Übungen zur Einführung in die Mathematische Logik

29. Sei $(\mathbb{R}^*, <^*, +^*, \cdot^*, f^*)$ der in der Vorlesung definierte Erweiterungskörper von $(\mathbb{R}, <, +, \cdot, f)$ mit infinitesimalen Elementen. Für $x \in \mathbb{R}^*$ bezeichne st(x) den Standardteil von x. Zeigen Sie für alle $x, y \in \mathbb{R}^*$:

$$st(x+y) = st(x) + st(y).$$

- 30. Seien $a, b \in \mathbb{R}$ und $[a, b]^* = \{x \in \mathbb{R}^* \mid a \le x \le b\}$. Zeigen Sie:
- (a) f ist stetig auf [a, b]
- \Leftrightarrow Für alle $x \in [a, b]$ und $y \in [a, b]^*$ mit $y \approx x$ gilt $f^*(y) \approx f(x)$.
- (b) f ist gleichmäßig stetig auf [a, b]
- \Leftrightarrow Für alle $x, y \in [a, b]^*$ mit $y \approx x$ gilt $f^*(y) \approx f^*(x)$.
- 31. (a) Verwenden Sie die Nonstandard-Charakterisierungen aus Aufgabe 30, um zu zeigen: Ist f stetig auf dem Intervall [a, b], so ist es auch gleichmäßig stetig auf [a, b].
- (b) Warum funktioniert Ihr Beweis nicht für offene Intervalle]a, b[?]
- 32. Sei $K := \{ \frac{p}{q} \mid p, q \text{ Polynome über } \mathbb{R}, q \neq 0 \}$ der Körper der rationalen Funktionen über \mathbb{R} . Für $f, g \in K$ setze man $f \leq g$, wenn ein x_0 existiert, so daß $f(x) \leq g(x)$ für alle $x \geq x_0$ gilt. Zeigen Sie:
- (a) K ist ein angeordneter Erweiterungskörper von \mathbb{R} , der unendliche und von Null verschiedene infinitesimale Elemente enthält. Dabei identifiziere man $r \in \mathbb{R}$ mit der konstanten Funktion r.
- (b) Zeigen Sie, dass die angeordneten Körper K und $\mathbb R$ nicht dieselben Sätze erfüllen.

Jede Aufgabe wird mit 4 Punkten bewertet.

Abgabe: am 16. 06. 06 in der Vorlesung