PCF-Theorie

(Jech, Seiten 466 bis 469)

Die Shelahsche PCF-Theorie ist die Theorie der möglichen Konfinalitäten von Ultraprodukten regulärer Kardinalzahlen. Der Name PCF-Theorie kommt von englisch possible cofinalities. Wir setzen das Axiomensystem ZFC voraus.

Definition: Sei A Menge von Kardinalzahlen. Als Konfinalität eines Ultrafilters D bezeichnen wir die Konfinalität des Ultraproduktes, also

$$\operatorname{cf} D := \operatorname{cf} \prod A/D = \operatorname{cf}((\prod_{a \in A} a)/=_D)$$

bzgl. $<_D$, wobe
i $g <_D f : \leftrightarrow \{a \in A \mid g(a) < f(a)\} \in D$ für $g, f \in \prod_{a \in A} a$.

Definition 24.17: Sei A eine Menge regulärer Kardinalzahlen. Wir definieren:

$$\operatorname{pcf} A := \{\operatorname{cf} D \mid D \text{ ist Ultrafilter von } A\}$$

Bemerkung: Ultraprodukte linearer Ordnungen sind bzgl. $<_D$ linear geordnet.

Ziel dieses Vortrages ist es, folgenden Satz zu beweisen:

Satz 24.18 (Shelah): Wenn \aleph_{ω} starke Limeskardinalzahl ist, dann gilt:

$$\max(\mathrm{pcf}\{\aleph_n\}_{n<\omega})=2^{\aleph_\omega}$$

Bemerkung: Es gilt bereits $\max(\operatorname{pcf}\{\aleph_n\}_{n<\omega}) = \aleph_\omega^{\aleph_0}$, wenn $2^{\aleph_0} < \aleph_\omega$ ist.

Ohne Beweis; Jech verweist auf "Shelah's pcf theory and its applications" von Burke und Magidor, 1990.

Bemerkungen:

- 1. pcf A ist Menge regulärer Kardinalzahlen.
- 2. $A \subseteq \operatorname{pcf} A$
- 3. $|\operatorname{pcf} A| \le 2^{2^{|A|}}$
- 4. $A \subseteq B \rightarrow \operatorname{pcf} A \subseteq \operatorname{pcf} B$
- 5. $\operatorname{pcf}(A \cup B) = \operatorname{pcf}(A) \cup \operatorname{pcf}(B)$

Beweise:

- 1. Klar, weil Konfinalitäten linearer Ordnungen reguläre Kardinalzahlen sind
- 2. Zu jedem $a \in A$ hat das Ultraprodukt des prinzipalen Ultrafilters, der $\{a\}$ enthält, die Konfinalität ef a=a.
- 3. $|\operatorname{pcf} A| \leq |\{D \mid D \text{ ist Ultrafilter auf } A\}| \leq |\mathfrak{P}(\mathfrak{P}(A))| = 2^{2^{|A|}}$
- 4. Sei $a \in \operatorname{pcf} A$. Dann gibt es einen Ultrafilter U auf A mit cf U = a. Sei $D := \{m \subseteq B \mid \exists x \in U : x \subseteq m\}$. D ist Ultrafilter von B mit Konfinalität cf $D = \operatorname{cf} U$. Folglich ist $a \in \operatorname{pcf} B$.
- 5. $\operatorname{pcf}(A \cup B) \supseteq \operatorname{pcf}(A) \cup \operatorname{pcf}(B)$ gilt wegen 4. Für $\operatorname{pcf}(A \cup B) \subseteq \operatorname{pcf} A \cup \operatorname{pcf} B$ betrachte Folgendes: Sei $a \in \operatorname{pcf}(A \cup B)$ und U ein Ultrafilter von $A \cup B$ mit cf U = a. Dann ist A oder B Element von U (denn wären beide nicht drin, wären sowohl A^C als auch B^C Elemente von U und damit auch $A^C \cap B^C = (A \cup B)^C = \emptyset \in U$, was ein Widerspruch wäre). Ohne Beschränkung der Allgemeinheit sei $A \in U$. Sei $D := \{m \subseteq A \mid \exists x \in U : x \cap A = m\} \subseteq U$. D ist Ultrafilter von A. Es gilt $f <_U g \leftrightarrow f \upharpoonright A <_D g \upharpoonright A$ und folglich auch $a = \operatorname{cf} U = \operatorname{cf} D \in \operatorname{pcf} A$.

