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THE PROBLEM OF THE SIMPLEST
DIOPHANTINE REPRESENTATION

1. Introduction

Gregory Chaitin’s information-theoretic incompleteness result
(Chaitin 1974a,b) has received extraordinary attention; it is apparently
one of the most widely known recent logical results.1 Roughly, it says
that for every formalized theory there is a finite constant c such that
the theory in question cannot prove any particular number to have a
Kolmogorov complexity larger than c, even though there are infinitely
many numbers for which this is true.

The standard interpretation of Chaitin’s theorem claims that the
value of the limiting constant is determined by the complexity of the
theory itself, which is assumed to be a good measure of the strength
of the theory. In another paper (Raatikainen 1998) I have argued that
this received view is simply false. I showed that the limiting constant
does not in any way reflect the power of a formalized theory, but that
the values of these constants actually depend on the chosen coding of
Turing machines, and are thus quite accidental. As a consequence of
my close analysis, I could also provide a simple, almost trivial, proof of
Chaitin’s Theorem, given the standard undecidability result concerning
the Halting problem (Turing 1936–1937).

After these negative observations the question occurred to me
whether one could do any better. And the answer turns out to be
positive. In this paper I give a strengthened form of Matiyasevich’s im-
portant result that Hilbert’s tenth problem is unsolvable (Matiyasevich
1970). My result stands to this result in an analogous simple relation
that Chaitin’s result is to the undecidability of the Halting problem,
and is every bit as strong as Chaitin’s theorem. The setting used here

1For some further discussion of this matter, see Raatikainen 1998.
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appears to be especially simple and natural. The problem considered is
a fairly straightforward mathematical one, and the limiting constants
that my approach provides do not depend on any coding but are “in-
trinsic” to the formalized theory in question and in a sense “absolute”;
however, I do not intend to make any strong philosophical claims, re-
sembling the standard interpretation of Chaitin’s Theorem, about these
constants. I conclude by showing how my approach exhibits an interest-
ing difference between intuitionistic and classical arithmetical theories.

The problem that I shall consider is the one of finding for a given
finite set of numbers the simplest “Diophantine representation”2 (a
notion I define below). I shall show that this problem is not only unde-
cidable but even undecidable in a certain quite strong sense; viz. after
a finite level of complexity, it turns out to be, in a sense, completely
undecidable.

2. Diophantine Sets and Hilbert’s Tenth Problem

Let us first review the basic concepts and results related to the
subject of Diophantine equations (cf. Davis 1973, Smorynski 1991,
Matiyasevich 1993).

First, note that traditionally both positive and negative integers
have been allowed as solutions, and as coefficients. The modern ap-
proach, however, concentrates more on the natural number coefficients
and solutions. But the difference is logically inessential. One can get
rid of the negative coefficients by transforming a Diophantine equation
of the form P (~x) = 0 to the form P ′(~x) = P ′′(~x). Moreover, there are
well-known techniques for reducing the decision problem of the inte-
ger case to the non-negative one, and vice versa (see e.g. Davis 1973,
Smorynski 1991, Matiyasevich 1993). In what follows, I shall there-
fore be somewhat indifferent between these two cases; everything that
I say below applies equally to both theories of integers and theories of
natural numbers.

Accordingly, I shall use P (x1, . . . , xn) ambiguously for both
P (x1, . . . , xn) = 0 and P ′(x1, . . . , xn) = P ′′(x1, . . . , xn), with either
integer or positive number coefficients, depending on the formalized
theory in question.

Moreover, traditionally, one is given an equation and asked for its
solutions. However, more recently it has turned out to be fruitful to
invert the problem, i.e. begin with a set of “solutions” and attempt

2One might naturally have called the complexity of such maximally simple Dio-
phantine equation the Diophantine complexity of the set S; however, Matiyasevich
(1993, ch. 8) has already started to use this label for quite another issue.
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to find a corresponding equation. I shall also follow this “inverted
approach” here. More precisely:

Definition 1. An equivalence of the form

a ∈ S ⇔ ∃x1, . . . , xn[P (a, x1, . . . , xn)],

(where P (x0, x1, . . . , xn) is a Diophantine equation) is called a Dio-
phantine representation of the set S. A set that has a Diophantine
representation is called Diophantine.

(In this paper, I consider solely sets of numbers; however, it is obvious
how to generalize everything presented here for arbitrary n-tuples and
relations.)

