Infinitary Combinatorics without the Axiom of Choice Consistency Strengths of Choiceless Failures of SCH

Arthur Apter and Peter Koepke

ICWAC Workshop, Bonn, 11th June 2009

Outline

(1) ICWAC

(2) $\neg \mathrm{SCH}$
(3) Parallel Prikry forcing
(4) The lower bound
(5) Further results and questions

Infinitary Combinatorics without the Axiom of Choice, Consistency Strengths of Choiceless Failures of SCH

The ICWAC Project

- Study strong combinatorial principles like Chang's Conjecture, Rowbottom Cardinals, $\neg \mathrm{SCH}, \ldots$ without assuming AC
- Consistency strengths go down without AC and become amenable to forcing and inner model arguments for relatively small large cardinals
- Equiconsistencies are possible in several cases
- (Also combinatorics under AD)
- Joint DFG-NWO project with Benedikt Löwe and Arthur Apter

Cardinals without AC

- $\kappa=\lambda^{+}$
$\leftrightarrow \forall \gamma<\kappa \exists f: \gamma \rightarrow \lambda$ injective
$\leftrightarrow(\mathrm{AC!}!) \exists F: \kappa \times \kappa \rightarrow \lambda \forall \gamma<\kappa F(*, \nu): \gamma \rightarrow \lambda$ injective
- Under AC, $\kappa=\lambda^{+}$is not Ramsey: define a partition $P: \kappa^{3} \rightarrow 2$ by $P(\alpha, \beta, \gamma)=1$ iff $F(\alpha, \gamma)<F(\beta, \gamma)$, for $\alpha<\beta<\gamma<\kappa$

Cardinals without AC

To get strong combinatorial properties at accessible cardinals

- arrange $\forall \gamma<\kappa \exists f: \gamma \rightarrow \lambda$ injective without $\exists F: \kappa \times \kappa \rightarrow \lambda \forall \gamma<\kappa F(*, \nu): \gamma \rightarrow \lambda$ injective
- use symmetric submodels N of forcing extensions
- make N a limit of models $M_{i} \vDash$ ZFC:

$$
N \cap \mathcal{P}(\mathrm{Ord})=\bigcup_{i}\left(M_{i} \cap \mathcal{P}(\mathrm{Ord})\right)
$$

- let every M_{i} be a "small" forcing extension of the ground model V

Example: Chang's Conjecture

- Let $\kappa \rightarrow\left(\omega_{2}\right)_{2}^{<\omega}$
- Levy collapse κ to $\omega_{3}: V[G] \vDash \kappa=\omega_{3}$
- Let N be a submodel of $V[G]$ spanned by $V[G \upharpoonright i]$ for $i<\kappa$
- $N \cap \mathcal{P}($ Ord $)=\bigcup_{i}(V[G \upharpoonright i] \cap \mathcal{P}($ Ord $))$
- $V[G \upharpoonright i]$ is a small forcing extension relative to κ
- $V[G \upharpoonright i] \vDash \kappa \rightarrow\left(\omega_{2}\right)_{2}^{<\omega}$
- $N \vDash \kappa \rightarrow\left(\omega_{2}\right)_{2}^{<\omega}$
- $N \vDash$ Chang's Conjecture for $\left(\omega_{3}, \omega_{2}\right)$
- Chang's Conjecture for $\left(\omega_{3}, \omega_{2}\right)$ is equiconsistent with $\exists \kappa \kappa \rightarrow\left(\omega_{2}\right)_{2}^{<\omega}$

Outline

(1) ICWAC

(2) $\neg \mathrm{SCH}$

(3) Parallel Prikry forcing
(4) The lower bound
(5) Further results and questions

Infinitary Combinatorics without the Axiom of Choice, Consistency Strengths of Choiceless Failures of SCH

Choiceless Failures of SCH

Theorem

For a fixed $\alpha \geq 2$, the following theories are equiconsistent:

$$
Z F C+\exists \kappa[\kappa \text { is measurable }]
$$

and

$$
Z F+\neg A C+G C H \text { holds below } \aleph_{\omega}+
$$

There is a surjective $f:\left[\aleph_{\omega}\right]^{\omega} \rightarrow \aleph_{\omega+\alpha}$.

