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Abstract

Firstly, I propose a notion of (ω1, β)-morass for the case that ω1 ≤ β.
Secondly, I define κ-standard morasses such that every ω1+β-standard
morass is an (ω1, β)-morass. Thirdly, I justify these notions by proving:
If there is a κ-standard morass, then there is an Lκ[X] with CardLκ[X] =
Card ∩ κ for which the fine structure theory and condensation hold.

1 Introduction

In set theory, structures are often obtained by first recursively constructing
small structures and then taking a direct limit to get a bigger one. Usually a
chain of structures of size < κ is constructed by induction along a cardinal κ. In
this way, a direct limit of size κ can be obtained. Morasses are index sets along
which structures of size < ωα can be constructed by induction in such a way
that the limit has size ωα+β . The appropriate morass for such a construction is
called an (ωα, β)-morass.
Morasses were invented by R. Jensen in the early 1970s. He used them to
prove the model-theoretic cardinal transfer theorems (see [ChKe]) in Gödel’s
constructible universe L. If κ, λ are infinite cardinals, a structure A is said to
have type (κ, λ) if A = 〈A,XA, . . .〉 where card(A) = κ and card(XA) = λ.
The simplest cardinal transfer theorem states that if A is a structure of type
(κ+, κ) then there exists a structure B of the same language of type (ω1, ω)
which is elementary equivalent to A. This is proved by the construction of an
elementary chain that has B as its direct limit. Using morasses, Jensen obtains
in L statements of this type for bigger gaps between κ and λ.
The most general cardinal transfer theorem is shown in a hand-written set of
notes [Jen]. Here, he defines the notion of (κ, β)-morasses for β < κ, κ regular.
How an (ω1, 1)-morass is used to prove the gap-2 cardinal transfer theorem may
be found in [Dev]. The theory of morasses is very far developed and very well
examined. In particular it is known how to construct morasses in L (see [Dev],
[Fri], [Jen]) and how to force them ([Sta1], [Sta2]). Moreover, D. Velleman has
defined so-called simplified morasses, along which morass constructions can be
carried out very easily compared to classical morasses ([Vel1], [Vel2], [Vel4]).
They are equivalent to usual morasses ([Don], [Mor]). Besides the cardinal
transfer theorems, there are many combinatorial applications of morasses. One
is for example the construction of κ++-super-Suslin trees by S. Shelah and L.
Stanley [ShSt1]. Other applications need strengthenings of morasses, like sim-
plified morasses with linear limits [Vel4].
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For the case κ ≤ β, (κ, β)-morasses have never been defined. I want to pro-
pose a notion of (ω1, β)-morass for this case. In addition, I will define κ-
standard morasses such that every ω1+β-standard morass is an (ω1, β)-morass.
I will prove that if there is a κ-standard morass, then there is an Lκ[X] with
CardLκ[X] = Card ∩ κ for which the fine structure theory and condensation
hold. In a forthcoming paper [Irr2], I show that if there is an Lκ[X] with
CardLκ[X] = Card ∩ κ for which the fine structure theory and condensation
hold, then there is a κ-standard morass. On the one hand, this justifies my def-
initions. On the other hand, it shows that the definition of κ-standard morass
is best possible in the sense that it completely captures the combinatorics of
an Lκ[X] with CardLκ[X] = Card ∩ κ, fine structure theory and condensation.
Moreover, I conjecture that the existence of an ω1+β-standard morass is actually
equivalent to the existence of an (ω1, β)-morass.
One notion that is related to my definitions of (ω1, β)-morass for ω1 ≤ β and
κ-standard morass is the premorass that was studied by Jensen in the context
of his proofs of global square. In [DJS], H.-D. Donder, R. Jensen and L. Stanley
derive from the existence of an appropriate premorass that global square and
the combinatorial principle squared scales holds. But they derive global square
and squared scales directly from the premorass they construct in L without ex-
plicitly axiomatizing the notion of premorass. A similiar approach is followed in
[BJW] to provide the necessary combinatorics for the proof of Jensen’s coding
theorem. Squared scales was formulated by Avraham and Shelah for their work
on strong covering (see [She], chapter VIII]). A strengthening of squared scales,
which is also proved by the same approach [ShSt2], was used in [ShSt3] by S.
Shelah and L. Stanley to give a combinatorial proof of Jensen’s coding theorem.

