Wintersemester 2002/2003

Seminar zur Logik: Nichtstandardanalysis Nichtstandardtopologie

Alexander Rothkegel

28.1.03

1. Nichtstandardeinbettung

Sei *: $\hat{S} \to \widehat{S}$ eine satztreue Einbettung, dann heißt * eine starke Nichtstandard-Einbettung, falls für jedes System $\mathcal{C} \subset \hat{S} - S$ mit nicht leeren endlichen Durchschnitten gilt:

$$\bigcap_{C\in\mathcal{C}}{}^*C\neq\emptyset.$$

2. Folgerung

Sei $\mathcal{F} \neq \emptyset \subset \mathcal{P}(X)$. Dann gilt

$$^*A \subset \bigcup_{F \in \mathcal{F}} {^*F} \Rightarrow (A \subset \bigcup_{F \in \mathcal{F}_0} F \text{ für ein endliches } \mathcal{F}_0 \subset \mathcal{F}).$$

3. Topologischer Raum

Sei X eine nicht leere Menge und $\mathcal{T} \subset \mathcal{P}(X)$.

Das Paar (X, \mathcal{T}) heißt topologischer Raum, falls gilt:

- $(\alpha) \emptyset, X \in \mathcal{T},$
- (β) $A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$,
- $(\gamma) \ \mathcal{O} \subset \mathcal{T} \Rightarrow \bigcup \mathcal{O} \in \mathcal{T}.$

4. Infinitesimal-Benachbartsein von Punkten

Sei $\mathcal{T}_x = \{T \in \mathcal{T} : x \in T\}$ die Menge der offenen Mengen, die x enthalten. Definiere $\approx_{\mathcal{T}} \subset (*X \times X)$ durch

$$y \approx_{\mathcal{T}} x : \iff \forall O \in \mathcal{T}_x (y \in {}^*O).$$

5. Grenzwerte von Folgen

Sei $x_n \in X$ ein Folge und $x \in X$. Es ist äquivalent

- $(\alpha) \ \forall h \in {}^*\mathbb{N} \mathbb{N}({}^*x_h \approx_{\mathcal{T}} x),$
- $(\beta) \ x_n \longrightarrow x \quad \text{bez. } \mathcal{T}, \text{ d.h. } \forall O \in \mathcal{T}_x \exists n_0 \in \mathbb{N} \forall n \geq n_0 (x_n \in O).$

6. Kriterium für Offenheit, Abgeschlossenheit und Kompaktheit

- O offen $\iff \forall y \in {}^*X \forall x \in O(y \approx_{\mathcal{T}} \implies y \in {}^*O),$
- O abgeschlossen $\iff \forall y \in {}^*A \forall x \in X (y \approx_T \Longrightarrow x \in A),$
- K kompakt $\iff \forall y \in {}^*K \exists x \in K(y \approx_{\mathcal{T}} x).$

7. Hausdorffräume

Für einen topologischen Raum (X, \mathcal{T}) und $x_1, x_2 \in X$ ist äquivalent:

- $(\alpha) \ x_1 \neq x_2 \Longrightarrow \exists O_1 \in \mathcal{T}_{x_1} \exists O_2 \in \mathcal{T}_{x_2} (O_1 \cap O_2 = \emptyset),$
- $(\beta) \ \forall y \in {}^*X(y \approx_{\mathcal{T}} x_1 \land y \approx_{\mathcal{T}} x_2 \Longrightarrow x_1 = x_2).$

8. Stetige Abbildungen

Sei $f:(X_1,\mathcal{T}_1)\longrightarrow (X_2,\mathcal{T}_2)$. Dann ist äquivalent:

- $(\alpha) \ \forall O \in \mathcal{T}_2(f^{-1}(O) \in \mathcal{T}_1),$
- $(\beta) \ \forall x_1 \in X_1 \forall y_1 \in {}^*X(y_1 \approx_{\mathcal{T}_1} x_1 \Longrightarrow {}^*f(y_1) \approx_{\mathcal{T}_2} f(x_1)).$

9. Korollar

- Sei (X, \mathcal{T}) ein topologischer Raum. Dann gilt:
- (α) (K kompakt und $A \subset K$ abgeschlossen) $\Longrightarrow A$ kompakt,
- (β) (X hausdorffsch und $A \subset X$ kompakt) $\Longrightarrow A$ abgeschlossen,
- (γ) (f stetig und $K \subset X$ kompakt) $\Longrightarrow f(K)$ kompakt.

10. Weitere topologische Definitionen

Sei X eine nicht leere Menge und $\mathcal{S} \subset \mathcal{P}(X)$.

