THE COMPUTATIONAL STRENGTH OF INFINITE TIME REGISTER MACHINES

PETER KOEPKE

Abstract. We show that a real $a \in {}^{\omega} 2$ is computable by an Infinite Time Register Machine (ITRM) as defined in [1] iff $x \in L_{\omega_{\omega}^{CK}}$ where $\omega_{\omega}^{CK} = \sup_{n < \omega} \omega_n^{CK}$ is the supremum of the first ω admissible ordinals. This corresponds to the fact that an ITRM with 0 input and empty oracle either halts before time ω_{ω}^{CK} or it does not halt at all. So the halting times of such machines are cofinal in ω_{ω}^{CK} , i.e., ω_{ω}^{CK} is the supremum of the ITRM clockable ordinals. Moreover we expect exact dependencies between the number of machine registers and the number of admissible ordinals needed.

References

 Peter Koepke, Russell Miller. An Enhanced Theory of Infinite Time Register Machines. CiE pp.306-315 (2008)