Definition: Eine Menge A regulärer Kardinalzahlen, die alle regulären Kardinalzahlen λ mit min $A \leq \lambda < \sup A$ enthält, heißt Intervall regulärer Kardinalzahlen.

Lemma 24.19: Sei A ein Intervall regulärer Kardinalzahlen mit min $A = (2^{|A|})^+$. Dann ist pcf A ein Intervall regulärer Kardinalzahlen.

Beweis: Wir müssen zeigen, dass zu jedem Utrafilter D von A jede reguläre Kardinalzahl λ mit min $A \leq \lambda <$ cf D wieder Element von pcf A ist. Dazu konstruieren wir einen Ultrafilter E mit cf $E = \lambda$.

Sei $F = \langle f_{\alpha} \mid \alpha < \lambda \rangle$ eine D-aufsteigende Folge in $\prod_{a \in A} a$. Da $\lambda < \operatorname{cf} D$ ist, hat F eine obere Schranke bzgl. \leq_D . Da λ regulär ist und $\lambda > 2^{|A|}$ gilt, hat F bzgl. \leq_D nach Lemma 24.10 (Lemma 1 aus Mariannes Vortrag) auch eine kleinste obere Schranke f. Für jedes $a \in A$ sei $h(a) := \operatorname{cf}(f(a))$ und S_a eine in f(a) konfinale Menge vom Ordnungstyp h(a). $(\prod_{a \in A} S_a)/D$ hat mit $\langle \min(S_a \setminus f_{\alpha}(a)) \mid \alpha < \lambda \rangle$ eine konfinale λ -Folge. Folglich hat auch $(\prod_{a \in A} h(a))/D$ eine konfinale λ -Folge $\langle h_{\alpha} \mid \alpha < \lambda \rangle$.

Die Menge $\{a \in A \mid h(a) > 2^{|A|}\}$ liegt in D (Angenommen nicht, dann wäre $m := \{a \in A \mid h(a) \leq 2^{|A|}\} \in D$. $|\prod_{a \in m} h(a)| \leq |A| (2^{|A|})| = (2^{|A|})^{|A|} = 2^{|A|} < \lambda$. Folglich kann man auf m weniger als λ viele Funktionen unterscheiden. Da zwei Funktionen, die auf m gleich sind, bzgl. $=_D$ in derselben Äquivalenzklasse lägen, gäbe es dann auch weniger als λ viele Objekte im Ultraprodukt. Das widerspräche der Tatsache, dass die Konfinalität des Ultraproduktes cf $D > \lambda$ ist.).

Weil A ein Intervall ist, gilt $\{a \in A \mid h(a) > 2^{|A|}\} = \{a \in A \mid h(a) \in A\}$. Sei $E := \{X \subseteq A \mid h^{-1}(X) \in D\}$. E ist Ultrafilter von A.

Sei $\langle g_{\alpha} \mid \alpha < \text{cf } E \rangle$ E-aufsteigende und -konfinale Folge in $\prod_{a \in A} a$. Es gilt:

$$g_{\alpha} <_{E} g_{\beta} \leftrightarrow \{a \in A \mid g_{\alpha}(a) < g_{\beta}(a)\} \in E$$

$$\leftrightarrow h^{-1}\{a \in A \mid g_{\alpha}(a) < g_{\beta}(a)\} \in D$$

$$\leftrightarrow \{a \in A \mid h(a) \in A \land g_{\alpha}(h(a)) < g_{\beta}(h(a))\} \in D$$

