is dense open. (A \On)∩On =

∅, and so by definition, every An =A \On is nowhere dense. Obviously

⋃

n<ω

An ⊆A.

For the converse consider x ∈ A. The property A ∩ (
⋂

n<ω
On) = ∅ implies that we may

take n<ω such that x� On . Hence x∈A \On =An . So A =
⋃

n<ω
An is meager.

d) If R were meager then there would be open dense sets (On|n < ω) such that R ∩
⋂

n<ω
On = ∅. But by Theorem 15,

R∩
⋂

n<ω

On =
⋂

n<ω

On� ∅,

contradiction. �

We would now like to show as in the case of measure that a union of < 2ℵ0 small sets
in the sense of category is again small if Martin’s axiom holds.

Theorem 18. Assume MAκ . Let (Ai|i < κ) be a family of meager sets. Then A =
⋃

i<κ
Ai is meager.

Proof. Obviously it suffices to consider the case where each Ai is nowhere dense. We
shall use MAκ to find dense open sets (On|n <ω) such that

(
⋃

i<κ

Ai)∩ (
⋂

n<ω

On)=A∩ (
⋂

n<ω

On)= ∅.

The forcing will consist of approximations to a family (On|n < ω) of open dense sets which
makes this equality true.

The forcing conditions will consist of finitely many finite approximations to the On .
Moreover there will be for every n a finite collection of i < κ such that an approximation
to the equation holds for those i. We shall see that by appropriate density considerations
the full equality may be satisfied.

For ccc-reasons, much like in the argument of measure-zero sets, we only consider
approximations to the On by finitely many rational intervals. Let

I = {(a, b)|a, b∈Q, a < b}

the countable set of rational open intervals (a, b)= {c∈R|a < c < b} in R. Now let

P = {(r, s)|r: ω → [I]<ω, s: ω → [κ]<ω, {n < ω |r(n) � ∅} is finite, {n < ω |s(n) � ∅} is finite,

∀n <ω∀i∈ s(n)Ai∩
⋃

r(n)= ∅}.

Define

(r ′, s′)6 (r, s) iff ∀n <ω(r ′(n)⊇ r(n)∧ s′(n)⊇ s(n)).
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(1) (P , 6 ) satisfies the countable chain condition.
Proof . Consider (r, s) and (r, s′) in P having the same first component. Then define s ′′:
ω→ [κ]<ω by s ′′(n) = s(n)∪ s ′(n). It is easy to check that (r, s′′)∈ P , and also (r, s′′) 6 (r,

s) and (r, s′′) 6 (r, s ′). So (r, s) and (r, s′) are compatible in P .

An antichain in P must consist of conditions whose first components are pairwise dis-
tinct. Since there are only countably many first components, an antichain in P is at most
countable. qed(1)

For each n <ω the following dense sets ensures the density of the On in R: for I ∈I let

Dn,I = {(r ′, s′)|∃J ∈ r ′(n)J ⊆ I }.

(2) Dn,I is dense in P .
Proof . Let (r, s) ∈ P . Let s(n) = {i0, � , ik−1}. Since Ai0, � , Aik−1

are nowhere dense one

can go find intervals I ⊇ Ii0 ⊇� ⊇ Ik−1 = J in I such that Ail ∩ Iil = ∅. Define r ′: ω→ [I]<ω

by r ′ ↾ (ω \ {n})= r ↾ (ω \ {n}) and r ′(n) = r(n)∪ {J}. Then (r ′, s)∈P , (r ′, s)6 (r, s), and
(r ′, s)∈Dn,I . qed(2)

We also need that every i <κ is considered by some On . Define

Di = {(r ′, s ′)|∃n <ω i∈ s′(n)}.

(3) Di is dense in P .
Proof . Let (r, s) ∈ P . Take n < ω such that r(n) = ∅. Define s ′: ω → [I]<ω by s ′ ↾ (ω \
{n})= s ↾ (ω \ {n}) and s′(n)= s(n)∪ {i}. Then (r, s′)∈P , (r, s′)6 (r, s), and (r, s′)∈Di .
qed(3)

By MAκ we can take a filter G on P which is generic for

{Dn,I |n< ω, I ∈I}∪{Di|i < κ}.

For n <ω define

On =
⋃ ⋃

{r(n)|(r, s)∈G}.

(4) On is open, since it is a union of open intervals.
(5) On is dense in R .
Proof . Let I ∈ I. By genericity take (r ′, s′) ∈ G ∩ Dn,I . Take J ∈ r ′(n) such that J ⊆ I .
Then

∅� J ⊆
⋃

r ′(n)⊆
⋃ ⋃

{r(n)|(r, s)∈G}= On .

qed(5)
(6) Let i <κ. Then Ai∩

⋂

n<ω
On = ∅.

Proof . By genericity take (r ′, s′) ∈ G ∩ Di . Take n < ω such that i ∈ s ′(n). We show that
Ai∩On = ∅. Assume not, and let x∈Ai∩On . Take (r, s)∈G and I ∈ r(n) such that x∈ I .
Since G is a filter, take (r ′′, s ′′) ∈ P such that (r ′′, s′′) 6 (r, s) and (r ′′, s ′′) 6 (r ′, s′). Then
I ∈ r ′′(n), i∈ s ′′(n), and

x∈Ai∩ I ⊆Ai∩
⋃

r ′′(n)� ∅.

