Mathematisches Institut der Universität Bonn P. Koepke, B. Irrgang

Exercises for Models of Set Theory I

Let in the following M be a ground model, $(\mathbb{P}, \leq_{\mathbb{P}}, 1_{\mathbb{P}}) \in M$ be a forcing and G be a M-generic filter on \mathbb{P} .

21. (a) Assume that $x, y \in M[G]$. Prove that also $x \times y \in M[G]$. (b) Let $\dot{x}, \dot{y} \in M$ be names for $x, y \in M[G]$. Define a name $\dot{z} \in M$ for $(x, y) \in M[G]$.

22. Assume that G is a filter on \mathbb{P} , which is not necessarily generic. Prove that M[G] = M if $G \in M$.

23. Let \mathbb{P} be Cohen forcing. Prove that there exists in M[G] an $a \subseteq \omega$ such that $a \notin M$.

24. Let $D \subseteq \mathbb{P}$, $D \in M$ and $p \in G$. Assume that $\forall q \leq p \exists r \in D r, q$ compatible. Show that $G \cap D \neq \emptyset$.

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at June 15, 2009.