Folglich ist die Folge $\langle l_{\alpha} \mid \alpha < \operatorname{cf} E \rangle$ mit

$$l_{\alpha}(a) := \begin{cases} g_{\alpha}(h(a)), & \text{falls } h(a) \in A \\ 0, & \text{sonst} \end{cases}$$

D-aufsteigend. Da $g_{\alpha}(a) \in a$ für alle $a \in A$ gilt, verlaufen die l_{α} in $\prod_{a \in A} h(a)$. Somit folgt of $E \leq \lambda$, weil of E reguläre Kardinalzahl ist. Seien g_{α} für $\alpha < \lambda$ so, dass $\langle g_{\alpha} \circ h \mid \alpha < \lambda \rangle$ bzgl. D aufsteigend und konfinal

in $\prod_{a \in A} h(a)$ ist.

$$g_{\alpha} \circ h <_{D} g_{\beta} \circ h \iff \{a \in A \mid g_{\alpha} \circ h(a) < g_{\beta} \circ h(a)\} \in D$$

$$\to \{a \in A \mid g_{\alpha} \circ h(a) < g_{\beta} \circ h(a)\} \cap \{a \in A \mid h(a) > 2^{|A|}\} \in D$$

$$\leftrightarrow \{h(a) \mid g_{\alpha}(h(a)) < g_{\beta}(h(a))\} \cap \{h(a) \mid h(a) > 2^{|A|}\}$$

$$= \{h(a) \mid g_{\alpha}(h(a)) < g_{\beta}(h(a))\} \cap A \in E$$

$$\to g_{\alpha} \mid A <_{E} g_{\beta} \mid A$$

Folglich ist $\langle g_{\alpha} \upharpoonright A \mid \alpha < \lambda \rangle$ eine *E*-aufsteigende λ -Folge und somit cf $E \geq \lambda$ (weil λ reguläre Kardinalzahl ist). Zusammen mit Ebigem gilt cf $E = \lambda$. \square

Korollar 24.20: Wenn \aleph_{ω} starke Limeskardinalzahl ist, dann ist $\operatorname{pcf}\{\aleph_n\}_{n<\omega}$ ein Intervall und $\sup(\operatorname{pcf}\{\aleph_n\}_{n<\omega})<\aleph_{\aleph_{\omega}}$.

Beweis: $\operatorname{pcf}\{\aleph_n\}_{n<\omega}$ ist Intervall: Es gilt $\operatorname{pcf}\{\aleph_n\}_{n<\omega} = \operatorname{pcf}([\aleph_0, 2^{\aleph_0}] \cup [(2^{\aleph_0})^+, \aleph_\omega[) = \operatorname{pcf}([\aleph_0, 2^{\aleph_0}]) \cup \operatorname{pcf}([(2^{\aleph_0})^+, \aleph_\omega[).$ Es gelten $\sup(\operatorname{pcf}([\aleph_0, 2^{\aleph_0}])) \leq |\prod_{a \in [\aleph_0, 2^{\aleph_0}]} a| = 2^{\aleph_0} \operatorname{und} [\aleph_0, 2^{\aleph_0}] \subseteq \operatorname{pcf}([\aleph_0, 2^{\aleph_0}]).$ Folglich gilt $\operatorname{pcf}([\aleph_0, 2^{\aleph_0}]) = [\aleph_0, 2^{\aleph_0}].$ $\operatorname{pcf}([(2^{\aleph_0})^+, \aleph_\omega[) \text{ ist nach Lemma 24.19 ein Intervall. Also ist } \operatorname{pcf}\{\aleph_n\}_{n<\omega}$ ein Intervall.