Another related notion is that of a smooth category which was introduced by
R. Jensen and M. Zeman to prove global square in the core model for measures
of order 0 [JeZe]. Similiar systems were studied (again without giving an axio-
matic account) in [SchZe1] and [ScheZe2] by E. Schimmerling and M. Zeman to
prove that Jensen extender models satisfy the Gap 1 Morass principle and 2κ

for all κ that are not subcompact.
It is a natural question to ask in which inner models (ω1, β)-morasses and κ-
standard morasses exist. By the usual argument that ω1-Erdös cardinals do not
exist in L (see e.g. theorem V 1.8 of [Dev]), it is easy to see that an inner model
M with an ω1-Erdös cardinal cannot be of the form M = L[X] such that L[X]
satisfies condensation. But that does not mean, that it is impossible that inner
models with ω1-Erdös cardinals (or even larger cardinals) contain κ-standard
morasses.
This is a part of my dissertation [Irr1]. I thank Dieter Donder for being my
adviser, Hugh Woodin for an invitation to Berkeley, where part of the work was
done, and the DFG-Graduiertenkolleg “Sprache, Information, Logik” in Munich
for their support.

2 (ω1, β)-Morasses

Let me briefly recall how an object of size ω2 is constructed from countable
objects in Gödel’s constructible universe L. That is, let me briefly describe how
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a construction along an (ω1, 1)-morass works. Let an ordinal ν be called ω2-like,
if Lν |= there exists exactly one uncountable cardinal. Let S0 = {α ∈ Lim |
Lν |= (α = ω1) for some ω2-like ordinal ν}. Then there are different kinds of ω2-
like ordinals, namely for every α ∈ S0 there is the set Sα = {ν | ν is ω-like and
Lν |= α = ω1} of those which believe that α = ω1. Now, a morass construction
proceeds as follows: On the one hand, one constructs for every α ∈ S0 ∩ ω1 by
induction over ν ∈ Sα a countable chain 〈Aν | ν ∈ Sα〉 of countable structures
Aν . On the other hand, one constructs by induction over α ∈ S0 a system of
embeddings between these chains. As direct limit of this system of embeddings,
one obtains a chain 〈Aν | ν ∈ Sω1〉 of length ω2 of structures Aν of size ≤ ω1.
Finally, the structure A of size ω2 that one wants to construct is obtained as
the direct limit of this chain.
The approach is generalized by Jensen to all β < ω1. Let an ordinal ν be
ω1+β-like, if the set {α | Lν |= α is an uncountable cardinal} ∪ {ν} has order-
type β + 1. The basic construction is first carried out for countable structures
Aν and all ω1+β-like ordinals ν with ν < ω1, and then directed systems of
embeddings are used to blow it up to ω1+β . This motivates his definition of
(ωα, β)-morasses. They describe axiomatically the properties of the ω1+β-like
ordinals which enable such constructions. This short introduction to morasses
explains already why Jensen never introduced (ωα, β)-morasses for the case
ω1 ≤ β, namely because then there are no ω1+β-like ordinals below ω1.
To explain how I circumvent this problem, let me first introduce the notation
f : ν̄ ⇒ ν from Jensen’s approach. As explained, he considers the sets Sα =
{ν | Lν |= α is the largest cardinal}. Let αν be the largest cardinal of Lν .
Then he constructs, on the one hand, by induction over the ordinals in the sets
Sα chains 〈Aν | ν ∈ Sα〉 of structures Aν . On the other hand, he considers
maps f which map under certain conditions Sαν̄ ∩ ν̄ into Sαν ∩ ν in such a
way, that f can be extended to an embedding from 〈Aτ | τ ∈ Sαν̄ ∩ ν̄〉 into
