Mathematisches Institut der Universität Bonn P. Koepke, B. Irrgang

Exercises for Models of Set Theory I

9. Define a relation \in' on \mathbb{N} by

$$m \in n$$
 iff $\exists s, r \in \mathbb{N} (n = 2^{m+1}s + 2^m + r \wedge r < 2^m).$

(a) Which axioms of set theory hold in this structure?

(b) What do the ordinals of this structure look like?

10. Prove that for every transitive ZF^{-} -model $M, V_{\alpha}^{M} = V_{\alpha} \cap M$ for all $\alpha \in M$.

11. Let M be a transitive ZF^{-} -model. Let $(X, E) \in M$ be a well-founded, extensional relation and $\pi : (X, E) \cong (N, \in)$ the Mostowski collapse. Show that $\pi, N \in M$.

12. Prove: If M and N are two transitive models of ZFC with the same sets of ordinals, i.e. $\mathfrak{P}^M(Ord^M) = \mathfrak{P}^N(Ord^N)$, then M = N. Hint: Show that $V^M_{\alpha} = V^N_{\alpha}$ for all $\alpha \in Ord^M = Ord^N$, using exercise 11.

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at May 13, 2009.