 $\sup(\operatorname{pcf}\{\aleph_n\}_{n<\omega}) < \aleph_{\aleph_\omega} \colon |\operatorname{pcf}\{\aleph_n\}_{n<\omega}| \le 2^{2^{|\{\aleph_n\}_{n<\omega}|}} < \aleph_\omega \text{ und es gibt schon } \aleph_\omega \text{ viele Nachfolgerkardinalzahlen vor } \aleph_{\aleph_\omega}, \text{ also muss das Intervall } \operatorname{pcf}\{\aleph_n\}_{n<\omega} \text{ schon vor } \aleph_{\aleph_\omega} \text{ aufhören. Damit gilt } \sup(\operatorname{pcf}\{\aleph_n\}_{n<\omega}) < \aleph_{\aleph_\omega}. \square$

Definition: Im Folgenden sei $\lambda := \sup(\operatorname{pcf}\{\aleph_n\}_{n < \omega})$.

Lemma 24.21: Wenn \aleph_{ω} starke Limeskardinalzahl ist, gibt es eine Familie F von Funktionen in $\prod_{n<\omega}\aleph_n$ mit $|F|=\lambda$, so dass für jedes $g\in\prod_{n<\omega}\aleph_n$ ein $f\in F$ existiert, das $g(n)\leq f(n)$ für jedes $n\in\omega$ erfüllt.

Beweis: Wähle für jeden Ultrafilter D auf ω eine D-konfinale Folge $\langle f_{\alpha}^{D} \mid \alpha < \operatorname{cf} D \rangle$. Sei F die Menge aller f der Form, dass endlich viele $f_{\alpha_{i}}^{D_{i}}$ existieren, so dass für alle $n \in \omega$ gilt: $f(n) = \max\{f_{\alpha_{1}}^{D_{1}}(n), \ldots, f_{\alpha_{m}}^{D_{m}}(n)\}$. F hat Kardinalität λ , weil $\lambda \leq |F| \leq \sum_{i < \omega} |[\lambda \cdot 2^{2^{\aleph_{0}}}]^{i}| = \omega \cdot \lambda \cdot 2^{2^{\aleph_{0}}} = \lambda$, weil $\lambda \geq \aleph_{\omega} > 2^{2^{\aleph_{0}}}$.

Angenommen, F hätte nicht die gewünschte Eigenschaft. Dann gäbe es

ein $g \in \prod_{n < \omega} \aleph_{\omega}$, so dass für alle $f \in F$ ein $n \in \omega$ mit f(n) < g(n) existierte. Sei für jeden Ultrafilter D und jedes $\alpha < \mathrm{cf}\,D$ die Menge $X_{\alpha}^{D} := \{n \mid f_{\alpha}^{D}(n) < g(n)\}$. Dann hätte die Menge $\{X_{\alpha}^{D}\}_{D,\alpha}$ die endliche Durchschnittseigenschaft (d.h., der Schnitt endlich vieler X_{α}^{D} wäre nicht leer). Also ließe sich $\{X_{\alpha}^{D}\}_{D,\alpha}$ zu einem Ultrafilter U erweitern. Allerdings wäre $g >_{U} f$ für jedes $f \in F$. Da per Konstruktion eine U-konfinale Folge in F liegt, wäre das ein Widerspruch.

Konstruktion: Sei F eine feste Familie wie im Lemma und \aleph_{ω} starke Limeskardinalzahl. Sei $k < \omega$ mit $2^{\aleph_0} \leq \aleph_k$ und $\lambda < \aleph_{\aleph_k}$ (dieses k existiert, weil nach Korollar $24.20 \ \lambda < \aleph_{\aleph_{\omega}}$ ist). Sei $\vartheta \in Card$ regulär und so groß, dass $\prod_{n<\omega}\aleph_n \in H_{\vartheta} = \{Y \mid |\operatorname{Tc}(Y)| < \vartheta\}$ ist. Wir betrachten elemantare Untermodelle von $(H_{\vartheta}, \in, \prec)$, wobei \prec eine Wohlordnung von H_{ϑ} ist. Analog zu Lemma 4.1 aus Veronikas Vortrag konstruieren wir für jede abzählbare Teilmenge $x \subset \aleph_{\omega}$ eine elementare Kette $\langle M_{\alpha}^x \mid \alpha < \omega_k \rangle$, die für alle $\alpha < \omega_k = \aleph_k$ erfüllt: $|M_{\alpha}^x| = \aleph_k$ und $M_{\alpha}^x \supseteq x \cup \omega_k$.