〈Aτ | τ ∈ Sαν ∩ ν〉. For such a map he uses the notation f : ν̄ ⇒ ν. The
possibility to extend the maps to uniform constructions is guaranteed by the
so-called logical preservation axiom (see axiom LP1 below). If f : ν̄ ⇒ ν, then
in Jensen’s case ν̄ and ν are of the same type, that is, if ν̄ is ωη-like, then ν is
also ωη-like. In my case, they can have different types, i.e. if ν̄ is ωη-like, then
ν can be ωγ-like for some γ ≥ η. This is done in such a way that in the limit a
construction along the ω1+β-like cardinals takes place.
As consequence, also the chains 〈Aτ | τ ∈ Sαν̄ ∩ ν̄〉 and 〈Aτ | τ ∈ Sαν ∩ ν〉 of
ordinals τ of different types will have to fit together. The idea is to take care of
this in the recursive definition of the chains. However, this makes it necessary
to introduce a second logical preservation axiom which guarantees that if ν̄ and
ν are of different types and f : ν̄ ⇒ ν is cofinal, then f can be extended to
an embedding from 〈Aτ | τ ∈ Sαν̄ ∩ ν̄〉 into 〈Aτ | τ ∈ Sαν ∩ ν〉. The second
logical preservation axiom (see LP2 below) is inspired by and closely related
to the construction of 2-sequences. Unfortunately, I do not have an example
of a typical recursive morass construction which can be carried out with my
morasses but not with Jensen’s morasses or a 2-principle.
Morasses are also closely related to Jensen’s fine structure theory in the following
way. If for a map f the relation f : ν̄ ⇒ ν holds, this does not only mean that
f : ν̄ → ν but also that it can be extended to a map f : µν̄ → µν where µµ̄ ≥ ν̄
and µν ≥ ν depend on ν̄ and ν. In this sense, it can be interpreted as saying
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not only that f is a map from ν̄ to ν, but that it is a Σ1-elementary map from
〈Lν̄ , Ā〉 into 〈Lν , A〉 where Ā is a predicate coding Lµν̄ and A is a predicate
coding Lµν . To show the above mentioned property that from my morasses an
inner model with fine structure can be constructed, I include into my definition
of morasses explicitly such a coding property. Moreover, the fine structural
coding property for Σn-elementary maps is represented by relations ⇒n.

Let ω1 ≤ β, S = Lim ∩ ω1+β and κ := ω1+β .
We write Card for the class of cardinals and RCard for the class of regular
cardinals.
Let C be a binary relation on S such that:
(a) If ν C τ , then ν < τ .

For all ν ∈ S −RCard, {τ | ν C τ} is closed.
For ν ∈ S −RCard, there is a largest µ such that ν E µ.

Let µν be this largest µ with ν E µ.
Let

ν v τ :⇔ ν ∈ Lim({δ | δ C τ}) ∪ {δ | δ E τ}.

(b) v is a (many-rooted) tree.
Hence, if ν /∈ RCard is a successor in @, then µν is the largest µ such that
ν v µ. To see this, let µ∗ν be the largest µ such that ν v µ. It is clear that
µν ≤ µ∗ν , since ν E µ implies ν v µ. So assume that µν < µ∗ν . Then ν 6C µ∗ν by
the definition of µν . Hence ν ∈ Lim({δ | δ C µ∗ν}) and ν ∈ Lim({δ | δ v µ∗ν}).
Therefore, ν ∈ Lim(v) since v is a tree. That contradicts our assumption that
ν is a successor in @.
The properties of ων C ωτ are an axiomatic description of the relation ”ων is
regular in Lτ”. If ων C ωτ really is this relation, then ων @ ωτ implies that
ων is a cardinal in Lτ , while the converse implication is not true in general.
This is a crucial difference to Jensen’s morasses, where ων @ ωτ is an axiomatic
description of ”ων is a cardinal in Lτ”, and it is the reason why C is introduced.
However, if there exists a maximal cardinal in Lν and ν < τ , then the two
interpretations of ων @ ωτ coincide.
For α ∈ S, let |α| be the rank of α in this tree. Let

