Infinitary Combinatorics without the Axiom of Choice **Consistency Strengths of Choiceless Failures of SCH**

Arthur Apter and Peter Koepke

ICWAC Workshop, Bonn, 11th June 2009

3 Parallel Prikry forcing

- 4 The lower bound
- 5 Further results and questions

The ICWAC Project

- Study strong combinatorial principles like Chang's Conjecture, Rowbottom Cardinals, \neg SCH, ... without assuming AC
- Consistency strengths go down without AC and become amenable to forcing and inner model arguments for relatively small large cardinals
- Equiconsistencies are possible in several cases
- (Also combinatorics under AD)
- Joint DFG-NWO project with Benedikt Löwe and Arthur Apter

Cardinals without AC

•
$$\kappa = \lambda^+$$

 $\leftrightarrow \forall \gamma < \kappa \exists f : \gamma \to \lambda \text{ injective}$
 $\leftrightarrow (AC!!) \exists F : \kappa \times \kappa \to \lambda \forall \gamma < \kappa F(*, \nu) : \gamma \to \lambda \text{ injective}$

• Under AC,
$$\kappa = \lambda^+$$
 is not Ramsey:
define a partition $P : \kappa^3 \to 2$ by $P(\alpha, \beta, \gamma) = 1$ iff
 $F(\alpha, \gamma) < F(\beta, \gamma)$, for $\alpha < \beta < \gamma < \kappa$

Infinitary Combinatorics without the Axiom of Choice, Consistency Strengths of Choiceless Failures of SCH

Cardinals without AC

To get strong combinatorial properties at accessible cardinals

- arrange $\forall \gamma < \kappa \ \exists f : \gamma \to \lambda$ injective without $\exists F : \kappa \times \kappa \to \lambda \ \forall \gamma < \kappa \ F(*, \nu) : \gamma \to \lambda$ injective
- use symmetric submodels N of forcing extensions
- make N a limit of models $M_i \models \text{ZFC}$: $N \cap \mathcal{P}(\text{Ord}) = \bigcup_i (M_i \cap \mathcal{P}(\text{Ord}))$
- let every M_i be a "small" forcing extension of the ground model V

Infinitary Combinatorics without the Axiom of Choice, Consistency Strengths of Choiceless Failures of SCH

Example: Chang's Conjecture

- Let $\kappa \to (\omega_2)_2^{<\omega}$
- Levy collapse κ to ω_3 : $V[G] \vDash \kappa = \omega_3$
- Let N be a submodel of V[G] spanned by $V[G \upharpoonright i]$ for $i < \kappa$
- $N \cap \mathcal{P}(\text{Ord}) = \bigcup_i (V[G \upharpoonright i] \cap \mathcal{P}(\text{Ord}))$
- $V[G \upharpoonright i]$ is a small forcing extension relative to κ
- $V[G \upharpoonright i] \vDash \kappa \to (\omega_2)_2^{<\omega}$
- $N \vDash \kappa \to (\omega_2)_2^{<\omega}$
- $N \vDash$ Chang's Conjecture for (ω_3, ω_2)
- Chang's Conjecture for (ω_3, ω_2) is equiconsistent with $\exists \kappa \ \kappa \to (\omega_2)_2^{<\omega}$

3 Parallel Prikry forcing

- 4 The lower bound
- 5 Further results and questions

ICWAC

Choiceless Failures of SCH

Theorem

For a fixed $\alpha \geq 2$, the following theories are equiconsistent:

 $ZFC + \exists \kappa [\kappa \text{ is measurable}]$

and

 $ZF + \neg AC + GCH$ holds below $\aleph_{\omega} +$

There is a surjective $f : [\aleph_{\omega}]^{\omega} \to \aleph_{\omega+\alpha}$.

Choiceless Failures of SCH

Theorem

For a fixed $n < \omega$, $n \ge 1$, the following theories are equiconsistent: $ZFC + \exists \kappa [(cof(\kappa) = \omega)$ $\land (\forall i < \omega)(\forall \lambda < \kappa)(\exists \delta < \kappa)[(\delta > \lambda) \land (o(\delta) \ge \delta^{+i})]]$ and $ZF + \neg AC + GCH \text{ holds below } \aleph_{\omega} +$ There is an injective $f : \aleph_{\omega_n} \rightarrow [\aleph_{\omega}]^{\omega}$.

- 4 The lower bound
- 5 Further results and questions

Parallel Prikry forcing

Fix a normal measure \mathcal{U} on κ and a set $Z \subseteq \text{Ord.}$ $p = (s_{\alpha}, A_{\alpha})_{\alpha \in Z}$ is a condition in \mathbb{P} iff

2 dom(
$$p$$
) := { $\alpha \in Z \mid A_{\alpha} \neq \kappa$ } is finite.

Write (s_{α}, A_{α}) instead of $(s_{\alpha}, A_{\alpha})_{\alpha \in Z}$.