The last inequality contradicts the definition of P . qed(6)

By (6),
⋃

i<κ
Ai∩

⋂

n<ω
On = ∅, and so

⋃

i<κ
Ai is meager. �
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3 Iterated forcing

Martin’s axiom postulates that for every ccc partial order (P , 6 , 1P) and D with
card(D) < 2ℵ0 there is a D-generic filter G on P . Syntactically this axiom has a ∀∃-form:
∀P∀D∃G� . ∀∃-properties are often realised through chain constructions: build a chain

M =M0⊆M1⊆� ⊆Mα ⊆� ⊆Mβ ⊆�
of models such that for any P , D ∈ Mα there is some β > α such that Mβ contains a
generic G as required. Then the “union” or limit of the chain should contain appropriate
G’s for all P ’s and D’s.

Such chain constructions are wellknown from algebra. To satisfy closure under square
roots (∀x∃y: yy = x) one can e.g. start with a countable field M0 and along a chain M0 ⊆
M1⊆M2 ⊆� adjoin square roots for all elements of Mn . Then

⋃

n<ω
Mn satisfies the clo-

sure property.
In set theory there is a difficulty that unions of models of set theory usually do not

satisfy the theory ZF: assume that M0 ⊆ M1 ⊆ M2 ⊆ � is an ascending chain of transitive
models of ZF such that (Mn+1 \ Mn) ∩ P(ω) � ∅ for all n < ω. Let Mω =

⋃

n<ω
Mn . Then

P(ω) ∩Mω � Mω . Indeed, if one had P(ω) ∩Mω ∈ Mω then P(ω) ∩Mω ∈Mn for some n <

ω and P(ω) ∩ Mn+1 ∈ Mn contradicts the initial assumption. So a “limit” model of models
of ZF has to be more complicated, and it will itself be constructed by some limit forcing
which is called iterated forcing.

Exercise 2. Check which axioms of set theory hold in Mω =
⋃

n<ω
Mn where (Mn)n<ω is an

ascending sequence of transitive models of ZF(C).

Since we want to obtain the limit by forcing over a ground model M the construction
must be visible in the ground model. This means that the sequence of forcings to be

employed to pass from Mα to Mα+1 has to exist as a sequence (Q̇β |β < κ) of names in the

ground model. The initial sequence (Q̇β |β < α) already determines a forcing Pα and Q̇α is

intended to be a Pα-name. If Gα is M -generic over Pα then furthermore Qα = (Q̇α)
Gα is

intended to be a forcing in the model Mα = M [Gα], and Mα+1 is a generic extension of Mα

by forcing with Qα . The following iteration theorem says that any sequence (Q̇β |β < κ) ∈
M give rise to an iteration of forcing extensions. In applications the sequence has to be
chosen carefully to ensure that some ∀∃-property holds in the final model Mκ . Without
loss of generality we only consider forcings Qα whose maximal element is ∅.

Theorem 19. Let M be a ground model, and let ((Q̇β , 6̇β)|β < κ) ∈ M with the property

that ∀β < κ:∅. Then there is a sequence ((Pα, 6α , 1α)|α6κ)∈M such that

a) (Pα, 6α , 1α) is a partial order which consists of α-sequences;

b) P0 = {∅}, 60 = {(∅, ∅)}, 10 = ∅;

c) If λ 6κ is a limit ordinal then the forcing Pα is defined by:

Pλ = {p: λ→V |(∀γ <λ: p ↾ γ ∈Pγ )∧∃γ <λ∀β ∈ [γ, λ) p(β)= ∅)}

p 6λ q iff ∀γ <λ: p ↾ γ 6γ q ↾ γ

1λ = (∅|γ < λ)

Iterated forcing 11



d) If α <κ and 1α 
Pα
(Q̇α, 6̇α, ∅) is a forcing, then the forcing Pα+1 is defined by:

Pα+1 = {p: α +1→V | p ↾α∈Pα∧ p(α)∈dom(Q̇α)∧ p ↾α 
Pα
p(α)∈ Q̇α}

p 6α+1 q iff p ↾α 6α q ↾α∧ p ↾α 
Pα
p(α)6̇αq(α)

1α+1 = (∅|γ < α+1)

e) If α <κ and not 1α 
Pα
(Q̇α, 6̇α, ∅) is a forcing, then the forcing Pα+1 is defined by:

Pα+1 = {p: α +1→ V | p ↾α∈Pα∧ p(α) = ∅}

p 6α+1 q iff p ↾α 6α q ↾α

1α+1 = (∅|γ <α +1)

((Pα, 6α , 1α)|α 6 κ), and in particular Pκ are called the (finite support) iteration of the

sequence ((Q̇β , 6̇β)|β < κ).

Proof. To justify the above recursive definition of the sequence ((Pα, 6α , 1α)|α 6 κ) it
suffices to show recursively that every Pα is a forcing.

Obviously, P0 is a trivial one-element forcing.