S+ := {ν ∈ S | ν is a successor in @}
S0 := {α ∈ S | |α| = 0}
Ŝ+ := {µτ | τ ∈ S+ −RCard}
Ŝ := {µτ | τ ∈ S −RCard}.

Let Sα := {ν ∈ S | ν is a direct successor of α in @}. For ν ∈ S+, let αν be
the direct predecessor of ν in @. For ν ∈ S0, let αν := 0. For ν 6∈ S+ ∪ S0, let
αν := ν.
(c) For ν, τ ∈ (S+ ∪ S0)−RCard such that αν = ατ , suppose:

ν < τ ⇒ µν < τ.

For all α ∈ S, suppose:
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(d) Sα is closed
(e) card(Sα) ≤ α+

card(Sα) ≤ card(α) if card(α) < α

(f) ω1 = max(S0) = sup(S0 ∩ ω1)
ω1+i+1 = max(Sω1+i) = sup(Sω1+i ∩ ω1+i+1) for all i < β.

Let D = 〈Dν | ν ∈ Ŝ〉 be a sequence such that Dν ⊆ JDν . To simplify matters,
my definition of JDν is such that JDν ∩On = ν (see section 3 or [SchZe]).

Let an 〈S,C, D〉-maplet f be a triple 〈ν̄, |f |, ν〉 such that ν̄, ν ∈ S−RCard and
|f | : JDµν̄ → JDµν .
Let f = 〈ν̄, |f |, ν〉 be an 〈S,C, D〉-maplet. Then we define d(f) and r(f) by
d(f) = ν̄ and r(f) = ν. Set f(x) := |f |(x) for x ∈ JDµν̄ and f(µν̄) := µν .
But dom(f), rng(f), f � X, etc. keep their usual set-theoretical meaning, i.e.
dom(f) = dom(|f |), rng(f) = rng(|f |), f � X = |f | � X, etc.
For τ̄ ≤ µν̄ , let f (τ̄) = 〈τ̄ , |f | � JDµτ̄ , τ〉 where τ = f(τ̄). Of course, f (τ̄) needs
not to be a maplet. The same is true for the following definitions. Let f−1 =
〈ν, |f |−1, ν̄〉. For g = 〈ν, |g|, ν′〉 and f = 〈ν̄, |f |, ν〉, let g ◦ f = 〈ν̄, |g| ◦ |f |, ν′〉. If
g = 〈ν′, |g|, ν〉 and f = 〈ν̄, |f |, ν〉 such that rng(f) ⊆ rng(g), then set g−1f =
〈ν̄, |g|−1 | f |, ν′〉. Finally set idν = 〈ν, id � JDµν , ν〉.
Let F be a set of 〈S,C, D〉-maplets f = 〈ν̄, |f |, ν〉 such that the following
holds:
(0) f(ν̄) = ν, f(αν̄) = αν and |f | is order-preserving.
(1) For f 6= idν̄ , there is some β v αν̄ such that f � β = id � β and f(β) > β.
(2) If τ̄ ∈ S+ and ν̄ @ τ̄ v µν̄ , then f (τ̄) ∈ F.
(3) If f, g ∈ F and d(g) = r(f), then g ◦ f ∈ F.
(4) If f, g ∈ F, r(g) = r(f) and rng(f) ⊆ rng(g), then g−1 ◦ f ∈ F.
We write f : ν̄ ⇒ ν if f = 〈ν̄, |f |, ν〉 ∈ F. If f ∈ F and r(f) = ν, then we write
f ⇒ ν. The uniquely determined β in (1) shall be denoted by β(f).
Say f ∈ F is minimal for a property P (f) if P (f) holds and P (g) implies
g−1f ∈ F.
Let