Choiceless Failures of SCH

Theorem

For a fixed $n<\omega, n \geq 1$, the following theories are equiconsistent:

$$
\begin{gathered}
Z F C+\exists \kappa[(\operatorname{cof}(\kappa)=\omega) \\
\left.\wedge(\forall i<\omega)(\forall \lambda<\kappa)(\exists \delta<\kappa)\left[(\delta>\lambda) \wedge\left(o(\delta) \geq \delta^{+i}\right)\right]\right]
\end{gathered}
$$

and

$$
Z F+\neg A C+G C H \text { holds below } \aleph_{\omega}+
$$

There is an injective $f: \aleph_{\omega_{n}} \rightarrow\left[\aleph_{\omega}\right]^{\omega}$.

Outline

(1) ICWAC

(3) Parallel Prikry forcing

4 The lower bound
(5) Further results and questions

Parallel Prikry forcing

Fix a normal measure \mathcal{U} on κ and a set $Z \subseteq$ Ord.
$p=\left(s_{\alpha}, A_{\alpha}\right)_{\alpha \in Z}$ is a condition in \mathbb{P} iff
(1) $\forall \alpha \in Z\left[\left(s_{\alpha} \in[\kappa]^{<\omega}\right) \wedge\left(A_{\alpha} \in \mathcal{U}\right) \wedge\left(\max \left(s_{\alpha}\right)<\min \left(A_{\alpha}\right)\right)\right]$
(2) $\operatorname{dom}(p):=\left\{\alpha \in Z \mid A_{\alpha} \neq \kappa\right\}$ is finite.

Write $\left(s_{\alpha}, A_{\alpha}\right)$ instead of $\left(s_{\alpha}, A_{\alpha}\right)_{\alpha \in Z}$.

The partial order on \mathbb{P}

Conditions $p^{\prime}=\left(s_{\alpha}^{\prime}, A_{\alpha}^{\prime}\right)$ and $p=\left(s_{\alpha}, A_{\alpha}\right)$ in \mathbb{P} are partially ordered by $p^{\prime} \leq p$ iff there is an integer $n<\omega$ such that
(1) $\forall \alpha \in \operatorname{dom}(p)\left[\left(\operatorname{otp}\left(s_{\alpha}^{\prime} \backslash s_{\alpha}\right)=n\right) \wedge\left(s_{\alpha}^{\prime} \backslash s_{\alpha} \subseteq A_{\alpha}\right)\right]$.
(2) $(\forall \alpha, \beta \in \operatorname{dom}(p))\left(\forall \xi \in s_{\alpha}^{\prime} \backslash s_{\alpha}\right)\left(\forall \zeta \in s_{\beta}\right)[\xi>\zeta]$.
(3) $(\forall \alpha<\beta \in \operatorname{dom}(p))(\forall i<n)\left[\left(s_{\alpha}^{\prime} \backslash s_{\alpha}\right)[i]<\left(s_{\beta}^{\prime} \backslash s_{\beta}\right)[i]\right](s[i]$ is the i-th element of the monotone enumeration of the set s)
(9) $(\forall \alpha, \beta \in \operatorname{dom}(p))(\forall i<n)\left[(i+1<n) \Longrightarrow\left(\left(s_{\alpha}^{\prime} \backslash s_{\alpha}\right)[i]<\right.\right.$ $\left.\left.\left(s_{\beta}^{\prime} \backslash s_{\beta}\right)[i+1]\right)\right]$.
(3) $\forall \alpha \in \operatorname{dom}(p)\left[A_{\alpha}^{\prime} \subseteq A_{\alpha}\right]$.

The partial order on \mathbb{P}

(1) The stems s_{α} are extended into the corresponding reservoir sets A_{α} in a systematic fashion.
(2) The extension points are chosen greater than all of the previous stem points.
(3) There are the same number of new points at all indices in $\operatorname{dom}(p)$, and these are chosen in layers which are strictly ascending.
(1) Reservoirs may be thinned out, and new stems outside the old domain may be grown.

