DIAMOND ON SUCCESSOR CARDINALS

ASSAF RINOT

ABSTRACT. We include a proof to the main result of Shelah's paper 922, e.g., that for uncountable λ , $(2^{\lambda} = \lambda^{+} \text{ iff } \diamondsuit_{\lambda^{+}})$. The presentation follows a lecture given by Péter Komjáth at the HUJI seminar on 28/Dec/2007.

Theorem (Shelah). Suppose λ is a cardinal satisfying $2^{\lambda} = \lambda^+$. Then \diamondsuit_S holds for any stationary $S \subseteq \{\delta < \lambda^+ \mid \operatorname{cf}(\delta) \neq \operatorname{cf}(\lambda)\}.$

Proof. Fix a stationary set S as above. In particular, λ is uncountable. To avoid trivialities, we may also assume that $S \cap \lambda = \emptyset$ and that S contains no successor ordinals. Set $\kappa := \operatorname{cf}(\lambda)$. For each $\delta \in S$, let $\{A_i^{\delta} \mid i < \kappa\}$ be an increasing chain of elements of $[\delta]^{<\lambda}$ satisfying $\delta = \bigcup_{i < \kappa} A_i^{\delta}$.

For all $\delta \in S$, since $cf(\delta) < \lambda$, we may also assume that $sup(A_0^{\delta}) = \delta$.

Notation. For $X \subseteq I \times Y$ and $i \in I$, write $(X)_i = \{y \mid (i, y) \in X\}$.

Lemma 1. Suppose $\{X_{\beta} \mid \beta < \lambda^+\}$ is an enumeration of $[\kappa \times (\lambda \times \lambda^+)]^{\leq \lambda}$. Then there exists some $i < \kappa$ such that for all $Z \subseteq \lambda \times \lambda^+$, the following is stationary:

 $S_{i,Z} := \left\{ \delta \in S \mid \sup\{\alpha \in A_i^\delta \mid \exists \beta \in A_i^\delta(Z \cap (\lambda \times \alpha) = (X_\beta)_i) \} = \delta \right\}.$

Proof. Suppose not. Then for all $i < \kappa$, we may find some $Z_i \subseteq \lambda \times \lambda^+$ and a club $D_i \subseteq \lambda^+$ that avoids S_{i,Z_i} . Define $f : \lambda^+ \to \lambda^+$ by:

$$f(\alpha) := \min\{\beta < \lambda^+ \mid X_\beta = \bigcup_{j < \kappa} \{j\} \times (Z_j \cap (\lambda \times \alpha))\}.$$

Let $D \subseteq \bigcap_{i < \kappa} D_i$ be a club such that $f(\alpha) < \delta$ for all $\alpha < \delta \in D$. Clearly, for $\delta \in D$:

$$A_0^{\delta} = \{ \alpha \in A_0^{\delta} \mid \exists \beta < \delta \forall j < \kappa (Z_j \cap (\lambda \times \alpha) = (X_\beta)_j) \}.$$

Fix $\delta \in D \cap S$. For $i < \kappa$, write:

$$B_i^{\delta} := \{ \alpha \in A_0^{\delta} \mid \exists \beta \in A_i^{\delta} \forall j < \kappa(Z_j \cap (\lambda \times \alpha) = (X_\beta)_j) \}.$$

By $A_0^{\delta} = \bigcup_{i < \kappa} B_i^{\delta}$, sup $A_0^{\delta} = \delta$ and $cf(\delta) \neq \kappa$, there must exist some $i < \kappa$ with $sup(B_i^{\delta}) = \delta$. In particular:

$$\sup\{\alpha \in A_i^{\delta} \mid \exists \beta \in A_i^{\delta}(Z_i \cap (\lambda \times \alpha) = (X_{\beta})_i)\} = \delta$$

i.e., $\delta \in S_{i,Z_i}$. A contradiction to $\delta \in D_i$.

Date: January 1, 2008.

ASSAF RINOT

Corollary 2. There exists a sequence $\langle A^{\delta} \in [\delta]^{<\lambda} | \delta \in S \rangle$, and an enumeration $\{X_{\beta} | \beta < \lambda^+\} = [\lambda \times \lambda^+]^{\leq \lambda}$ such that for all $Z \subseteq \lambda \times \lambda^+$, the following set is stationary:

$$S_Z := \left\{ \delta \in S \mid \sup\{\alpha \in A^\delta \mid \exists \beta \in A^\delta(Z \cap (\lambda \times \alpha) = X_\beta) \} = \delta \right\}.$$

Proof. Take *i* as above, and consider $\langle A_i^{\delta} \mid \delta \in S \rangle$ and $\{(X_{\beta})_i \mid \beta < \lambda^+\}$. \Box

Let us fix such sequence $\langle A^{\delta} | \delta \in S \rangle$ and enumeration $\{X_{\beta} | \beta < \lambda^+\}$.

We shall now recursively define a sequence of subsets of λ^+ , $\langle Y_\tau \mid \tau < \lambda \rangle$, and a \subseteq -decreasing sequence of clubs of λ^+ , $\langle E_\tau \mid \tau < \lambda \rangle$.