Wir wählen M_0^x als Untermodell von $(H_{\vartheta}, \in, \prec)$ mit $|M_0^x| = \aleph_k$ und $M_0^k \supseteq x \cup \omega_k$. Für gegebene M_{α}^x definieren wir die charakteristische Funktion:

$$\chi^x_\alpha(n) := \sup(M^x_\alpha \cap \omega_n) \qquad \text{ (für alle } n > k).$$

Es gibt eine Funktion $f_{\alpha}^{x} \in F$ mit $f_{\alpha}^{x}(n) \geq \chi_{\alpha}^{x}(n)$ für alle n > k. Wir wählen $M_{\alpha+1}^{x}$ als elementares Obermodell von M_{α}^{x} mit $f_{\alpha}^{x}, \chi_{\alpha}^{x}, M_{\alpha}^{x} \in M_{\alpha+1}^{x}$. Wenn α Limesordinalzahl ist, setzen wir $M_{\alpha}^{x} := \bigcup_{\beta < \alpha} M_{\beta}^{x}$.

Wir definieren $M^x := \bigcup_{\alpha < \omega_k} M^x_{\alpha}$ und seine charakteristische Funktion

$$\chi^x(n) := \sup(M^x \cap \omega_n)$$
 (für alle $n > k$).

Diese Konstruktion der unendlich vielen unendlichen Modellketten hat den Nutzen, dass wir im Folgenden von der Menge der charakteristischen Funktionen zeigen können, dass sie $2^{\aleph_{\omega}} = |\{\chi^x \mid x \in [\aleph_{\omega}]^{\aleph_0}\}| \leq \lambda$ erfüllt.

Lemma 24.22: Es gelten die obigen Voraussetzungen. Wenn x und y abzählbare Teilmengen von \aleph_{ω} sind und $\chi^{x} = \chi^{y}$ gilt, dann auch $M^{x} \cap \aleph_{\omega} = M^{y} \cap \aleph_{\omega}$.

Beweis: Wir zeigen per Induktion über n, dass für alle n mit $k \leq n < \omega$ gilt: $M^x \cap \aleph_n = M^y \cap \aleph_n$. Für n = k ist wegen $M^x, M^y \supseteq \aleph_k$ der Schnitt

 $M^x \cap \aleph_k = M^y \cap \aleph_k = \aleph_k$. Angenommen, die Aussage gilt für n. Laut Voraussetzung gilt $\chi^x(n+1) = \chi^y(n+1)$. Weiter gilt:

$$\chi^{x}(n+1) = \sup(M^{x} \cap \omega_{n+1}) = \sup(\bigcup_{\alpha < \omega_{k}} M_{\alpha}^{x}) \cap \omega_{n+1})$$

$$= \sup(\bigcup_{\alpha < \omega_{k}} (M_{\alpha}^{x} \cap \omega_{n+1})) = \bigcup_{\alpha < \omega_{k}} \sup(M_{\alpha}^{x} \cap \omega_{n+1})$$