Consider a limit λ 6 κ and assume that Pγ is a forcing for γ < α. We have to show
that the relation 6λ is transitive with maximal element 1λ . Consider p 6λ q 6λ r . Then
∀γ < λ: p ↾ γ 6γ q ↾ γ and ∀γ < λ: q ↾ γ 6γ r ↾ γ . Since all 6γ with γ < λ are transitive rela-
tions, ∀γ < λ: p ↾ γ 6γ r ↾ γ and so p 6λ r. Now consider p ∈ Pλ . Then ∀γ < λ : p ↾ γ ∈ Pγ .
By the inductive assumption, ∀γ <λ : p ↾ γ 6γ 1γ =1λ ↾ γ and so p6λ 1λ .

For the successor step assume that α < κ and that Pα is a forcing.

Case 1 . 1α 
Pα
(Q̇α, 6̇α, ∅) is a forcing.

For the transitivity of 6α+1 consider p 6α+1 q 6α+1 r. Then p ↾ α 6α q ↾ α ∧ p ↾

α 
Pα
p(α)6̇αq(α) and q ↾ α 6α r ↾ α∧ q ↾ α 
Pα

q(α)6̇αr(α). By the transitivity of 6α : p ↾

α 6α r ↾ α . Moreover p ↾ α 
Pα
p(α)6̇αq(α), p ↾ α 
Pα

q(α)6̇αr(α) and p ↾ α 
Pα
“6̇α is tran-

sitive”. This implies p ↾α 
Pα
p(α)6̇αr(α) and together that p 6α+1 r.

For the maximality of 1α+1 consider p ∈ Pα+1 . Then p ↾ α ∈ Pα ∧ p ↾ α 
Pα
p(α) ∈ Q̇α .

Then p ↾ α 6α 1α = 1α+1 ↾ α . Moreover p ↾ α 
Pα
“∅ is maximal in 6̇α implies that p ↾

α
Pα
p(α)6̇α∅=1α+1(α). Hence p 6α+1 1α+1 .

Case 2 . It is not the case that 1α 
Pα
(Q̇α, 6̇α, ∅) is a forcing.

For the transitivity of 6α+1 consider p 6α+1 q 6α+1 r. Then p ↾ α 6α q ↾ α and q ↾

α6α r ↾α . By the transitivity of 6α : p ↾α 6α r ↾α and so p 6α+1 r.

For the maximality of 1α+1 consider p ∈ Pα+1 . Then p ↾ α ∈ Pα . By induction, p ↾

α6α 1α and so p 6α+1 1α+1 . �

The term “finite support iteration” is justified by the following

Lemma 20. In the above situation let p∈Pκ . Then

supp(p)= {α <κ|p(α)� ∅}

is finite.
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Proof. Prove by induction on α 6 κ that supp(p) is finite for every q ∈ Pα . The crucial
property is the definition of Pλ at limit λ in the above iteration theorem. �

Let us fix a ground model M and the iteration ((Q̇β , 6̇β)|β < κ) ∈ M and ((Pα, 6α ,

1α)|α 6 κ) ∈ M as above. Let Gκ be M -generic for Pκ . We analyse the generic extension
Mκ = M [Gκ] by an ascending chain

M =M0⊆M1 =M [G1] =M0[H0]⊆M2 =M [G2] =M1[H1]⊆� ⊆Mα =M [Gα]⊆� ⊆Mκ

of generic extensions.
Let us first note some relations within the tower (Pα)α6κ of forcings.

Lemma 21.

a) Let α 6 κ, r: κ → V, ∀γ < α(r(γ) ∈ dom(Q̇γ) ∨ r(γ) = ∅), and let supp(r) be finite.

Then r ∈Pα iff ∀γ ∈ supp(r): r ↾ γ 
Pγ
r(γ)∈ Q̇γ .

b) Let α 6κ and p, q ∈Pα .
Then p 6α q iff ∀γ ∈ supp(p)∪ supp(q): p ↾ γ 
Pγ

p(γ)6̇γq(γ).

c) Let α 6 β 6κ and p∈Pβ . Then p ↾α∈Pα .

d) Let α 6 β 6κ and p 6β q . Then p ↾α 6α q ↾α .

e) Let α 6 β 6 κ, q ∈ Pβ , p̄ 6α q ↾ α . Then p̄ ∪ (q(γ)|α 6 γ < β) ∈ Pβ and p̄ ∪
(q(γ)|α 6 γ < β)6β q .

Proof. a), b) By a straightforward induction on α 6κ. Now c− e) follow immediately. �

For α 6κ define Gα = {p ↾α |p∈Gκ}.
(2) Gα is M -generic for Pα .
Proof . By (a), Gα ⊆ Pα . Consider p ↾ α, q ↾ α ∈ Gα with p, q ∈ Gκ. Take r ∈ Gκ such
that r 6κ p, q . By (b), r ↾α 6α p ↾α, q ↾α . Thus all elements of Gα are compatible in Pα .

Consider p ↾α∈Gα with p∈Gκ and q̄ ∈Pα with p ↾α 6α q̄ . By (c),

q = q̄ ∪ (∅|α6 γ < κ)

is an element of Pκ XXX and p 6κ q XXX. Since Gκ is a filter, q ∈ Gκ , and so q̄ = q ↾ α ∈
Gα . Thus Gα is upwards closed.