Es sei $\mathcal{T}(\mathcal{S})$ das System beliebiger Vereinigungen und endlichen Durchschnitten von Mengen aus S. Dann heißt $\mathcal{T}(\mathcal{S})$ die von \mathcal{S} erzeugte Topologie.

Seien (X_i, \mathcal{T}_i) topologische Räume und $\varphi: X \longrightarrow X_i$ Abbildungen für jedes $i \in I$. Die von

$$\mathcal{S} := \{ \varphi_i^{-1}(O_i) : O_i \in \mathcal{T}_i, i \in I \}$$

erzeugte Topologie auf X heißt die initiale Topologie auf X bezüglich der Abbildungen $\varphi_i, i \in I$. Sie ist die kleinste Topologie bezüglich der alle Abbildungen φ_i stetig sind. Seien I und $X_i, i \in I$ nicht leere Mengen. Es ist

$$X = \prod_{i \in I} X_i = \{x \in B^I : \forall i \in I(x(i) \in X_i)\}, B = \bigcup_{i \in I} X_i$$

die Produktmenge von $X_i, i \in I$. Für jedes $i \in I$ ist die Projektionsabbildung auf die *i*-te Koordinate folgendermaßen definiert:

$$\pi_i(x) := x(i), \pi_i : X \longrightarrow X_i.$$

Als Topologie für den Produktraum X wählt man normalerweise die initiale Topologie der Projektionen $\pi_i, i \in I$.

11. Lemma

Sei $\mathcal{S} \subset \mathcal{P}(x)$ und \mathcal{T} die von \mathcal{S} erzeugte Topologie. Dann gilt für $y \in {}^*X, x \in X$:

$$y \approx_{\mathcal{T}} x \iff \forall O \in S(x \in O \Longrightarrow y \in {}^*O).$$

12. Die Relation \approx bezgl. der initialen Topologie

Seien (X_i, \mathcal{T}_i) topologische Räume und $\varphi_i : X \longrightarrow X_i$ Abbildungen für $i \in I$. X sei mit der initialen Topologie der φ_i versehen. Dann gilt für $y \in {}^*X, x \in X$:

$$y \approx x \iff \forall i \in I(^*\varphi_i(y) \approx_{\mathcal{T}_i} \varphi_i(x))$$

13. Produkttopologie (Satz von Tychonoff)

Seien (X_i, \mathcal{T}_i) topologische Räume, und es sei $X = \prod_{i \in I} X_i$ mit der Produkttopologie ausgestattet. Dann gilt:

$$\forall i \in I(X_i \text{ kompakt}) \iff X \text{ kompakt},$$

$$\forall i \in I(X_i \text{ hausdorffsch}) \Longrightarrow X \text{ hausdorffsch}.$$

14. Topologische Vektoräume

Sei $(X, +, \cdot)$ ein Vektorraum über \mathbb{R} und \mathcal{T} eine Topologie auf X. Dann heißt (X, \mathcal{T}) topologischer Vektorraum, falls Skalarmultiplikation und Addition bezüglich der Produkttopologien von $(X \times X)$ und $(\mathbb{R} \times X)$ stetig sind. D.h. für $y_1, y_2 \in {}^*X); x_1, x_2 \in X; \alpha, \beta \in \mathbb{R}$ gilt:

- $(y_1 \approx_{\mathcal{T}} x_1 \wedge y_2 \approx_{\mathcal{T}} x_2) \Longrightarrow y_1 + y_2 \approx_{\mathcal{T}} x_1 + x_2,$
- $(\beta \approx \alpha) \wedge y_1 \approx_{\mathcal{T}} x_1) \Longrightarrow \beta \cdot y \approx_{\mathcal{T}} \alpha \cdot x$.

15. Dualraum

Sei (X, \mathcal{T}) ein topologischer Vektorraum über \mathbb{R} . Dann heißt

$$X' := \{ f \in \mathbb{R}^X : f \text{ linear und stetig} \}$$

topologischer Dualraum von X.

Es sei X' versehen mit der initialen Topologie der Abbildungen $\varphi_x: X' \longrightarrow \mathbb{R}, x \in X$, mit

$$\varphi_x(f) := f(x), f \in X'.$$

Diese Topologie heißt die schwach'-Topologie von X'.

16. Satz von Banach-Alaoglu

Sei (X, \mathcal{T}) ein topologischer Vektorraum über \mathbb{R} und O eine offene Menge, die das Nullelement von X enthält. Dann ist

$$O^P := \{ f \in X' : \forall x \in O(|f(x)| \le 1) \}$$

kompakt bezgl. der schwach'-Topologie von X'.