Properties of \mathbb{P}

Let G be \mathbb{P}-generic over $V . G$ adjoins a system $\left(C_{\alpha} \mid \alpha \in Z\right)$

$$
C_{\alpha}=\bigcup\left\{s_{\alpha} \mid\left(s_{\beta}, A_{\beta}\right)_{\beta \in Z} \in G\right\} .
$$

Lemma

a) Let $\gamma \in Z$. Then C_{γ} is a Prikry sequence for \mathcal{U}, i.e.,

$$
\forall X \in \wp(\kappa) \cap V\left[(X \in \mathcal{U}) \Longleftrightarrow\left(C_{\gamma} \backslash X \text { is finite }\right)\right] .
$$

b) Let $\gamma, \delta \in Z, \gamma<\delta$. Then $C_{\gamma} \cap C_{\delta}$ is finite, and $C_{\gamma} \Delta C_{\delta}$ is infinite.

Properties of \mathbb{P}

Lemma

(\mathbb{P}, \leq) satisfies the κ^{+}-chain condition.

The symmetric extension

Define

$$
N=\operatorname{HOD}^{V[G]}\left(\bigcup_{\alpha \in Z} \tilde{C}_{\alpha} \cup\left\{\left(\tilde{C}_{\alpha} \mid \alpha \in Z\right)\right\}\right)
$$

where $\tilde{C}_{\alpha}=\left\{C \in \wp(\kappa) \mid C \Delta C_{\alpha}\right.$ is finite $\} . N$ is the class of sets which are hereditarily definable in the generic extension from finitely many parameters from the class
$\operatorname{Ord} \cup\left\{C_{\alpha} \mid \alpha \in Z\right\} \cup\left\{\left(\tilde{C}_{\alpha} \mid \alpha \in Z\right)\right\}$.

The powerset of κ is large

Lemma

In N, there is a surjection $f:[\kappa]^{\omega} \rightarrow Z$.

Proof.

Define f using the parameter ($\tilde{C}_{\alpha} \mid \alpha \in Z$) by

$$
X \mapsto\left\{\begin{array}{l}
\text { The unique } \alpha \in Z \text { such that } X \in \tilde{C}_{\alpha}, \text { if that exists, } \\
0, \text { otherwise. }
\end{array}\right.
$$

Finite support approximations

Lemma

Let G be $\mathbb{P}_{Z \text {-generic }}$ for V, where $\operatorname{card}(Z)<\omega$. Then $V[G]$ is an extension of V by Prikry forcing \mathbb{P}_{1}. Therefore, by the properties of standard Prikry forcing, $V[G]$ has the same bounded subsets as V.

Lemma

Let G be \mathbb{P}-generic, with $C_{\alpha}=\left(\dot{C}_{\alpha}\right)^{G}$ for $\alpha \in Z$ and $D=\dot{D}^{G}$. Let $X \in V[G]$ be defined by

$$
X=\left\{\zeta \in \operatorname{Ord} \mid V[G] \vDash \varphi\left(\zeta, \vec{\xi}, C_{\alpha_{0}}, \ldots, C_{\alpha_{n-1}}, D\right)\right\}
$$

where $\alpha_{0}, \ldots, \alpha_{n-1} \in Z$. Then $X \in V\left[G \upharpoonright\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}\right]$.

We may assume that $V \vDash \mathrm{GCH}$.
Define $(\mathbb{P}, \leq)=\left(\mathbb{P}_{Z}, \leq\right)$ with $Z=\kappa^{+\beta}$. Let $V[G]$ be a generic extension of V by \mathbb{P} with Prikry sequences $\left(C_{\alpha}\right)_{\alpha<\kappa^{+\beta}}$.
Let

$$
N=\operatorname{HOD}^{V[G]}\left(\left\{C_{\alpha} \mid \alpha<\kappa^{+\beta}\right\} \cup\left\{\left(\tilde{C}_{\alpha} \mid \alpha<\kappa^{+\beta}\right)\right\}\right)
$$

Every set of ordinals in N is of the form

$$
X=\left\{\zeta \in \operatorname{Ord} \mid V[G] \vDash \varphi\left(\zeta, \vec{\xi}, C_{\alpha_{0}}, \ldots, C_{\alpha_{n-1}},\left(\tilde{C}_{\alpha} \mid \alpha<\kappa^{+\beta}\right)\right)\right\}
$$

Then

$$
X \in V\left[G \upharpoonright\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}\right] .
$$

Finite support parallel Prikry forcing does not add bounded subsets of κ. So κ is a singular cardinal in N, and $N \vDash$ " GCH holds below κ ".
There is a surjection $f:[\kappa]^{\omega} \rightarrow\left(\kappa^{+\beta}\right)^{V}$ in N.
By the $\kappa^{+}-\mathrm{cc},\left(\kappa^{+\beta}\right)^{V}=\left(\kappa^{+\beta}\right)^{N}$. So f yields a choiceless, surjective failure of SCH .