For the genericity consider a set D̄ ∈M which is dense in Pα . We claim that the set

D = {d∈Pκ |d ↾α∈ D̄ }∈M

is dense in Pκ : let p∈Pκ . Then p ↾α∈Pα . Take d̄ ∈ D̄ such that d̄ 6α p ↾α . By ( ),

d= d̄ ∪ (p(γ)|α 6 γ <κ)∈Pκ

and d6κ p XXX.
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By the genericity of Gκ take p∈D∩Gκ . Then p ↾α∈ D̄ ∩Gα� ∅. qed(2)

So Mα =M [Gα] is a welldefined generic extension of M by Gα .
(3) Let α < β 6κ. Then Gα ∈M [Gβ] and M [Gα]⊆M [Gβ].
Proof . Gα = {p ↾α |p∈Gκ}= {(p ↾ β) ↾α |p∈Gκ}= {q ↾α |q ∈Gβ}∈M [Gβ]. qed (3)

For α <κ define

Qα = (Qα, 6Qα , ∅)=

{

(Q̇α
Gα, 6̇α

Gα, ∅), if 1α 
Pα
(Q̇α, 6̇α, ∅) is a forcing

({∅}, {(∅, ∅)}, ∅), else

Then Qα∈Mα =M [Gα] is a forcing. For α <κ define

Hα = {p(α)Gα|p∈Gκ}.

(4) Hα is Mα-generic for Qα .
Proof . If it is not the case that 1α 
Pα

(Q̇α, 6̇α, ∅) is a forcing, then (Qα, 6Qα , ∅) = ({∅},

{(∅,∅)}, ∅) and Hα = {∅} is trivially Mα-generic. So assume that 1α 
Pα
(Q̇α, 6̇α, ∅).

(a) Hα ⊆ Qα . Let p ∈Gκ . Then p ↾ α + 1∈ Pα+1 and so p ↾ α 
Pα
p(α) ∈ Q̇α . Since p ↾ α ∈

Gα we have that p(α)Gα ∈ Q̇α
Gα = Qα . qed(a)

(b) Let ....

(e) Let Dα∈Mα be dense in Qα . Then Dα∩Hα� ∅.

Proof . Take Ḋα∈M such that Dα = Ḋα
Gα. Take p∈Gκ such that

p ↾α
Pα
Ḋα is dense in Q̇α .

Define

D = {d∈Pκ |d ↾α 
 d(α)∈ Ḋα}∈M.

We show that D is dense in Pκ below p. Let q 6κ p. Then q ↾ α 6α p ↾ α and q ↾

α 
 q(α)6̇αp(α). Hence q ↾ α 
Pα
Ḋα is dense in Q̇α and there is d̄ 6α q ↾ α and some

d(α)∈dom(Q̇α) such that

d̄ 
Pα
(d(α)6̇αq(α)∧ d(α)∈ Ḋα).

Define

d= d̄ ∪{(α, d(α))}∪{q(γ)|α < γ <κ}.

Then by a and b d∈Pκ , d 6κ q , and d∈D.
By the genericity of Gκ take d∈ D ∩Gκ . Then d(α)Gα ∈Hα , d ↾ α ∈Gα , and d(α)Gα ∈

(Ḋα)
Gα =Dα . Thus Hα∩Dα� ∅.

( ) Mα+1 =Mα[Hα].
Proof . ⊇ is straightforward. For the other direction, if suffices to show that Gα+1 ∈
Mα[Hα], and indeed we show that

Gα+1 = {q ∈Pα+1 | q ↾α∈Gα∧ q(α)Gα ∈Hα}.
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Let q ∈ Gα+1 . Take p ∈ Gκ such that p ↾ α + 1 = q. Then q ↾ α = p ↾ α ∈ Gα and q(α)Gα =

p(α)Gα ∈ Hα . For the converse consider q ∈ Pα+1 such that q ↾ α ∈ Gα and q(α)Gα ∈ Hα .
Take p1, p2 ∈ Gκ such that q ↾ α = p1 ↾ α and q(α)Gα = p2(α)Gα. Take p ∈ Gκ such that
p 6κ p1, p2 . We also may assume that p ↾ α 
 q(α) = p2(α). p ↾ α 6α p1 ↾ α = q ↾ α and p ↾

α
Pα
p(α)6̇αp2(α)= q(α). Hence p ↾α + 16α+1 q . Since p ↾α +1∈Gα+1 and since Gα+1 is

upward closed, we get q ∈Gα+1 .

3.1 Two-step iterations

A two-step iteration is usually defined as follows: consider a forcing (P , 6P , 0) and names

Q̇, 6̇ such that

1P 
 (Q̇ , 6̇, 0) is a forcing.

and 0∈ dom(Q̇). Then the two-step iteration (P ∗ Q̇ ,4 , 1) is defined by:

P ∗ Q̇ = {(p, q̇)|p∈P ∧ q̇ ∈dom(Q)˙ ∧ p 
P q̇ ∈ Q̇}

(p′, q̇ ′) 4 (p, q̇) iff p′ 6P p∧ p′ 
P q̇ ′6̇ q̇ ′

1 = (0, 0)

Then this two-step iteration can be construed as a standard iteration as follows: set κ = 2.
Let ...