ICWAC

The partial order on $\ensuremath{\mathbb{P}}$

Conditions $p' = (s'_{\alpha}, A'_{\alpha})$ and $p = (s_{\alpha}, A_{\alpha})$ in \mathbb{P} are partially ordered by $p' \leq p$ iff there is an integer $n < \omega$ such that

- $(\forall \alpha, \beta \in \operatorname{dom}(p))(\forall \xi \in s'_{\alpha} \setminus s_{\alpha})(\forall \zeta \in s_{\beta})[\xi > \zeta].$
- (∀α < β ∈ dom(p))(∀i < n)[(s'_α \ s_α)[i] < (s'_β \ s_β)[i]] (s[i] is the *i*-th element of the monotone enumeration of the set s)
- $\begin{array}{l} \textcircled{0} \quad (\forall \alpha, \beta \in \operatorname{dom}(p))(\forall i < n)[(i+1 < n) \implies ((s'_{\alpha} \setminus s_{\alpha})[i] < \\ (s'_{\beta} \setminus s_{\beta})[i+1])]. \end{array}$

The partial order on $\ensuremath{\mathbb{P}}$

- The stems s_α are extended into the corresponding reservoir sets A_α in a systematic fashion.
- The extension points are chosen greater than all of the previous stem points.
- There are the same number of new points at all indices in dom(p), and these are chosen in layers which are strictly ascending.
- Reservoirs may be thinned out, and new stems outside the old domain may be grown.

Properties of \mathbb{P}

Let G be \mathbb{P} -generic over V. G adjoins a system ($C_{\alpha} \mid \alpha \in Z$)

$$C_{\alpha} = \bigcup \{ s_{\alpha} \mid (s_{\beta}, A_{\beta})_{\beta \in Z} \in G \}.$$

Lemma

a) Let $\gamma \in Z$. Then C_{γ} is a Prikry sequence for \mathcal{U} , i.e.,

 $\forall X \in \wp(\kappa) \cap V[(X \in \mathcal{U}) \iff (C_{\gamma} \setminus X \text{ is finite})].$

b) Let $\gamma, \delta \in Z$, $\gamma < \delta$. Then $C_{\gamma} \cap C_{\delta}$ is finite, and $C_{\gamma} \Delta C_{\delta}$ is infinite.

Lemma

 (\mathbb{P}, \leq) satisfies the κ^+ -chain condition.

Infinitary Combinatorics without the Axiom of Choice, Consistency Strengths of Choiceless Failures of SCH

The symmetric extension

Define

$$N = \mathrm{HOD}^{V[G]}(\bigcup_{\alpha \in Z} \tilde{C}_{\alpha} \cup \{(\tilde{C}_{\alpha} \mid \alpha \in Z)\}),\$$

where $\tilde{C}_{\alpha} = \{C \in \wp(\kappa) \mid C\Delta C_{\alpha} \text{ is finite}\}$. *N* is the class of sets which are hereditarily definable in the generic extension from finitely many parameters from the class $\operatorname{Ord} \cup \{C_{\alpha} \mid \alpha \in Z\} \cup \{(\tilde{C}_{\alpha} \mid \alpha \in Z)\}.$

The powerset of κ is large

Lemma

In N, there is a surjection $f : [\kappa]^{\omega} \to Z$.

Proof.

Define f using the parameter ($\tilde{C}_{\alpha} \mid \alpha \in Z$) by

 $X \mapsto \left\{ egin{array}{l} \mbox{The unique } lpha \in Z \mbox{ such that } X \in ilde{C}_{lpha}, \mbox{ if that exists,} \\ 0, \mbox{ otherwise.} \end{array}
ight.$

Finite support approximations

Lemma

Let G be \mathbb{P}_Z -generic for V, where $\operatorname{card}(Z) < \omega$. Then V[G] is an extension of V by Prikry forcing \mathbb{P}_1 . Therefore, by the properties of standard Prikry forcing, V[G] has the same bounded subsets as V.

ICWAC

Lemma

Let G be \mathbb{P} -generic, with $C_{\alpha} = (\dot{C}_{\alpha})^{G}$ for $\alpha \in Z$ and $D = \dot{D}^{G}$. Let $X \in V[G]$ be defined by

$$X = \{ \zeta \in \text{Ord} \mid V[G] \vDash \varphi(\zeta, \vec{\xi}, C_{\alpha_0}, \dots, C_{\alpha_{n-1}}, D) \}$$

where $\alpha_0, \ldots, \alpha_{n-1} \in Z$. Then $X \in V[G \upharpoonright \{\alpha_0, \ldots, \alpha_{n-1}\}]$.

