Definite Notions

We shall study transitive € -structures (M, € ) where M is a non-empty transitive set or class.
We are mainly interested in situations where (M, € ) is a model of ZF~, i.e., ¢ holds for every
axiom in ZF~. We want to show that many properties are absolute between (M, € ) and the set-
theoretical universe V.

Definition 1. Let (7)) be an € -formula and let t(¥) be a term, both in the free variables T.
Then

a) 1 is definite iff for every transitive ZF~-model (M, €)
vZ e M (PM(T) < ¢(T)).
b) t is definite iff for every transitive ZF~-model (M, €)

VZ € MtM(Z) e M and V& € MtM(Z) =t(F).

Recall that if ¢ is of the form t = {u|p} then t" = {u € M |pM}; for t = x a variable term, set
2™ = z. We shall prove that a majority of set-theoretical notions are definite. We shall shall
work inductively: some basic notions are definite and many set-theoretical operations lead from
definite notions to definite notions.

Lemma 2. Let o(x, ) be a formula and t(Z) be a term and M be a class. Assume that VZ €
Mt(Z)e M. Then

Vi, Z €M (o(t(Z), )M < MM (2),7)).

Proof. If t =¢(Z) is of the form ¢ = z then there is nothing to show. Assume otherwise that ¢ is
of the form t = {u|y(u, Z)}. We work by induction on the complexity of . Assume that ¢ =
z=yand y,Z € M. Then

({ulv(u,2)} =y)™

(Vu (Y(u, Z) = uey)M
Vue M (pM(u,2) —ucy)
fue M|pM(u,z)} =y
tM(Z) =y

eM(tM(2),y)

(t(Z)=y)™
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Assume that p=y €z and y,Z € M. Then

(yet@ENM « vM(£ z)
= ye{ue MM (u )
= yetM(z)
= MM (Z),y)

Assume that o=z €y and y,Z € M. Then

(Fu(u=t(Z)ANuecy)M
JueM((u=tZ)MAuey)

Jue M (u=tM(Z) Au€ y), by the first case,
Ju(u=tM(Z) Nu€y), since M is closed w.r.t. ¢,
tM(Z)ey

PM(AM(Z), y)

(t(Z)ey)™
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The induction steps are obvious. (|

Theorem 3.
a) The formulas x =1y and x € y are definite.
b) If the formulas ¢ and i are definite then so are =@ and v A .

c¢) Let the formula p(xz, §) and the term t(Z) be definite. Then so are ¢(t(Z), §) and Va €
HZ) (e, §)-

d) The formulas Trans(z), Ord(z), Succ(z), and Lim(x) are definite.

e) Let the terms t(x,q) and r(Z) be definite. Then so is t(r(Z),¥).

f) The terms x, O, {z,y}, U = and w are definite.

g) Let the formula ¢(x,y) be definite. Then so is the term {x €z|p(x,F)}.

h) Let the term t(z,4) be definite. Then so is the term {t(z,7)|z € z}.

Proof. Let M be a transitive ZF ~-model.

a) is obvious since (z=y) = (z=y) and (z € y)M = (z € y).

b) Assume that ¢ and ¢ are definite and that (M, € ) is a transitive ZF~-model. Then VZ €
M (pM(%) & () and V& € M (™(F) < (7). Thus

VE € M ((p Ap)M(E) = (M(T) A PM(F)) & (0(Z) A (T)) = (9 AD)(F)).-

A similar argument works for —.
¢) Let (M, €) be a transitive ZF ~-model. Let §,Z € M. ¢(Z) € M since t is definite. Then

(p(tE@), INY = oMEM(Z), 7
M(t(Z),7), since t is definite,
— (t(Z),7), since ¢ is definite.

), by the Lemma,

Also

) o(z, )M

Y

(Vo e i( (Vz(z €t(Z) = o(z, 7))
VSCGM((SCEt(E))M—Mp (x,9))
VzeM(zetM(z)— oM(z, 7))

VeeM(zxet(Z)— <p( 7)), since t and ¢ are definite,
Vr(xet(Z)— o(z,y)), since t(Z) C M,

Vo et(Z) o(z, 7))
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d) follows immediately from c).
e) is obvious.
f) A variable term x is trivially definite, since ™ = z.

Consider the term )= {u|us u}. Since M is non-empty and transitive, € M. Also

M ={ueMlutu}=0.



Consider the term {z,y}. For z,y € M:
{r,y}M={ueM|u=rVu=y}={ulu=rVu=y}={z,y}.
The pairing axiom in M states that
(Vo,y3z 2= {z,y})M.
This implies
Ve, ye M3ze Mz={x,y}M ={x,y}
and
Ve,ye M {x,y} € M.
Consider the term |J z. For x € M:
(U z)M:{u€M|(E|v€zuEv)M}:{UEMElvE:cﬂMuGv}:{quGxuev}:U x.
The union axiom in M states that
(Vz3z 2= U )M,
This implies
V:EGMEleMz:(U :E)M:U x
and
Vee M U xeM.
Consider the term w=[) {z|z is inductive}. Since M satisfies the axiom of infinity,
dreM (z=w)M.
Take 29 € M such that (zg = w)™. Then (Lim(xo))M, (Vy € 2o —~Lim(y))™. By definiteness,

Lim(zo), Yy € xo —Lim(y), i.e., z¢ is equal to the smallest limit ordinal w. Hence w € M. The
formula “x is inductive” has the form

fexAVyex U {y,{y}} €x
and is definite by previous considerations. Now

wM = (ﬂ {z|r is inductive})M

({y|Vz (z is inductive — y € z)})M

{y € M |Vz € M (x is inductive — y € )}, since “x is inductive” is definite,
= ﬂ {z € M|z is inductive}

= ﬂ {zNwl|z € M is inductive}, since w € M,

= ﬂ {w}, since w is the smallest inductive set,

= w.
g) Let ¥,z € M. By the separation schema in M,

Quww={zez|p( 7)}H",



ie., {r€z|¢(z, )} € M. Moreover by the definiteness of ¢
{zezlp@ gtV ={zeM|zeynp¥(z,7)} ={z|zeyrp(z,§)} ={zcz|p(z,§)}
h) Since ¢ is definite, Vo, € M tM(z, ) € M. This implies
Vo, ¥ € M3we Mw=tM(z, )
and (Vo, 73w w=t(z,7))™. Let 4,2 € M. By replacement in M,
(Baa={t(z,7)|lvez})M.

Hence {t(x, )|z € 2}M € M. Moreover

{t@,7)leez}" = {wFBrezw=t(z,7)}"
= {weM|Fxczw=tM(x,7)}

{w|3z€zw=tM(z,7)}, since M is closed w.r.t. t"

= {w|Ir€zw=1t(z,y)}, since t is definite,
{t(z,¥)|z ez}

O

We may view this theorem as a “definite” form of the ZF ~-axioms: common notions and terms of
set theory and mathematics are definite, and natural operations lead to further definite terms.
Since the recursion principle is so important, we shall need a definite recursion schema:

Theorem 4. Let G(w, §) be a definite term, and let F(«, §) be the canonical term defined by
Ord-recursion with G:

VaF(a,§)=G(F a,§).

Then the term F(«) is definite.

Proof. Let M be a transitive ZF ~-model. O