3.2 Products of partial orders

A special case of a finite support iteration is a finite support product. So let M be a
ground model, and let ((Qβ , 6β )|β < κ) ∈ M be a sequence of forcings such that ∅ is a
maximal element of every Qβ . Define the finite support product

∏

β<κ
Qβ as the fol-

lowing forcing:
∏

β<κ

Qβ = {p: κ→V |∀β <κ: p(β)∈ Qβ , supp(p) is finite}

p 4 q iff ∀β <κ: p(β)6β q(β)

1κ = (0|β <κ)

We want to show that the product corresponds to a simple iteration. Define a sequence

((Q̌β , 6̌β)|β <κ)∈M

where Q̌β is the canonical name for Qβ with respect to a forcing which has the β-sequence

1β = (0|γ < β) as its maximal element. (Note that the definition of x̌ = {(y̌ , 1β)|y ∈ x}
only depends on 1β .) Let the sequence ((Pα, 6α , 1α)|α 6 κ) ∈ M be defined from the

sequence ((Q̌β , 6̌β)|β < κ) of names as in the iteration theorem.
Then there is a canonical isomorphism

π:
∏

β<κ

Qβ↔Pκ

defined by: p� p′ where

p′(β)= p(β)
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with respect to a partial order with maximal element 1β . It is straightforward to check
that this defines an isomorphism.

3.3 Analysing a product of Cohen forcings

...

4 Ideals and cardinal coefficients

Ideals capture (some aspects of) the notion of small sets .

Definition 22. A set I ⊆P(R) is an ideal on R if

a) if A, B ∈I then A∩B ∈I

b) if A∈I and B ⊆A then B ∈I

c) if r ∈R then {r} ∈I

d) R � I

An ideal is κ-complete if for any family A⊆I, card(A)< κ holds
⋃

A∈I. An ideal is σ-
complete if it is ℵ1-complete.

We have already considered the following ideals on R :

Definition 23. Define the ideals N = {X ⊆R|X has measure zero} (the ideal of nullsets)
and M= {X ⊆R|X is meager }.

Both these ideals are σ-complete. They may have “more” completeness in certain
models of set theory. We saw in Theorem 9 that under MAℵ1

the ideal M is ℵ2-complete.
On the other hand the continuum hypothesis CH implies that M is not ℵ2-complete. So
the value of the completeness of M is independent of the axioms of ZFC. To study such
phenomena one introduces cardinal characteristics that capture properties of ideal and
that may vary between different models of set theory. Sometimes these coefficients are
misleadingsly called cardinal invariants .

Definition 24. Let I be an ideal on R. Define the following cardinal characteristics:

− add(I) =min {card(A)|A ⊆I ,
⋃

A � I} is the additivity (number) of I

− cov(I)=min {card(A)|A⊆I ,
⋃

A=R} is the covering (number) of I

− non(I) =min {card(X)|X ⊆R, X � I}

− cof(I)=min {card(A)|A ⊆I , ∀B ∈I∃A∈A: B ⊆A} is the cofinality of I

Proposition 25. Let I be a σ-complete ideal on R. Then

ℵ0 6 add(I)6 cov(I)6 cof(I)6 2ℵ0
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and

add(I)6 non(I)6 cof(I)

This can be pictured by the following diagram:

ℵ1

Proof. The inequalities

ℵ0 6 add(I)6 cov(I)

are trivial. To show that cov(I) 6 cof(I) consider a cofinal family A ⊆ I with card(A) =
cof(A). Then

⋃

A= R and so cov(I) 6 card(A)= cof(I).
To show non(I) 6 cof(I) consider again a cofinal family A ⊆ I with card(A) = cof(A).

For each B ∈A choose xB ∈R \B � ∅. Then X = {xB |B ∈A} has cardinality 6 card(A)=
cof(I). Assume for a contradiction that X ∈ I. By cofinality take B ∈A such that X ⊆B.
Then xB ∈X ⊆B, contradiction. So X � I and

non(I)6 card(X)6 cof(I).

�

If the continuum hypothesis holds, then all these characteristics are equal to ℵ1 = 2ℵ0.
So it is interesting to study the characteristics in models of ZFC in which ℵ1 � 2ℵ0. The

obvious example that we can already study are the model for MA + ℵ1 � 2ℵ0 and the
Cohen model for ℵ1� 2ℵ0, and here one first looks at the ideals M and N .

Theorem 26. Assume MA. Then

add(M)= cov(M)= non(M)= cof(M)= 2ℵ0
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and

add(N )= cov(N )= non(N )= cof(N )= 2ℵ0

Proof. Because MA implies add(M) = 2ℵ0 (Theorem 9) and add(N ) = 2ℵ0 (Theorem
18). �

Theorem 27. Let M be a ground model of ZFC + CH, and let M � κ is a regular car-
dinal >ℵ1 . In M, let (P , 6 , 1P) be the forcing for adding κ Cohen reals:

P =Fn(ω ×κ, 2,ℵ0)= {p|p: dom(p)→ 2∧ dom(p)⊆ω ×κ∧ card(dom(p))<ℵ0},

partially ordered by reverse inclusion

p6 q iff p⊇ q

and with weakest element 1P = ∅. Let M [G] be a generic extension of M by P. Then in
M [G]

ℵ1 = add(N )= cov(N ) <non(N )= cof(N )= 2ℵ0

and

ℵ1 = add(M)= non(M)< cov(M)= cof(M)= 2ℵ0

Let us first prove some properties of the “Cohen model” M [G].

