DIAMOND ON SUCCESSOR CARDINALS

ASSAF RINOT

Abstract

We include a proof to the main result of Shelah's paper 922, e.g,. that for uncountable $\lambda,\left(2^{\lambda}=\lambda^{+}\right.$iff $\left.\diamond_{\lambda^{+}}\right)$. The presentation follows a lecture given by Péter Komjáth at the HUJI seminar on $28 / \mathrm{Dec} / 2007$.

Theorem (Shelah). Suppose λ is a cardinal satisfying $2^{\lambda}=\lambda^{+}$.
Then \diamond_{S} holds for any stationary $S \subseteq\left\{\delta<\lambda^{+} \mid \operatorname{cf}(\delta) \neq \operatorname{cf}(\lambda)\right\}$.
Proof. Fix a stationary set S as above. In particular, λ is uncountable. To avoid trivialities, we may also assume that $S \cap \lambda=\emptyset$ and that S contains no successor ordinals. Set $\kappa:=\operatorname{cf}(\lambda)$. For each $\delta \in S$, let $\left\{A_{i}^{\delta} \mid i<\kappa\right\}$ be an increasing chain of elements of $[\delta]^{<\lambda}$ satisfying $\delta=\bigcup_{i<\kappa} A_{i}^{\delta}$.

For all $\delta \in S$, since $\operatorname{cf}(\delta)<\lambda$, we may also assume that $\sup \left(A_{0}^{\delta}\right)=\delta$.
Notation. For $X \subseteq I \times Y$ and $i \in I$, write $(X)_{i}=\{y \mid(i, y) \in X\}$.
Lemma 1. Suppose $\left\{X_{\beta} \mid \beta<\lambda^{+}\right\}$is an enumeration of $\left[\kappa \times\left(\lambda \times \lambda^{+}\right)\right]^{\leq \lambda}$.
Then there exists some $i<\kappa$ such that for all $Z \subseteq \lambda \times \lambda^{+}$, the following is stationary:

$$
S_{i, Z}:=\left\{\delta \in S \mid \sup \left\{\alpha \in A_{i}^{\delta} \mid \exists \beta \in A_{i}^{\delta}\left(Z \cap(\lambda \times \alpha)=\left(X_{\beta}\right)_{i}\right)\right\}=\delta\right\} .
$$

Proof. Suppose not. Then for all $i<\kappa$, we may find some $Z_{i} \subseteq \lambda \times \lambda^{+}$and a club $D_{i} \subseteq \lambda^{+}$that avoids $S_{i, Z_{i}}$. Define $f: \lambda^{+} \rightarrow \lambda^{+}$by:

$$
f(\alpha):=\min \left\{\beta<\lambda^{+} \mid X_{\beta}=\bigcup_{j<\kappa}\{j\} \times\left(Z_{j} \cap(\lambda \times \alpha)\right)\right\} .
$$

Let $D \subseteq \bigcap_{i<\kappa} D_{i}$ be a club such that $f(\alpha)<\delta$ for all $\alpha<\delta \in D$.
Clearly, for $\delta \in D$:

$$
A_{0}^{\delta}=\left\{\alpha \in A_{0}^{\delta} \mid \exists \beta<\delta \forall j<\kappa\left(Z_{j} \cap(\lambda \times \alpha)=\left(X_{\beta}\right)_{j}\right)\right\} .
$$

Fix $\delta \in D \cap S$. For $i<\kappa$, write:

$$
B_{i}^{\delta}:=\left\{\alpha \in A_{0}^{\delta} \mid \exists \beta \in A_{i}^{\delta} \forall j<\kappa\left(Z_{j} \cap(\lambda \times \alpha)=\left(X_{\beta}\right)_{j}\right)\right\} .
$$

By $A_{0}^{\delta}=\bigcup_{i<\kappa} B_{i}^{\delta}, \sup A_{0}^{\delta}=\delta$ and $\operatorname{cf}(\delta) \neq \kappa$, there must exist some $i<\kappa$ with $\sup \left(B_{i}^{\delta}\right)=\delta$. In particular:

$$
\sup \left\{\alpha \in A_{i}^{\delta} \mid \exists \beta \in A_{i}^{\delta}\left(Z_{i} \cap(\lambda \times \alpha)=\left(X_{\beta}\right)_{i}\right)\right\}=\delta,
$$

i.e., $\delta \in S_{i, Z_{i}}$. A contradiction to $\delta \in D_{i}$.