$$= \bigcup_{\alpha < \omega_{k}} (\chi_{\alpha}^{x}(n+1))$$

Folglich besitzt $\chi^x(n+1)$ die abgeschlossene, unbeschränkte Teilmenge $\{\chi^x_{\alpha}(n+1)\}_{\alpha<\omega_k}\subseteq M^x\cap\aleph_{n+1}$. $(\{\chi^x_{\alpha}(n+1)\}_{\alpha<\omega_k}\subseteq M^x)$, weil $\chi^x_{\alpha}\in M^x$ und es ein elementares Untermodell von H_ϑ ist.) Analog hat $\chi^y(n+1)$ die abgeschlossene, unbeschränkte Teilmenge $\{\chi^y_{\alpha}(n+1)\}_{\alpha<\omega_k}\subseteq M^y\cap\aleph_{n+1}$. Da der Schnitt zweier abgeschlossener, unbeschränkter Mengen wieder abgeschlossen und unbeschränkt ist, gibt es eine in $\chi^x(n+1)=\sup(M^x\cap\omega_{n+1})$ konfinale Menge $K\subseteq M^x\cap M^y$. Für jede Ordinalzahl $\gamma\in K$ mit $\gamma\geq\omega_n$ gibt es eine Bijektion $\pi:\omega_n\leftrightarrow\gamma$. Wenn wir $\pi\prec$ -minimal aussuchen, ist $\pi\in M^x\cap M^y$, weil π der Formel

$$\varphi(\pi, \gamma, \omega_n) = (\pi : \omega_n \leftrightarrow \gamma \land \forall f : \omega_n \leftrightarrow \gamma \quad (\pi \preccurlyeq f))$$

genügt und (M^x, \in, \prec) und (M^y, \in, \prec) elementare Untermodelle von $(H_{\vartheta}, \in, \prec)$ sind. Nach Induktionsannahme gilt $M^x \cap \omega_n = M^y \cap \omega_n$, folglich gilt $\pi[M^x \cap \omega_n] = \pi[M^x \cap \omega_n] \subseteq M^x \cap M^y$ und somit $M^x \cap \gamma = M^y \cap \gamma$. Damit folgt $M^x \cap \aleph_{n+1} = M^y \cap \aleph_{n+1}$.

Lemma 24.23: Unter den Voraussetzungen von eben gibt es eine Familie F_{λ} von \aleph_k großen Teilmengen von λ mit $|F_{\lambda}| = \lambda$, so dass für jede Teilmenge $Z \subset \lambda$ der Größe \aleph_k eine Menge $X \in F_{\lambda}$ mit $X \subseteq Z$ existiert.

Beweis: Wir zeigen mit Induktion über α , dass für alle Ordinalzahlen α mit $2^{\aleph_k} \leq \alpha \leq \lambda$ eine Familie F_α mit $|F_\alpha| = |\alpha|$ existiert, die für alle Teilmengen $Z \subset \alpha$ der Größe \aleph_k eine Menge X der Größe \aleph_k mit $X \subseteq Z$ enthält. Für $\alpha = 2^{\aleph_k}$ taugt $F_\alpha = [\alpha]^{\aleph_k}$. Für alle nichtkardinalen Ordinalzahlen α lässt sich die Aussage auf ihre Gültigkeit für $|\alpha|$ zurückführen, weil es zwischen ihnen eine Mengenbijektion gibt. Es bleibt, die Aussage für Kardinalzahlen α zu zeigen. Weil $\lambda < \aleph_{\aleph_k}$ gilt, haben alle Limeskardinalzahlen $\alpha \leq \lambda$ Konfinalität kleiner \aleph_k , alle anderen Kardinalzahlen sind regulär und größer

als \aleph_k , also gilt $\operatorname{cf}(\alpha) \neq \aleph_k$. Da \aleph_k regulär ist, kann eine \aleph_k lange Folge nicht konfinal in einer Zahl mit Konfinalität ungleich \aleph_k sein. Folglich ist jede \aleph_k große Teilmenge von α schon Teilmenge einer kleineren Ordinalzahl. Also taugt $F_\alpha = \bigcup_{\beta < \alpha} F_\beta$.