Lemma 28. Let X ⊆κ, X ∈M. Then

P =Fn(ω ×κ, 2,ℵ0)@ Fn(ω ×X, 2,ℵ0)×Fn(ω × (κ \X), 2,ℵ0)

is isomorphic to a product forcing by the canonical isomorphism

p� (p ↾X, p ↾ (κ \X)).

Setting G ↾X = {p ↾X |p∈G} and G ↾ (κ \X) = {p ↾ (κ \X)|p∈G} we have:

a) G ↾X is M-generic for Fn(ω ×X, 2,ℵ0)

b) G ↾ (κ \X) is M-generic for Fn(ω × (κ \X), 2,ℵ0)

c) G ↾ (κ \X) is M [G ↾X ]-generic for Fn(ω × (κ \X), 2,ℵ0)

d) G ↾X is M [G ↾ (κ \X)]-generic for Fn(ω ×X, 2,ℵ0)

Proof. These are standard results about product forcing. �

Lemma 29. For every real r ∈ M [G] ∩ P(ω) there is some countable X ⊆ κ, X ∈ M such
that r ∈ M [G ↾ X ]. Moreover consider a set S ∈ M [G], S ⊆ P(ω) such that
M [G] � card(S) 6 λ where λ is an infinite cardinal in M (and in M [G]). Then there is
some set X ⊆κ, X ∈M, card(X) 6λ such that S ∈M [G ↾X ].

Proof. It suffices to prove the second statement. Let Ṡ ∈M be a name for S, i.e., ṠG = S

and p 
 Ṡ ⊆P(ω) where p∈G. ... �

We now prove the conclusions of the Theorem.
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Lemma 30. M [G] � cov(N )=ℵ1 .

Proof. Define in M [G]: for α <κ set Nα = M [G ↾κ \ {α}]∩P(ω).
(1) (Nα|α < κ)∈M [G].
Proof . In M there is a set of “canonical names” for reals, when forcing with P ↾ ((κ \ ℵ1)∪
α). The interpretation function ẋ � ẋG is definable in M [G]. So the above definition can
be carried out in M [G]. qed(1)
(2) P(ω)∩M [G] =

⋃

α<ℵ1

Nα follows directly from Lemma 29.

(3) Nα is a measure zero set in M [G].
Proof . We already showed last term that in a generic extension by one Cohen real the
set of ground model reals becomes a measure zero set:

M [G ↾ 1] �M ∩P(ω) is a measure zero set.

Let us indicate the argument. We may identify P(ω) with the unit interval [0, 1] ⊆R. Let

ε > 0. Take n ∈ ω such that
1

2n < ε. Define intervals (Ik |k ∈ ω) from G ↾ 1. Define the
Cohen real c: ω→ 2 by

c(m) = (
⋃

G)(m, 0).

Then let

Ik = [
∑

i=0

n+k+1

c(k + i) ·
1
2i

,
1

2n+k+1
+

∑

i=0

n+k+1

c(k + i) ·
1
2i

]⊆R.

Then
∑

k<ω

length(Ik)=
∑

k<ω

1

2n+k+1
=

1

2n
< ε.

We show by a standard density/genericity argument that
⋃

k<ω
Ik ⊇M ∩P(ω).

Replacing M by M [G ↾ κ \ {α}] and M [G ↾ 1] by M [G ↾ κ \ {α}][G ↾ {α}] we obtain the
claim. �

Lemma 31. M [G] � non(N )= 2ℵ0.

Proof. Let S ∈ M [G], S ⊆ P(ω) such that M [G] � card(S) < 2ℵ0 = κ . By Lemma 29 take
X ⊆κ, X ∈M , card(X)< κ such that S ∈M [G ↾X]. Take α∈κ \X. Then

S ⊆M [G ↾X ]∩P(ω)⊆M [G ↾κ \ {α}]∩P(ω)= Nα

which is a measure zero set in M [G]. �

Concerning meager sets we have to make some preparations concerning “codes” of open
sets in R . In a transitive ZFC-model N consider an open set A ⊆ R . A can be repre-
sented as

A =
⋃

c

where c ∈ N is a set of rational open intervals (r, s) ⊆R , r, s ∈Q. We can view A as the
interpretation of the code c within the model M and write A = cM. If N ′ ⊇ N is another
transitive ZFC-model then c∈N ′ and one can form

A′ = cN ′

=
⋃

c∈N ′
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within N ′. Then A ⊆A ′ and if R∩N � R∩N ′ it is possible that A� A′. Nevertheless we
may view A and A′ as the same open set, but interpreted in different models.

Definition 32. A G-code is a countable set c of rational open intervals. The interpreta-
tion of c is the open set

cV =
⋃

c.

Lemma 33. Let c ∈N ⊆N ′ be a G-code. Then cN is dense open in N if cN ′

is dense open
in N ′.

Proof. Let cN be dense open in N . Consider r, s ∈Q, r < s. By density take x ∈ cN ∩ (r,

s). Then x∈ cN ′

∩ (r, s).

