Übungen zur Mathematik für Informatiker I a

- 28. Eine quadratische Matrix A heißt Permutationsmatrix, wenn jede Zeile von A und jede Spalte von A genau eine 1 enthält, alle anderen Einträge aber 0 sind.
- (a) Interpretieren Sie die Multiplikation mit $A \in M(3 \times 3, \mathbb{R})$ als geometrische Operation im \mathbb{R}^3 .
- (b) Zeigen Sie, dass jede Permutationsmatrix invertierbar ist, und geben Sie das Inverse an.
- 29. Fassen Sie $\mathbb C$ wie in der Vorlesung als zweidimensionalen $\mathbb R$ -Vektorraum auf. Zeigen Sie, dass dann

$$f: \mathbb{C} \to M(2 \times 2, \mathbb{R}), \quad x + iy \mapsto \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$

ein Monomorphismus ist, so dass $f(z_1) \cdot f(z_2) = f(z_1 \cdot z_2)$ für alle $z_1, z_2 \in \mathbb{C}$ gilt.

- 30. Zeigen Sie, daß für eine Matrix $A=DM(f)\in M(m\times n,\mathbb{R})$ äquivalent sind:
- (i) rg f = m.
- (ii) Die Zeilen von A sind linear unabhängig.
- (iii) Aus $(\lambda_1, \ldots, \lambda_m)A = 0$ $(\lambda_i \in \mathbb{R})$ folgt stets $\lambda_1 = \lambda_2 = \ldots = \lambda_m = 0$.
- (iv) Es gibt eine Matrix $B \in M(n \times m, \mathbb{R})$ mit $AB = E_m$.

Jede Aufgabe wird mit 4 Punkten bewertet.

Abgabe bis spätestens 6. Januar 2005, 9.00 Uhr, Übungskasten, Römerstr., Neubau, 1. Stock, vor dem Eingang zur Empore des Audimax

Internet: www.math.uni-bonn.de/people/irrgang/MIA04.html

Bitte geben Sie auf Ihrer Lösung groß die Nummer Ihrer Übungsgruppe an.

Frohe Weihnachten und ein Gutes Neues Jahr!!