f(u,x,ν) = the unique minimal f ∈ F for f ⇒ ν and u ∪ {x} ⊆ rng(f),
if such an f exists. The axioms of the morass will guarantee that f(u,x,ν) always
exists if ν ∈ S − RCardLκ[D]. Therefore, we will always assume and explicitly
mention that ν ∈ S −RCardLκ[D] when f(u,x,ν) is mentioned.

Say ν ∈ S −RCardLκ[D] is independent if d(f(β,0,ν)) < αν holds for all β < αν .

For τ v ν ∈ S −RCardLκ[D], say ν is ξ-dependent on τ if f(ατ ,ξ,ν) = idν .

For f ∈ F, let λ(f) := sup(f [d(f)]).

For ν ∈ S −RCardLκ[D], let

Cν = {λ(f) < ν | f ⇒ ν}

Λ(x, ν) = {λ(f(β,x,ν)) < ν | β < ν}.
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It will be shown that Cν and Λ(x, ν) are closed in ν.
Recursively define a function qν : kν + 1→ On, where kν ∈ ω:

qν(0) = 0
qν(k + 1) = max(Λ(qν � (k + 1), ν))

if max(Λ(qν � (k + 1), ν)) exists. The axioms will guarantee that this recursion
breaks off (see lemma 4 below), i.e. there is some kν such that either

Λ(qν � (kν + 1), ν) = ∅
or

Λ(qν � (kν + 1), ν) is unbounded in ν.

Define by recursion on 1 ≤ n ∈ ω, simultaneouly for all ν ∈ S − RCardLκ[D],
β ∈ ν and x ∈ JDµν the following notions. Here definitions are to be understood
in Kleene’s sense, i.e., that the left side is defined iff the right side is, and in
that case, both are equal.

f1
(β,x,ν) = f(β,x,ν)

τ(n, ν) = the least τ ∈ S0 ∪ S+ ∪ Ŝ such that for some x ∈ JDµν

fn(ατ ,x,ν) = idν

x(n, ν) = the least x ∈ JDµν such that fn(ατ(n,ν),x,ν) = idν

Kn
ν = {d(fn(β,x(n,ν),ν)) < ατ(n,ν) | β < ν}

f ⇒n ν iff f ⇒ ν and for all 1 ≤ m < n

rng(f) ∩ JDατ(m,ν)
≺1 〈JDατ(m,ν)

, D � ατ(m,ν),K
m
ν 〉

x(m, ν) ∈ rng(f)

fn(u,ν) = the minimal f ⇒n ν such that u ⊆ rng(f)
fn(β,x,ν) = fn(β∪{x},ν)

f : ν̄ ⇒n ν :⇔ f ⇒n ν and f : ν̄ ⇒ ν.

Let
nν = the least n such that fn(γ,x,µν) is confinal in ν for some x ∈ JDµν , γ @ ν

xν = the least x such that fnν(αν ,x,µν) = idµν .
Let

α∗ν = αν if ν ∈ S+

α∗ν = sup{α < ν | β(fnν(α,xν ,µν)) = α} if ν /∈ S+.

Let Pν := {xτ | ν @ τ v µν , τ ∈ S+} ∪ {xν}.

We say that M = 〈S,C,F, D〉 is an (ω1, β)-morass if the following axioms hold:

(MP – minimum principle)

If ν ∈ S −RCardLκ[D] and x ∈ JDµν , then f(0,x,ν) exists.