Conversely Let cN ′

be dense open in N ′. Consider r, s ∈Q, r < s. By density, cN ′

∩ (r,

s) � ∅. Take a rational interval (r0, s0) ∈ c such that (r0, s0) ∩ (r, s) � ∅. Take q ∈ (r0, s0) ∩
(r, s)∩Q. Then q ∈ cN ∩ (r, s). �

Note that a set X ⊆ R is nowhere dense iff the complement of X contains a dense
open set. A set A ⊆R is meager iff the complement of A contains a countable intersection
of dense open sets. Let us “code” countable intersections of open sets as follows.

Definition 34. A Gδ-code is a countable set d of G-codes. The interpretation of d is the
set

dV =
⋂

c∈d

cV .

As an explanation of the notations G and Gδ note that in Hausdorff’s times, open sets
were called “Gebiet” with a “G” and countable intersections (“Durchschnitt” with a “d”)
were denoted by subscripts δ .

We show that Cohen reals “avoid” meager sets from the ground model.

Lemma 35. Let M be a ground model and let M [z] = M [H] be a generic extension of M

by the standard Cohen forcing P = Fn(ω, 2, ℵ0): let H be M-generic for P and let z =
⋃

H ∈ ω2 be the associated Cohen real. Consider a set X ∈ M which is meager in the
ground model and let d ∈ M be a Gδ-code for a countable intersection of dense open sets
such that X ∩ dM = ∅. Then z ∈ dM [z].

Proof. Let us identify R with ω2, linearly ordered lexicographically, and let us identify Q

with the elements of R which are eventually 0. Consider c∈ d. Define, in M ,

D = {p∈P |∃(r, s)∈ c∀y ∈R(y ⊇ p→ y ∈ (r, s)}.

(1) D is dense in P .
Proof . Let q ∈ P . Since cM is dense, there exists a real y0 ⊇ q such that y0 ∈ cM . Take (r,

s) ∈ c such that y0 ∈ (r, s). Take p ∈ P , p ⊇ q such that ∀y ∈R(y ⊇ p→ y ∈ (r, s)). Then
p∈D and D is dense. qed(1)
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By genericity take p ∈D ∩ H. Then z ⊇ p and by the definition of D there is (r, s) ∈ c

so that

z ∈ (r, s)⊆ cM [z].

Since this holds for every c∈ d :

z ∈
⋂

c∈d

cM [z] = dM [z].

�

We can now continue the proof of Theorem 27:

Lemma 36. M [G] � non(M)=ℵ1 .

Proof. In M [G] define the sequence (zi|i <κ) of Cohen reals zi: ω→ 2 by

zi(n)= (
⋃

G)(n, i).

We claim that A = {zi|i < ω1} � MM [G]. Assume not and let d ∈ M [G] be a Gδ-code for a
countable intersection of dense open sets so that

A∩ dM [G] = ∅.

By previous lemmas take a countable X ⊆ κ, X ∈M such that d∈M [G ↾ X]. Take i∈ ω1 \
X . Then d∈M [G ↾ (κ \ {i})]. We have

M [G] =M [G ↾ (κ \ {i})][G ↾ {i}] =M [G ↾ (κ \ {i})][zi]

where zi is a Cohen real with respect to the model M [G ↾ (κ \ {i}]. By the previous
Lemma

zi∈ dM [G↾(κ\{i})][zi] = dM [G]

contradicting that A∩ dM [G] = ∅ . �

Lemma 37. M [G] � cov(M)= 2ℵ0 .

Proof. Assume for a contradiction that (Aξ |ξ < λ), λ < κ is a sequence of meager sets

such that R=
⋃

ξ<λ
Aξ . For each ξ < λ choose a Gδ-code dξ such that Aξ ∩ dξ

M [G] = ∅. By

Lemma 29 take X ⊆κ, card(X)= card(λ)+ℵ0 such that

∀ξ <λ: dξ ∈M [G ↾X ].

Take i∈ κ \X . Then

∀ξ <λ: dξ ∈M [G ↾ (κ \ {i})].

As above

zi∈ dξ
M [G↾(κ\{i})][zi] = dξ

M [G]

for all ξ <λ . Hence

zi � ⋃

ξ<λ

Aξ =R,
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contradiction. �

5 The Cichon diagram

We want to relate cardinal characteristics of the ideals N and M in a joint diagram called
the Cichon diagram. We first have to define two more characteristics.

Definition 38.

a) Define the partial ordering 6∗ of eventual domination on ωω by

f 6∗ g iff ∃m <ω∀n∈ [m,ω): f(n)6 g(n).

b) The bounding number is

b =min {card(F )|F ⊆ ωω,∀g∈ ωω∃f ∈F : f 
∗ g},

i.e., the smallest cardinality of an unbounded family in 6∗ .

c) The dominating number is

d=min {card(F )|F ⊆ ωω, ∀g ∈ ωω∃f ∈F : f 6∗ g},

i.e., the smallest cardinality of a cofinal (or dominating) family in 6∗ .

Lemma 39. b6 d.

Proof. Every cofinal family is unbounded. �

The following diagram records provable relations between the cardinal characteristics
introduced so far. An arrow � stands for the 6 -relation between cardinals. Some
inequalities have already been proved:

add(N ) add(M) cov(M) non(N )

cov(N ) non(M) cof(M) cof(N )

b d

L. 25

L. 25

L. 25

L. 25
L. 39

Th. 41

Th. 41

It is remarkable that there are inequalities connecting the ideals N and M.