The epoch-making work of Yuri Matiyasevich (1970) based on ear-
lier work by Julia Robinson, Martin Davis and Hilary Putnam (for
history, see Davis 1973, Matiyasevich 1993) established the following
results:

Theorem 1. A set is Diophantine, i.e. has a Diophantine repre-
sentation, iff it is recursively enumerable.

Theorem 2. Hilbert’s tenth problem is unsolvable: there is no
algorithm for testing Diophantine equations for possession of solutions.

Theorem 3. Corresponding to any given axiomatization of num-
ber theory there is a Diophantine equation which has no solutions, but
such that this fact cannot be proved within the given axiomatization.

3. The Problem of Simplest Diophantine Representation

Let me now turn to the proper subject of this paper.
To begin with, I assume that a formalized language of arithmetic L,

that has a finite stock of basic symbols, has been fixed. Obviously, this
is assumed to include the standard logical symbols, a constant symbol
(e.g. ‘0̄’) for 0, the successor symbol (e.g. ‘S’ or ‘′’), and two function
symbols (e.g. ‘×’ and ‘+’) for addition and multiplication.

Next, I take the complexity, or simplicity, of a Diophantine equation
to be the number of basic symbols occurring in it.3 Now recall that

3There are, of course, alternative possibilities, but note that for my purposes
here the degree of equation would not be suitable, because every Diophantine set
has degree ≤ 4 (Skolem 1934); whatever measure is chosen, it is essential that it
is not bounded. It is apparently necessary to take the size of the coefficients into
account; for it is possible to reduce the degree of an equation by, so to say, coding
more and more information to the coefficients.
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the modern “inverted” approach to the subject begins with a set of
“solutions” and attempts to find a corresponding equation. Now it
is indeed a very short and natural step to add that given a set of
“solutions” one would like to find a maximally simple equation. And
this will be our problem. To make it exactly defined, let us formulate
it as follows:

“Given a finite set of numbers S, what is the simplest (in terms
of the number of basic symbols it contains) Diophantine equation
P (x0, x1, . . . , xn), such that a ∈ S ⇔ ∃x1, . . . , xn[P (a, x1, . . . , xn)],
i.e. P (x0, x1, . . . , xn) provides a Diophantine representation of the set
S ?”

Obviously, because of Theorem 1, every finite set has a Diophantine
representation; moreover, among Diophantine equations, there must be
a minimal complexity such that there is an equation with this complex-
ity that represents a given set, and that no simpler equation does. Of
course, a set may have more than one equally simple Diophantine rep-
resentation; nevertheless, there may always be only finitely many such
equations. We may agree that in such a case any one of the simplest
equations will do; or, alternatively, we may further define an “alpha-
betical” ordering of the basic symbols, and agree that given a set of
equations of the same complexity, by “the simplest” one means the first
equation in the alphabetical order. However, such fine details do not
really matter in what follows.

I shall now show how the problem of the simplest Diophantine rep-
resentation behaves logically.

Let us assume that we have fixed, in the language L, a recursively
axiomatizable theory T . Imagine then that one tries to proceed as
follows. With a given set of numbers S, one tries to test Diophantine
equations in their order of size, beginning from the simplest, whether
they provide a Diophantine representation of S or not. As long as it
is possible to determine such facts in T , it is possible to apply this
method successfully.

However, it follows from the above-mentioned results of
Matiyasevich that in any formal system of arithmetic T one will eventu-
ally meet an equation P ∗ such that P ∗ does not provide a Diophantine
representation of any set S (i.e. has no solutions), but one cannot prove
this fact in T . Let the complexity of the simplest such equation P∗ in
our chosen theory T be c.

Now assume that S is any finite set such that the complexity of the
Diophantine equation P that is in fact the simplest one that provides
a Diophantine representation of S is greater than c. Then it is impos-
sible to determine, in the fixed theory T , what the complexity of the
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simplest such equation is. For, one should be able to prove in T both
that the equation P , that in fact is the simplest equation providing
a Diophantine representation of S, really represents S, and that no
equation simpler than P is such. But it is not possible to prove in T
that P ∗, which is simpler than P , is not such an equation (although,
actually it is not).

Note, moreover, that there are only finitely many finite sets that
have a Diophantine representation by an equation having complexity
less than c, and that the above phenomena hold for all other (“for
almost all”, as one often says instead of “all but finitely many”) finite
sets. That is:

Theorem 4. Corresponding to any axiomatization of number
theory there is a finite constant c, such that one cannot, in that formal
system, determine for any finite set S the minimal Diophantine equa-
tion that provides a Diophantine representation of S, if the complexity
of such equation is larger than c.