(LP1 – first logical preservation axiom)

If f : ν̄ ⇒ ν, then |f | : 〈JDµν̄ , D � µν̄〉 → 〈J
D
µν , D � µν〉 is Σ1-elementary.
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(LP2 – second logical preservation axiom)

Let f : ν̄ ⇒ ν and f(x̄) = x. Then

(f � JDν̄ ) : 〈JDν̄ , D � ν̄,Λ(x̄, ν̄)〉 → 〈JDν , D � ν,Λ(x, ν)〉

is Σ0-elementary.

(CP1 – first continuity principle)

For i ≤ j < λ, let fi : νi ⇒ ν and gij : νi ⇒ νj such that gij = f−1
j fi. Let

〈gi | i < λ〉 be the transitive, direct limit of the directed system 〈gij | i ≤ j < λ〉
and hgi = fi for all i < λ. Then gi, h ∈ F.

(CP2 – second continuity principle)

Let f : ν̄ ⇒ ν and λ = sup(f [ν̄]). If, for some λ̄, h : 〈JD̄
λ̄
, D̄〉 → 〈JDλ , D � λ〉 is

Σ1-elementary and rng(f � JDν̄ ) ⊆ rng(h), then there is some g : λ̄ ⇒ λ such
that g � JD̄

λ̄
= h.

(CP3 – third continuity principle)

If Cν = {λ(f) < ν | f ⇒ ν} is unbounded in ν ∈ S − RCardLκ[D], then the
following holds for all x ∈ JDµν :

rng(f(0,x,ν)) =
⋃
{rng(f(0,x,λ)) | λ ∈ Cν}.

(DP1 – first dependency axiom)

If µν < µαν , then ν ∈ S −RCardLκ[D] is independent.

(DP2 – second dependency axiom)

If ν ∈ S − RCardLκ[D] is η-dependent on τ v ν, τ ∈ S+, f : ν̄ ⇒ ν, f(τ̄) = τ
and η ∈ rng(f), then f (τ̄) : τ̄ ⇒ τ .

(DP3 – third dependency axiom)

If ν ∈ Ŝ −RCardLκ[D] and 1 ≤ n ∈ ω, then the following holds:
(a) If fn(ατ ,x,ν) = idν , τ ∈ S+ ∪ S0 and τ v ν, then µν = µτ .

(b) If β < ατ(n,ν), then also d(fn(β,x(n,ν),ν)) < ατ(n,ν).

(DF – definability axiom)

(a) If f(0,z0,ν) = idν for some ν ∈ Ŝ −RCardLκ[D] and z0 ∈ JDµν , then

{〈z, x, f(0,z,ν)(x)〉 | z ∈ JDµν , x ∈ dom(f(0,z,ν))}

is uniformly definable over 〈JDµν , D � µν , Dµν 〉.
(b) For all ν ∈ S −RCardLκ[D], x ∈ JDµν , the following holds:

f(0,x,ν) = fnν(0,〈x,ν,α∗ν ,Pν〉,µν).

This finishes the definition of an (ω1, β)-morass.

A consequence of the axioms is (×):
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Theorem

{〈z, τ, x, f(0,z,τ)(x)〉 | τ < ν, µτ = ν, z ∈ JDµτ , x ∈ dom(f(0,z,τ))}

∪{〈z, x, f(0,z,ν)(x)〉 | µν = ν, z ∈ JDµν , x ∈ dom(f(0,z,ν))}

∪(@ ∩ν2)

is for all ν ∈ S uniformly definable over 〈JDν , D � ν,Dν〉.

The proof of the property (×) streches over the next twelve lemmas unto the
end of the section. It is proved by induction over µ ∈ Ŝ, i.e. we prove it for all
ν with µν = µ assuming that it holds for all τ with µτ < µ. More precisely,
assume it holds for all τ such that µτ < µ. Then we show that the various
minimal maps fn(u,ν) exist for all ν such that µν = µ and all u ⊆ µ (lemmas
1 and 12). And we show that qν exists for all ν such that µν = µ (lemma 4).
Finally we prove that (×) holds for all ν with µν = µ.