We may assume that $V \models \text{GCH}$. Define $(\mathbb{P}, \leq) = (\mathbb{P}_Z, \leq)$ with $Z = \kappa^{+\beta}$. Let V[G] be a generic extension of V by \mathbb{P} with Prikry sequences $(C_\alpha)_{\alpha < \kappa^{+\beta}}$. Let

$$N = \mathrm{HOD}^{V[G]}(\{C_{\alpha} \mid \alpha < \kappa^{+\beta}\} \cup \{(\tilde{C}_{\alpha} \mid \alpha < \kappa^{+\beta})\}).$$

Every set of ordinals in N is of the form

$$X = \{\zeta \in \text{Ord} \mid V[G] \vDash \varphi(\zeta, \vec{\xi}, C_{\alpha_0}, \dots, C_{\alpha_{n-1}}, (\tilde{C}_{\alpha} \mid \alpha < \kappa^{+\beta}))\}$$

Then

$$X \in V[G \upharpoonright \{\alpha_0, \ldots, \alpha_{n-1}\}].$$

Finite support parallel Prikry forcing does not add bounded subsets of κ . So κ is a singular cardinal in N, and $N \vDash$ "GCH holds below κ ".

There is a surjection $f : [\kappa]^{\omega} \to (\kappa^{+\beta})^{V}$ in N. By the κ^{+} -cc, $(\kappa^{+\beta})^{V} = (\kappa^{+\beta})^{N}$. So f yields a choiceless, surjective failure of SCH.

Let $\kappa_0, \kappa_1, \ldots$ be a Prikry sequence in N for the cardinal κ . Extend N generically by collapsing each κ_{n+1} to κ_n^{++} . Then κ becomes \aleph_{ω} without destroying GCH below κ . So SCH can fail at \aleph_{ω} .

5 Further results and questions

The lower bound

Theorem

Assume that SCH fails in a surjective way in a model V of ZF. Then there is an inner model of ZFC with a measurable cardinal.

Infinitary Combinatorics without the Axiom of Choice, Consistency Strengths of Choiceless Failures of SCH

Using the Dodd-Jensen Core Model K

Let κ be a singular cardinal such that $(\forall \nu < \kappa)[2^{\nu} < \kappa]$, and let $f : [\kappa]^{\operatorname{cof}(\kappa)} \to \kappa^{++}$ be a surjection. Let $\lambda = \operatorname{cof}(\kappa) + \aleph_2$. Assume that there were no inner model of ZFC with a measurable cardinal. For $Y \subseteq \operatorname{Ord}$, take $g_Y : \operatorname{otp}(Y) \leftrightarrow Y$ to be the uniquely defined order preserving map.

Consider $X \in [\kappa]^{\operatorname{cof}(\kappa)}$. By the Dodd-Jensen covering theorem (in $\operatorname{HOD}[X]$), there is $Y \in K$, $X \subseteq Y \subseteq \kappa$, $\operatorname{otp}(Y) < \lambda$. Let $Z = g_Y^{-1}[X] \in \wp(\lambda)$. Then

 $X = g_Y[Z]$ for some $Y \in \wp(\kappa) \cap K$ and $Z \in \wp(\lambda)$.

Since GCH holds in K, take a surjective $k : \kappa^+ \to \wp(\kappa) \cap K$. Since $2^{\lambda} < \kappa$, take a surjective $h : \kappa \to \wp(\lambda)$. By (4), the map

 $(\gamma,\eta)\mapsto f(g_{k(\gamma)}[h(\eta)])$

is a surjection from $\kappa^+ \times \kappa$ onto κ^{++} .

3 Parallel Prikry forcing

- 4 The lower bound
- **5** Further results and questions

Injective failures

Theorem

The following theories are equiconsistent:

$$ZFC + \exists \kappa [o(\kappa) = \kappa^{++} + \omega_2]$$

and

$$ZF + \neg AC + GCH \text{ holds below } \aleph_{\omega_2}$$
$$+ \text{ There is an injective } f : \aleph_{\omega_2+2} \rightarrow [\aleph_{\omega_2}]^{\omega}$$

Injective failures

Theorem

If the theory a)

$$ZFC + \exists \kappa [o(\kappa) = \kappa^{++} + \omega_1]$$

is consistent, then so is the theory

 $ZF + \neg AC + GCH$ below $\aleph_{\omega_1} +$ there is injective $f : \aleph_{\omega_1+2} \rightarrow [\aleph_{\omega_1}]^{\omega_1}$.

If the theory b)

 $ZF + \neg AC + GCH$ below $\aleph_{\omega_1} + \text{ there is injective } f : \aleph_{\omega_1+2} \rightarrow [\aleph_{\omega_1}]^{\omega_1}$

is consistent, then so is the theory

$$ZFC + \exists \kappa [o(\kappa) = \kappa^{++}].$$

- Can one achieve equiconsistencies in all cases?
- Can one lift the equiconsistency for the surjective failure to uncountable cofinalities?

Infinitary Combinatorics without the Axiom of Choice, Consistency Strengths of Choiceless Failures of SCH