Date: January 1, 2008.

Corollary 2. There exists a sequence $\left\langle A^{\delta} \in[\delta]^{<\lambda} \mid \delta \in S\right\rangle$, and an enumeration $\left\{X_{\beta} \mid \beta<\lambda^{+}\right\}=\left[\lambda \times \lambda^{+}\right] \leq \lambda$ such that for all $Z \subseteq \lambda \times \lambda^{+}$, the following set is stationary:

$$
S_{Z}:=\left\{\delta \in S \mid \sup \left\{\alpha \in A^{\delta} \mid \exists \beta \in A^{\delta}\left(Z \cap(\lambda \times \alpha)=X_{\beta}\right)\right\}=\delta\right\} .
$$

Proof. Take i as above, and consider $\left\langle A_{i}^{\delta} \mid \delta \in S\right\rangle$ and $\left\{\left(X_{\beta}\right)_{i} \mid \beta<\lambda^{+}\right\}$.
Let us fix such sequence $\left\langle A^{\delta} \mid \delta \in S\right\rangle$ and enumeration $\left\{X_{\beta} \mid \beta<\lambda^{+}\right\}$.
We shall now recursively define a sequence of subsets of $\lambda^{+},\left\langle Y_{\tau} \mid \tau<\lambda\right\rangle$, and a \subseteq-decreasing sequence of clubs of $\lambda^{+},\left\langle E_{\tau} \mid \tau<\lambda\right\rangle$.

Notation. Whenever $\left\langle Y_{\tau} \mid \tau<\gamma\right\rangle$ is defined, we shall denote for $\delta \in S$:

$$
V_{\gamma}^{\delta}=\left\{(\alpha, \beta) \in A^{\delta} \times A^{\delta} \mid \forall \tau<\gamma\left(Y_{\tau} \cap \alpha=\left(X_{\beta}\right)_{\tau}\right)\right\} .
$$

We start the recursion by letting $E_{0}=Y_{0}=\lambda^{+}$. Suppose now $\left\langle\left(Y_{\tau}, E_{\tau}\right)\right|$ $\tau<\gamma\rangle$ has been defined for some $\gamma<\lambda$. Clearly, for any set Y_{γ}, and any $\delta \in S$, we would have $V_{\gamma}^{\delta} \supseteq V_{\gamma+1}^{\delta}$. If there exists a set $Y_{\gamma} \subseteq \lambda^{+}$and a club $E_{\gamma} \subseteq \bigcap_{\tau<\gamma} E_{\tau}$ such that for all $\delta \in E_{\gamma} \cap S$:

$$
\sup \left\{\alpha<\delta \mid \exists \beta<\delta\left((\alpha, \beta) \in V_{\gamma}^{\delta}\right)\right\}=\delta \text { implies } V_{\gamma}^{\delta} \neq V_{\gamma+1}^{\delta},
$$

then continue the recursion with such Y_{γ} and E_{γ}. Otherwise, terminate the recursion.

Claim 3. The recursion must terminate at some $\gamma^{*}<\lambda$.
Proof. Suppose not, and let $\left\langle Y_{\tau} \mid \tau<\lambda\right\rangle,\left\langle E_{\tau} \mid \tau<\lambda\right\rangle$ be the output sequences. Put $E=\bigcap_{\tau<\lambda} E_{\tau}$ and $Z=\bigcup_{\tau<\lambda}\{\tau\} \times Y_{\tau}$.

Fix $\delta \in E \cap S_{Z}$. Then by definition of S_{Z} :

$$
\sup \left\{\alpha \in A^{\delta} \mid \exists \beta \in A^{\delta}\left(Z \cap(\lambda \times \alpha)=X_{\beta}\right)\right\}=\delta,
$$

In other words:

$$
\sup \left\{\alpha \in A^{\delta} \mid \exists \beta \in A^{\delta} \forall \tau<\lambda\left(Y_{\tau} \cap \alpha=\left(X_{\beta}\right)_{\tau}\right)\right\}=\delta
$$

It follows that $\sup \left\{\alpha<\delta \mid \exists \beta<\delta\left((\alpha, \beta) \in V_{\gamma}^{\delta}\right)\right\}=\delta$ for all $\gamma<\lambda$. Since $S_{Z} \subseteq S$, the recursive construction gives that $\left\langle V_{\gamma}^{\delta} \mid \gamma<\lambda\right\rangle$ is a strictly \subseteq-decreasing sequence of subsets $A^{\delta} \times A^{\delta}$, contradicting the fact that $\left|A^{\delta}\right|<\lambda$.