Notation. Whenever $\langle Y_{\tau} | \tau < \gamma \rangle$ is defined, we shall denote for $\delta \in S$:

$$V_{\gamma}^{\delta} = \left\{ (\alpha, \beta) \in A^{\delta} \times A^{\delta} \mid \forall \tau < \gamma \left(Y_{\tau} \cap \alpha = (X_{\beta})_{\tau} \right) \right\}$$

We start the recursion by letting $E_0 = Y_0 = \lambda^+$. Suppose now $\langle (Y_\tau, E_\tau) | \tau < \gamma \rangle$ has been defined for some $\gamma < \lambda$. Clearly, for any set Y_γ , and any $\delta \in S$, we would have $V_\gamma^\delta \supseteq V_{\gamma+1}^\delta$. If there exists a set $Y_\gamma \subseteq \lambda^+$ and a club $E_\gamma \subseteq \bigcap_{\tau < \gamma} E_\tau$ such that for all $\delta \in E_\gamma \cap S$:

$$\sup\{\alpha < \delta \mid \exists \beta < \delta \left((\alpha, \beta) \in V_{\gamma}^{\delta} \right) \} = \delta \text{ implies } V_{\gamma}^{\delta} \neq V_{\gamma+1}^{\delta},$$

then continue the recursion with such Y_{γ} and E_{γ} . Otherwise, terminate the recursion.

Claim 3. The recursion must terminate at some $\gamma^* < \lambda$.

Proof. Suppose not, and let $\langle Y_{\tau} | \tau < \lambda \rangle$, $\langle E_{\tau} | \tau < \lambda \rangle$ be the output sequences. Put $E = \bigcap_{\tau < \lambda} E_{\tau}$ and $Z = \bigcup_{\tau < \lambda} \{\tau\} \times Y_{\tau}$.

Fix $\delta \in E \cap S_Z$. Then by definition of S_Z :

$$\sup\{\alpha \in A^{\delta} \mid \exists \beta \in A^{\delta}(Z \cap (\lambda \times \alpha) = X_{\beta})\} = \delta,$$

In other words:

$$\sup\{\alpha \in A^{\delta} \mid \exists \beta \in A^{\delta} \forall \tau < \lambda(Y_{\tau} \cap \alpha = (X_{\beta})_{\tau})\} = \delta.$$

It follows that $\sup\{\alpha < \delta \mid \exists \beta < \delta ((\alpha, \beta) \in V_{\gamma}^{\delta})\} = \delta$ for all $\gamma < \lambda$. Since $S_Z \subseteq S$, the recursive construction gives that $\langle V_{\gamma}^{\delta} \mid \gamma < \lambda \rangle$ is a strictly \subseteq -decreasing sequence of subsets $A^{\delta} \times A^{\delta}$, contradicting the fact that $|A^{\delta}| < \lambda$.

Thus, let γ^* be the point at which the recursion terminates, and let $\langle Y_{\tau} | \tau < \gamma^* \rangle, \langle E_{\tau} | \tau < \gamma^* \rangle$ be the resulted sequences. Set $E = \bigcap_{\tau < \gamma^*} E_{\tau}$. For every $\delta \in S \cap E$, put:

$$S_{\delta} := \bigcup \{ (X_{\beta})_{\gamma^*} \mid (\alpha, \beta) \in V_{\gamma^*}^{\delta} \}.$$

Claim 4. $\{S_{\delta} \mid \delta \in E \cap S\}$ exemplify \Diamond_S .

 $\mathbf{2}$

Proof. Assume towards a contradiction that there exists a set $Y \subseteq \lambda^+$ and a club $C \subseteq E$ such that $S_{\delta} \neq Y \cap \delta$ for all $\delta \in C \cap S$.

Following the notation of the recursion, write $Y_{\gamma^*} := Y$.

Let $Z = \bigcup_{\tau < \gamma^*} \{\tau\} \times Y_{\tau}$. Then, for $\delta \in C \cap S_Z$, we have:

$$\sup\{\alpha \in A^{\delta} \mid \exists \beta \in A^{\delta} \forall \tau \leq \gamma^* (Y_{\tau} \cap \alpha = (X_{\beta})_{\tau})\} = \delta.$$

So, $\sup\{\alpha < \delta \mid \exists \beta < \delta \left((\alpha, \beta) \in V_{\gamma^*}^{\delta} \right) \} = \delta$, and also:

$$Y \cap \delta = \bigcup \{ (X_{\beta})_{\gamma^*} \mid (\alpha, \beta) \in V_{\gamma^*+1}^{\delta} \}.$$

It follows that if $V_{\gamma^*+1}^{\delta} = V_{\gamma^*}^{\delta}$, then $Y \cap \delta = S_{\delta}$. However, by the choice

of Y and $\delta \in C$, this is not the case, i.e., $V_{\gamma^*+1}^{\delta} \neq V_{\gamma^*}^{\delta}$. But if $\sup\{\alpha < \delta \mid \exists \beta < \delta ((\alpha, \beta) \in V_{\gamma}^{\delta^*})\} = \delta$ and $V_{\gamma^*+1}^{\delta} \neq V_{\gamma^*}^{\delta}$ for all $\delta \in S \cap C$, this means that the recursion could have been continued using Y and C, while it was terminated at γ^* . A contradiction.

Remark. To see that the above theorem is optimal, we mention the following two results concerning successors of regular and singular cardinals.

Theorem (Shelah). $2^{\aleph_0} = 2^{\aleph_1} = \aleph_2$ is consistent with the failure of \diamondsuit_S for $S = \{ \alpha < \omega_2 \mid \mathrm{cf}(\alpha) = \aleph_1 \}.$

Theorem (Magidor). Assume GCH and that κ is a measurable cardinal.

In the generic extension of prikry forcing, GCH holds, κ^+ is a successor of a singular cardinal of countable cofinality, and \Diamond_S fails for some stationary $S \subseteq \{ \alpha < \kappa^+ \mid \mathrm{cf}(\alpha) = \aleph_0 \}.$

SCHOOL OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, TA 69978, ISRAEL URL: http://www.tau.ac.il/~rinot