So assume (×) for all τ such that µτ < µν := µ. If µ = 0, this holds trivially,
because then there are no such τ . For the proof we need the following lemmas
which are very important in themselves but proved as part of our big induction
on µν .

Lemma 1
Let ν ∈ S−RCardLκ[D] and u ⊆ JDµν . Then there is a minimal f ∈ F for f ⇒ ν
and u ⊆ rng(f).
We write f(u,ν) for this f .
Proof:
(1) For finite u = {ξ1, . . . , ξn}, we have f(u,ν) = f(0,〈ξ1,...,ξn〉,ν).
For, by (LP1), f(u,ν) : 〈JDµν̄1 , D � µν̄1〉 → 〈JDµν , D � ν〉 is Σ1-elementary. Since
JDµν is closed under pairs, u ⊆ rng(f(u,ν)) implies 〈ξ1, . . . , ξn〉 ∈ rng(f(u,ν)). For
the converse, we note that f(0,〈ξ1,...,ξn〉,ν) : 〈JDµν̄2 , D � µν̄2〉 → 〈JDµν , D � µν〉
is Σ1-elementary by (LP1). Hence 〈ξ1, . . . , ξn〉 ∈ rng(f(0,〈ξ1,...,ξn〉,ν)) implies
u ⊆ rng(f(0,〈ξ1,...,ξn〉,ν)). By (MP), f(0,{ξ1,...,ξn},ν) exists, and by its minimality,
it is as wished.
(2) Now, let u be infinite. Then I = {v ⊆ u | v finite } is directed with regard to
⊆. Let gvw = f−1

(w,ν)f(v,ν) for v ⊆ w ∈ I. Then gvw ∈ F by (4) and the definition
of minimality. Let 〈gv | v ∈ I〉 be the transitive, direct limit of 〈gvw | v ⊆ w〉 and
hgv = f(v,ν) for all v ∈ I. Then gv, h ∈ F by (CP1). But obviously h = f(u,ν).
2

Lemma 2
Let ν ∈ S −RCardLκ[D]. Then:
(a) Let g : ν̄ ⇒ ν, ū ⊆ JDµν̄ and u = g[ū]. Then gf(ū,ν̄) = f(u,ν).
(b) idν ∈ F.
(c) If f ⇒ ν and f � αν = id � αν , then f = idν .
(d) JDµν =

⋃
{rng(f(β,ξ,ν)) | β < αν} for all ξ ∈ JDµν .

Proof:
(a) On the one hand, we have
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ū = g−1[u] ⊆ rng(g−1f(u,ν))
⇒ rng(f(ū,ν̄)) ⊆ rng(g−1f(u,ν))
⇒ rng(gf(ū,ν̄)) ⊆ rng(f(u,ν)).

On the other hand, we have
u ⊆ rng(gf(ū,ν̄))
⇒ rng(f(u,ν)) ⊆ rng(gf(ū,ν̄)).

(b) idν = f(u,ν) where u = JDµν .
(c) Assume f 6= idν . Then β(f) ≤ αν by axiom (1). But f � αν = id � αν by
the hypothesis and f(αν) = αν by axiom (0). Contradiction!
(d) If we let h : ν̄ ⇒ ν be the uncollapse of