Lemma 40. There are sets A ∈ N and B ∈M such that A ∪ B = R , i.e., R is the (dis-
joint) union of two sets which are both “small”.
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Proof. We work with the standard reals R . Let (qn|n < ω) enumerate the rational num-
bers. For m < ω let

Um =
⋃

n>m

(qn−
1
2n

, qn +
1
2n

).

Um is dense open in R and
∑

n>m

length((qn −
1

2n
, qn +

1

2n
))=

∑

n>m

2

2n
=

2

2m
.

Let A =
⋂

m∈ω
Um . By the calculation of the sum of interval lengths, A is a measure zero

set, i.e., A∈N .
R\Um is nowhere dense. Then B =

⋃

m∈ω
(R\Um) is meager, i.e., B ∈M. Moreover

z � A↔∃m <ω: z � Um↔∃m <ω: z ∈ (R\Um)↔ z ∈B.

�

Theorem 41. (Rothberger, 1938) cov(M)6 non(N ) and cov(N ) 6 non(M).

Proof. Let A∈N and B ∈M such that A∪B =R as in the preceding Lemma.
(1) Let X � M. Then X +A = {x + a|x∈X, a∈A}=R .

Proof . Let z ∈R . Then z − X * B. Take x ∈ X such that z − x ∈ A . Then z ∈ x + A ∈
X +A . qed(1)

Now take X � M with card(X) =non(M). Then

R=X +A =
⋃

x∈X

(x + A).

The right hand side is a covering of R by 6 card(X) many sets in N . So cov(N ) 6

card(X)=non(M).
The proof of the other inequality proceeds in the same way, with M and N inter-

changed. �

Before we prove further inequalities in the Cichon diagram let us check the values in
the diagram in the models of set theory considered so far.

If we assume MA or CH then we know already that all entries except possible b or d

are equal to 2ℵ0.

Lemma 42. Assume MA . Then b =2ℵ0 (and so d=2ℵ0).

Proof. Let F ⊆ ωω and card(F ) < 2ℵ0. It suffices to show that F is bounded in the struc-
ture ( ωω,6∗ ). Define Hechler forcing by

P = {(a, A)|a∈ <ωω, A ⊆ ωω, card(A) <ℵ0}

with

(a′,A ′)6 (a,A) iff a ′⊇ a,A ′⊇A, and ∀n∈dom(a′) \dom(a)∀f ∈A:a ′(n)> f (n)

and 1P =(∅, ∅).
(1) Hechler forcing has the ccc.
Proof . If (a, A), (a,B)∈P with the same “stem” a , then they are compatible:

(a, A∪B)6 (a, A), (a, B).
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So if C is an antichain in P , then the map (a, A) � a is injective on C. Since there are
only countably many possible stems a, card(C)6ℵ0 . qed(1)

For every f ∈ ωω set

Df = {(a, A)∈P |f ∈A}.

(2) Df is dense in P .
Proof . Since (a, A∪{f })6 (a,A) and (a, A∪ {f })∈Df . qed(2)

For every n <ω set

Dn = {(a,A)∈P |n∈dom(a)}.

(3) Dn is dense in P .
Proof . Let (b, B)∈P . Define a: n+ 1→ω by

a(i) =

{

b(i), if i∈ dom(b)
max {f(i)|f ∈B}+1

Then (a, B)6 (b, B) and (a,A)∈Dn . qed(3)
By MA take a {Df |f ∈F }∪{Dn}-generic filter G on P . Let

h=
⋃

{a|(a, A)∈G}.

Then h: ω→ω , since G meets every Dn .
(4) ∀f ∈F : f 6∗ h , i.e., F is bounded.
Proof . Let f ∈ F . Take (a, A) ∈ G ∩ Df . Let m = dom(a). Consider n ∈ [m, ω). Let (a′,

A′) ∈ G such that n ∈ dom(a ′). Since all elements of G are compatible we may assume
that (a′, A′)6 (a, A). Then

h(n)= a′(n) > f (n).

Hence h>∗ f . �

So under MA or CH all entries in the Cichon diagram are equal to 2ℵ0.

In the Cohen model for 2ℵ0 = κ>ℵ1 we have from our previous analysis:

add(N )=ℵ1 add(M)=ℵ1 cov(M) = 2ℵ0 non(N ) = 2ℵ0

non(M)=ℵ1 cof(M)= 2ℵ0 cof(N )= 2ℵ0

b d

cov(N )=ℵ1
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We now determine that the values of b and d are consistent with the diagram:

Theorem 43. Let M be a ground model of ZFC + CH, and let M � κ is a regular car-
dinal > ℵ1 . Let M [G] be a generic extension of M by the partial order for adjoining κ

Cohen reals using finite conditions. Then, in M [G], b =ℵ1 and d=2ℵ0.

Proof. We show that the first ℵ1 Cohen reals are unbounded. On the other hand no
family < 2ℵ0 can be cofinal in ωω since there will always be a Cohen real which is not
dominated. We have to decide whether we shall use 0/1-valued reals or ω-valued reals. �
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