Discussion. As noted in the introduction, one can now readily see
that, the limiting constant obtained by my above setting is not in any
way dependent on any arbitrary coding, or Gödel numbering. More-
over, although it is relative to the fixed formal language, its relativity
is fairly modest, because I have used as my mean of representation Dio-
phantine equations whose form is, by definition, quite invariant. On
the other hand, it may still happen, as was the case with Chaitin’s the-
orem (see Raatikainen 1998), that theories with considerably different
strength have the same limiting constant. This, of course, makes it
impossible to use any such constants as a measure of the strength of
formalized theories.

4. On Classical and Intuitionistic Theories

The present approach reveals an interesting difference between clas-
sical and intuitionistic theories. Namely, the simple fact that, for any
natural number n, there exists a finite set S (in fact, infinitely many
sets) such that the simplest equation providing a Diophantine repre-
sentation of S is more complex than n, can easily be proved in most
classical theories of arithmetic, e.g. in PA (although not, understand-
ably, in Q or PRA); however, it follows from the above unprovability
result that it is impossible to prove this simple fact in any standard
intuitionistic theory; more exactly, in any theory having the property
of explicit definability for numbers (EDN). I shall exemplify this phe-
nomenon with Heyting Arithmetic HA.
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I abbreviate the relation “the minimal Diophantine equation rep-
resenting the set x has the complexity y” as “d(x) = y”. Also, I shall
write “d(x) > y” for “d(x) = z ∧ z > y”. These can readily be seen
to be Σ0

2 relations. The fact that I am interested in here has the form
∀x∃y(d(y) > x), and is hence a Π0

3 sentence. As one can prove it
in PA, one can also, by ∀E, prove ∃y(d(y) > n̄), for any n, in PA.
“∃y(d(y) > n̄)” is again a Σ0

2 sentence. I claim that this cannot, in
general (i.e. for all n), be proved in HA, or any standard intuitionistic
theory.

For assume that we could prove ∀x∃y(d(y) > x) in HA. Then we
could, by ∀E, prove ∃y(d(y) > n̄), even for some n larger than c (for
HA) in Theorem 4. But by the property EDN (i.e. HA ` ∃xA(x) ⇒
HA ` A(n̄), for some numeral n̄), we could then prove (d(m̄) > n̄), for
some numeral m̄. But this we have seen to be impossible, by Theorem
4. Hence we have shown:

Theorem 5. ∃y(d(y) > n̄) is provable, for any n, in PA, but not
in HA.

As noted above, the same unprovability phenomenon occurs in var-
ious other intuitionistic arithmetical theories. In fact, in their up-to-
date authoritative survey of intuitionism, Troelstra and van Dalen state
that all well-known intuitionistic formalisms containing arithmetic have
the property of explicit definability for numbers (Troelstra and van
Dalen 1988, vol. I, p. 139; cf. Vol II 10.5.3–5, Troelstra 1973, 1.11.2
(p. 91 ff.)). Accordingly, it is impossible to prove the above-mentioned
fact in any such theory.

Note, on the other hand, that PA is conservative over HA for all
Π0

2 sentences. Gödel (1933) established the conservativity for negative
arithmetic sentences (which are either atomic or in their build-up use
only the logical connectives →,∧, ∀), and Kreisel (1958) extended it
to Π0

2 sentences. Finally, Friedman (1978) gave a uniform method for
establishing the conservativeness of various classical theories over their
intuitionistic counterparts for Π0

2 sentences (cf. Leivant 1985, Troelstra
and van Dalen 1988).

Hence we have here a sentence with the minimal quantificational
complexity in terms of arithmetical hierarchy for which this is possi-
ble (i.e. Σ0

2) that is classically but not intuitionistically provable. Now
it is, of course, well known that classical theories are not conserva-
tive over their intuitionistic counterparts for the class of Σ0

2 sentences.
Nevertheless, we have here a concrete and, I think, natural arithmetic
fact, constructed not by using some arithmetized metamathematical
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concepts, self-reference and paradoxes,4 and not by using some strong,
e.g. impredicative, set existence principles, that is unprovable in all
well-known intuitionistic theories.

Note, on the other hand, that the limiting constant of a formalized
arithmetical theory is the same whether it uses intuitionistic or classical
logic. This is because its value is determined by certain unprovable Π0

1

sentence, which is, by the above conservativity property, common for
them. However, the truth of the infinitely many unprovable sentences
(e.g. “d(m̄) = n̄”, for any n > c) obtained here makes sense only in the
classical case.
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