Collapsing to \aleph_{ω}

Let $\kappa_{0}, \kappa_{1}, \ldots$ be a Prikry sequence in N for the cardinal κ. Extend N generically by collapsing each κ_{n+1} to κ_{n}^{++}. Then κ becomes \aleph_{ω} without destroying GCH below κ. So SCH can fail at \aleph_{ω}.

Outline

(2) $\neg \mathrm{SCH}$
(3) Parallel Prikry forcing
(4) The lower bound
(5) Further results and questions

Infinitary Combinatorics without the Axiom of Choice, Consistency Strengths of Choiceless Failures of SCH

The lower bound

Theorem

Assume that SCH fails in a surjective way in a model V of $Z F$. Then there is an inner model of ZFC with a measurable cardinal.

Using the Dodd-Jensen Core Model K

Let κ be a singular cardinal such that $(\forall \nu<\kappa)\left[2^{\nu}<\kappa\right]$, and let $f:[\kappa]^{\operatorname{cof}(\kappa)} \rightarrow \kappa^{++}$be a surjection. Let $\lambda=\operatorname{cof}(\kappa)+\aleph_{2}$. Assume that there were no inner model of ZFC with a measurable cardinal. For $Y \subseteq$ Ord, take $g_{Y}: \operatorname{otp}(Y) \leftrightarrow Y$ to be the uniquely defined order preserving map.
Consider $X \in[\kappa]^{\operatorname{cof}(\kappa)}$. By the Dodd-Jensen covering theorem (in $\operatorname{HOD}[X])$, there is $Y \in K, X \subseteq Y \subseteq \kappa$, otp $(Y)<\lambda$. Let $Z=g_{Y}^{-1}[X] \in \wp(\lambda)$. Then

$$
X=g_{Y}[Z] \text { for some } Y \in \wp(\kappa) \cap K \text { and } Z \in \wp(\lambda) \text {. }
$$

Since GCH holds in K, take a surjective $k: \kappa^{+} \rightarrow \wp(\kappa) \cap K$. Since $2^{\lambda}<\kappa$, take a surjective $h: \kappa \rightarrow \wp(\lambda)$. By (4), the map

$$
(\gamma, \eta) \mapsto f\left(g_{k(\gamma)}[h(\eta)]\right)
$$

is a surjection from $\kappa^{+} \times \kappa$ onto κ^{++}.

Outline

(1) ICWAC
(2) $\neg \mathrm{SCH}$
(3) Parallel Prikry forcing

4 The lower bound
(5) Further results and questions

Injective failures

Theorem

The following theories are equiconsistent:

$$
Z F C+\exists \kappa\left[o(\kappa)=\kappa^{++}+\omega_{2}\right]
$$

and

$$
Z F+\neg A C+G C H \text { holds below } \aleph_{\omega_{2}}
$$

$$
+ \text { There is an injective } f: \aleph_{\omega_{2}+2} \rightarrow\left[\aleph_{\omega_{2}}\right]^{\omega_{2}}
$$

Injective failures

Theorem

a) If the theory

$$
Z F C+\exists \kappa\left[o(\kappa)=\kappa^{++}+\omega_{1}\right]
$$

is consistent, then so is the theory
$Z F+\neg A C+G C H$ below $\aleph_{\omega_{1}}+$ there is injective $f: \aleph_{\omega_{1}+2} \rightarrow\left[\aleph_{\omega_{1}}\right]^{\omega_{1}}$.
b) If the theory

ZF $+\neg A C+G C H$ below $\aleph_{\omega_{1}}+$ there is injective $f: \aleph_{\omega_{1}+2} \rightarrow\left[\aleph_{\omega_{1}}\right]^{\omega_{1}}$ is consistent, then so is the theory

$$
Z F C+\exists \kappa\left[o(\kappa)=\kappa^{++}\right] .
$$

Questions

- Can one achieve equiconsistencies in all cases?
- Can one lift the equiconsistency for the surjective failure to uncountable cofinalities?