Thus, let γ^{*} be the point at which the recursion terminates, and let $\left\langle Y_{\tau} \mid \tau<\gamma^{*}\right\rangle,\left\langle E_{\tau} \mid \tau<\gamma^{*}\right\rangle$ be the resulted sequences. Set $E=\bigcap_{\tau<\gamma^{*}} E_{\tau}$.

For every $\delta \in S \cap E$, put:

$$
S_{\delta}:=\bigcup\left\{\left(X_{\beta}\right)_{\gamma^{*}} \mid(\alpha, \beta) \in V_{\gamma^{*}}^{\delta}\right\} .
$$

Claim 4. $\left\{S_{\delta} \mid \delta \in E \cap S\right\}$ exemplify \diamond_{S}.

Proof. Assume towards a contradiction that there exists a set $Y \subseteq \lambda^{+}$and a club $C \subseteq E$ such that $S_{\delta} \neq Y \cap \delta$ for all $\delta \in C \cap S$.

Following the notation of the recursion, write $Y_{\gamma^{*}}:=Y$.
Let $Z=\bigcup_{\tau \leq \gamma^{*}}\{\tau\} \times Y_{\tau}$. Then, for $\delta \in C \cap S_{Z}$, we have:

$$
\sup \left\{\alpha \in A^{\delta} \mid \exists \beta \in A^{\delta} \forall \tau \leq \gamma^{*}\left(Y_{\tau} \cap \alpha=\left(X_{\beta}\right)_{\tau}\right)\right\}=\delta .
$$

So, $\sup \left\{\alpha<\delta \mid \exists \beta<\delta\left((\alpha, \beta) \in V_{\gamma^{*}}^{\delta}\right)\right\}=\delta$, and also:

$$
Y \cap \delta=\bigcup\left\{\left(X_{\beta}\right)_{\gamma^{*}} \mid(\alpha, \beta) \in V_{\gamma^{*}+1}^{\delta}\right\} .
$$

It follows that if $V_{\gamma^{*}+1}^{\delta}=V_{\gamma^{*}}^{\delta}$, then $Y \cap \delta=S_{\delta}$. However, by the choice of Y and $\delta \in C$, this is not the case, i.e., $V_{\gamma^{*}+1}^{\delta} \neq V_{\gamma^{*}}^{\delta}$.

But if $\sup \left\{\alpha<\delta \mid \exists \beta<\delta\left((\alpha, \beta) \in V_{\gamma}^{\delta^{*}}\right)\right\}=\delta$ and $V_{\gamma^{*}+1}^{\delta} \neq V_{\gamma^{*}}^{\delta}$ for all $\delta \in S \cap C$, this means that the recursion could have been continued using Y and C, while it was terminated at γ^{*}. A contradiction.

Remark. To see that the above theorem is optimal, we mention the following two results concerning successors of regular and singular cardinals.
Theorem (Shelah). $2^{\aleph_{0}}=2^{\aleph_{1}}=\aleph_{2}$ is consistent with the failure of \diamond_{S} for $S=\left\{\alpha<\omega_{2} \mid \operatorname{cf}(\alpha)=\aleph_{1}\right\}$.
Theorem (Magidor). Assume GCH and that κ is a measurable cardinal.
In the generic extension of prikry forcing, GCH holds, κ^{+}is a successor of a singular cardinal of countable cofinality, and \diamond_{S} fails for some stationary $S \subseteq\left\{\alpha<\kappa^{+} \mid \operatorname{cf}(\alpha)=\aleph_{0}\right\}$.

School of Mathematical Sciences, Tel Aviv University, TA 69978, Israel URL: http://www.tau.ac.il/~rinot

