Klausur zur Mathematik für Informatiker II a

Bitte geben Sie au kelnummer an.	ıf jede	m Bla	tt Ihr	er Lös	sung	Ihren	Namen und Ihre Matri-	
Name:	ne:					DPO:		
Vorname:	name:					Übungsgruppe:		
Matrikelnummer:								
Tragen Sie bitte bein:	oei Au	fgaber	ı, die	Sie ni	cht l	oearbe	itet haben, einen Strich	
Aufgabe 1 Punkte	2	3	4	5	6	7	Summe	
Vorkorrigierender:								
Prüfer:								
Viel Erfolg!								
mum, Verband. G nung in prädikater Supremum bitte a 2. Sei $G = (E, K)$ jede Ecke $a \in E$ g	eben S nlogisc uch, v ein E erader	Sie dab cher So vas ein Culersc n Grac	bei die chreib de obe her G $\delta(a)$	e drei weise re bzv raph hat.	Eiger an. I v. un mit	nschaft Definier tere So $E \geq 2$	dnung, Infimum, Supresen einer partiellen Orden Sie bei Infimum und chranke ist. 2. Zeigen Sie, dass dann ox durch w, die falschen	
durch f. Sie brauc	chen II chtige	nre An Antwo	twort rt, -2	en nic Punk	ht zu	ı begri	inden. Sie erhalten zwei falsche, aber mindestens	
Jede erfüllba Wenn ein G hängend.		0					dann ist G zusammen-	
In jedem Verband X gilt $\forall x, y, z \ x \sqcup (y \sqcap z) = (x \sqcup y) \sqcap (x \sqcup z)$.								
Es gibt 10 3	-Koml	oinatic	nen a	us {1	, ,	5}.		
							Bitte wenden!	

4. Sei σ eine Signatur und seien $\varphi, \psi, \chi \in Aus^{\sigma}$. Führen Sie einen formalen Beweis für folgende Tautologie:

$$(((\varphi \lor \psi) \land \chi) \to ((\varphi \land \chi) \lor (\psi \land \chi))).$$

5. (a) Sei σ eine Signatur mit nur einer Sorte s, einem zweistelligen Relationssymbol r und keinen weiteren Symbolen. Geben Sie (ohne Beweis) eine Aussage $\varphi \in Aus^{\sigma}$ an, so dass für alle Graphen G = (E, K) und alle Belegungen β in G genau dann $(G, \beta) \models \varphi$ gilt, wenn folgende Bedingung erfüllt ist:

$$G$$
 hat genau drei Ecken, d.h. $|E|=3$.

(b) Geben Sie entprechend auch eine Formel φ für die folgende Bedingung an:

$$G$$
 hat genau zwei Kanten, d.h. $|K| = 4$.

6. Sei σ eine Signatur. Definiere für alle $\varphi \in Aus^{\sigma}$ rekursiv $\varphi^* \in Aus^{\sigma}$ durch

 $\varphi^* := \varphi, \text{ falls } \varphi \text{ eine relationale Aussage ist}$ $(\neg \varphi)^* := \neg \varphi^*$ $(\varphi \lor \psi)^* := (\varphi^* \lor \psi^*)$ $(\varphi \land \psi)^* := \neg(\neg \varphi^* \lor \neg \psi^*)$ $(\varphi \to \psi)^* := (\neg \varphi^* \lor \psi^*)$ $(\exists v_n^s \varphi)^* := \exists v_n^s \varphi^*$ $(\forall v_n^s \varphi)^* := \forall v_n^s \varphi^*.$

Zeigen Sie durch Induktion: Für alle σ -Modelle \mathfrak{M} und alle $\varphi \in Aus^{\sigma}$ gilt $\mathfrak{M} \models \varphi$ genau dann, wenn $\mathfrak{M} \models \varphi^*$ ist.

- 7. Sei $1 \leq n \in \mathbb{N}$. Sei M die Menge aller Strukturen (S, \otimes) mit $S = \{1, \ldots, n\}$ und einer zweistelligen Funktion $\otimes : S^2 \to S$. Dann ist die Isomorphie \cong eine Äquivalenzrelation auf M. Sei G die Menge der Permutationen von S.
- (a) Zeigen Sie: Zu jeder Struktur $(S, \otimes) \in M$ und jedem $\pi \in G$ gibt es eine eindeutig bestimmte Struktur (S_{π}, \otimes_{π}) , so dass $\pi : (S, \otimes) \to (S_{\pi}, \otimes_{\pi})$ ein Isomorphismus ist.

Sei nun $S = \{1, 2\}$ und π die nicht triviale Permutation von S.

(b) Bestimmen Sie: Wieviele Elemente hat M? Für wieviele Strukturen $(S, \otimes) \in M$ ist $(S_{\pi}, \otimes_{\pi}) = (S, \otimes)$? Wieviele Äquivalenzklassen hat (M, \cong) ?

Jede Aufgabe wird mit 8 Punkten bewertet.