Übungen zur Einführung in die Mathematische Logik

9. Sei S eine Sprache. Für $\varphi \in L^S$ definiere man rekursiv $\varphi^* \in L^S$ durch:

$$\begin{split} \varphi^* &:= \varphi, \text{ falls } \varphi \text{ atomar} & (\neg \varphi)^* := \neg \varphi^* & (\varphi \lor \psi)^* = (\varphi^* \lor \psi^*) \\ (\varphi \land \psi)^* &:= \neg (\neg \varphi^* \lor \neg \psi^*) & (\varphi \to \psi)^* := (\neg \varphi^* \lor \psi^*) \\ (\exists x \ \varphi)^* &:= \exists x \ \varphi^* & (\forall x \ \varphi)^* := \neg \ \exists x \ \neg \ \varphi^*. \end{split}$$

- (a) Zeigen Sie: Für alle $\varphi \in L^s$ gilt $\varphi^* \models \varphi$ und $\varphi \models \varphi^*$.
- (b) Zeigen Sie die folgenden abgeleiteten Regeln des Sequenzenkalküls:

$$\frac{\Phi\varphi \quad \Phi(\varphi \to \psi)^*}{\Phi\psi} \qquad \frac{\Phi\varphi \quad \Phi\psi}{\Phi(\varphi \wedge \psi)^*} \qquad \frac{\Phi(\varphi \wedge \psi)^*}{\Phi\varphi} \qquad \frac{\Phi(\varphi \wedge \psi)^*}{\Phi\psi}$$

- 10. Sei S eine Sprache und seien $\varphi, \psi, \chi \in L^S$. Leiten Sie in Sequenzenkalkül unter Verwedung schon bewiesener abgeleiteter Regeln (siehe auch Aufgabe 9b) folgende Tautologien her:
- (a) $(\varphi \lor \psi) \to (\psi \lor \varphi)$
- (b) $((\varphi \lor \psi) \to \chi) \to (\varphi \to \chi)$.
- 11. (a) Sei S eine Sprache und seien \mathfrak{A} , \mathfrak{B} S-Strukturen mit Trägermengen A, B. Definieren Sie (ohne nachzuschlagen), wann eine Abbildung $\pi:A\to B$ Isomorphismus zwischen \mathfrak{A} und \mathfrak{B} heißt.
- (b) Zeigen Sie: Jeder Isomorphismus $\pi:A\to B$ zwischen $\mathfrak A$ und $\mathfrak B$ ist auch eine elementare Einbettung.
- 12. Sei S eine Sprache. Eine Formel $\varphi \in L^S$ heiße positiv, falls sie $\neg, \rightarrow, \leftrightarrow$ nicht enthält. Zeigen Sie: Jede positive Formel ist erfüllbar.

Jede Aufgabe wird mit 4 Punkten bewertet.

Abgabe: am 05. 05. 06 in der Vorlesung