So, und nun zum finalen Beweis:

Satz 24.18 (Shelah): Wenn \aleph_{ω} starke Limeskardinalzahl ist, dann gilt:

$$\max(\operatorname{pcf}\{\aleph_n\}_{n<\omega})=2^{\aleph_\omega}$$

Beweis: Es gilt für jeden Ultrafilter D auf $\{\aleph_n\}_{n<\omega}$:

$$\operatorname{cf} D \le |\prod_{n < \omega} \aleph_n| \le \aleph_\omega^{\aleph_0} = 2^{\aleph_\omega}$$

weil für starke Limeskardinalzahlen κ gilt: $2^{\kappa} = \kappa^{\text{cf }\kappa}$. Folglich ist $\lambda = \sup(\text{pcf}\{\aleph_n\}_{n<\omega}) \leq 2^{\aleph_{\omega}}$. Wir betrachten nun die Konstruktion von Seite 5. Es gilt:

$$\chi^{x}(n) = \sup_{\alpha < \omega_{k}} \chi_{\alpha}^{x}(n) = \sup_{\alpha < \omega_{k}} f_{\alpha}^{x}(n)$$

Und damit auch für jede \aleph_k große Teilmenge S von ω_k :

$$\chi^{x}(n) = \sup_{\alpha \in S} \chi^{x}_{\alpha}(n) = \sup_{\alpha \in S} f^{x}_{\alpha}(n)$$

Da die Menge F Kardinalität λ hat, lässt sich Lemma 24.23 auf F anwenden. Damit existiert eine λ große Menge F_{λ} von \aleph_k großen Teilmengen von F, so dass für jede \aleph_k große Teilmenge Z von F eine Menge $X \in F_{\lambda}$ mit $X \subseteq Z$ existiert. Da jedes χ^x durch eine \aleph_k große Teilmenge Z^x von F eindeutig bestimmt ist und mehrere Z^x das gleiche χ^x bestimmen, falls sie eine gemeinsame \aleph_k große Untermenge enthalten, gibt es also höchstens λ viele χ^x . Damit gilt $|\{\chi^x \mid x \in [\aleph_{\omega}]^{\aleph_0}\}| \leq \lambda$. Weiter gilt:

$$2^{\aleph_{\omega}} = \aleph_{\omega}^{\aleph_{0}} = |[\aleph_{\omega}]^{\aleph_{0}}| = |\bigcup_{x \in [\aleph_{\omega}]^{\aleph_{0}}} [M^{x} \cap \aleph_{\omega}]^{\aleph_{0}}|$$

$$\leq |\{\chi^{x} \mid x \in [\aleph_{\omega}]^{\aleph_{0}}\}| \cdot \aleph_{k}^{\aleph_{0}} \quad \text{wegen Lemma 24.22}$$

$$\leq |[\aleph_{\omega}]^{\aleph_{0}}| \cdot \aleph_{k}^{\aleph_{0}} = \aleph_{\omega}^{\aleph_{0}} = 2^{\aleph_{\omega}}$$

Daraus folgt $|\{\chi^x\mid x\in [\aleph_\omega]^{\aleph_0}\}|=2^{\aleph_\omega}.$ Insgesamt gilt damit

$$2^{\aleph_{\omega}} = |\{\chi^x \mid x \in [\aleph_{\omega}]^{\aleph_0}\}| \le \lambda \le 2^{\aleph_{\omega}}$$

und endlich $\lambda = \sup(\operatorname{pcf}\{\aleph_n\}_{n<\omega}) = 2^{\aleph_\omega}$.

Jetzt muss nur noch gezeigt werden, dass das Supremum auch angenommen wird. Dafür zeigen wir, dass $\lambda = 2^{\aleph_{\omega}}$ Nachfolgerkardinalzahl ist. Nach Wahl von k gilt $\lambda < \aleph_{\aleph_k}$; also falls λ Limeskardinalzahl ist, gilt $\mathrm{cf}(\lambda) < \aleph_k$. Wir wissen aber nach einem Korollar des Satzes von König, dass $\mathrm{cf}(2^{\aleph_{\omega}}) > \aleph_{\omega}$ ist. Damit muss λ Nachfolgerkardinalzahl sein und wird damit als Maximum auch angenommen.