⋃
{rng(f(β,ξ,ν)) | β < αν}, then

h ∈ F and h � αν = id � αν . So h = idν by (c). 2

Lemma 3

Let ν̄, ν ∈ S and let h : 〈JD̄ν̄ , D̄〉 → 〈JDν , D � ν〉 be Σ1-elementary such that
there is some β v ν̄ with h � β = id � β. Let h(µτ̄ ) = µτ < ν and τ = h(τ̄) ∈
S −RCardLκ[D]. Then h(τ̄) : τ̄ ⇒ τ .
Proof: Let δτ̄ v τ̄ and δν̄ v ν̄ be minimal. If δτ̄ 6v ν̄, then µτ̄ < δν̄ . To see
this, we consider the three cases δτ̄ = δν̄ , δτ̄ > δν̄ and δτ̄ < δν̄ . The first case
is impossible because if δν̄ = δτ̄ , then δτ̄ v ν̄ by definition of δν̄ . The second
case is impossible because then by axiom (c) µδν̄ < δτ̄ . But δτ̄ ≤ τ̄ by definition
of δτ̄ and µν̄ ≤ µδν̄ by definition of δν̄ and µ·. Hence µν̄ ≤ µδν̄ < δτ̄ ≤ τ̄
which contradicts the assumption µτ̄ < ν̄. Hence δτ̄ < δν̄ must hold. But then
µδτ̄ < δν̄ by axiom (c) and therefore µτ̄ ≤ µδτ̄ < δν̄ as claimed, by definition of
δτ̄ and µ·. So by assumption h(τ̄) = idτ̄ and idτ̄ ∈ F by lemma 2 (b).
Now, let δ̄ := δτ̄ v ν̄ and f(δ̄,x,τ̄) : τ̄(x) ⇒ τ̄ . Let δ̄ @ γ̄(x) v τ̄(x) where
αγ̄(x) = δ̄. Then, by (DP2), f(0,x,τ̄(x)) = f(0,x,γ̄(x)) for all x ∈ JDµτ̄ . And
we get µγ̄(x) ≤ µτ̄ < ν̄ ≤ µδ̄. So, by (DP1), γ̄(x) is independent. That is,
d(f(β,0,γ̄(x))) < αγ̄(x) for all β < αγ̄(x). Since JDµγ̄(x)

=
⋃
{rng(f(β,0,γ̄(x))) |

β < αγ̄(x)}, x ∈ rng(f(β,0,γ̄(x))) for some β < αγ̄(x). Hence d(f(0,x,γ̄(x))) < δ̄.
Altogether, we get

d(f(0,x,τ̄)) = d(f(δ̄,x,τ̄) ◦ f(0,x,τ̄(x))) = d(f(0,x,τ̄(x))) = d(f(0,x,γ̄(x))) < δ̄.

By our assuption h � δ̄ = id � δ̄. And by our induction hypothesis, (×) holds
for µτ . So by the Σ1-elementarity of h : 〈JDν̄ , D̄〉 → 〈JDν , D � ν〉, if x ∈ rng(h),
then even rng(f(0,x,τ)) ⊆ rng(h). Thus

rng(h) ∩ JDµτ =
⋃
{rng(f(0,x,τ)) | x ∈ rng(h) ∩ JDµτ }.

Therefore,
h(τ̄) = f(u,τ) ∈ F where u = rng(h) ∩ JDµτ . 2

Lemma 4

For all ν ∈ S −RCardLκ[D], qν exists.
Proof: Suppose qν(k + 1) = max(Λ(qν � (k + 1), ν)) exists. Then qν(k + 1) ∈
Λ(qν � (k + 1), ν) and there is some β such that λ(f(β,qν�(k+1),ν)) = qν(k + 1).
The set of such β is closed by (CP1). Thus there is a largest such β. Call it
βk. The recursion breaks off if the sequence 〈βk | k〉 is strictly descending, since
there is no descending sequence of length ω. But βk ∈ rng(f(βk,qν�(k+2),ν)) by
(×) and (LP2). Hence λ(f(βk,qν�(k+2),ν)) = ν by the definition of βk. Therefore,
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βk+1 < βk. 2

Lemma 5

Let f : ν̄ ⇒ ν, x ∈ rng(f) and λ = λ(f). Then Λ(x, ν) ∩ λ = Λ(x, λ).
Proof: Let f(x̄) = x. Then on the one hand, (f � JDν̄ ) : 〈JDν̄ , D � ν̄,Λ(x̄, ν̄)〉 →
〈JDν , D � ν,Λ(x, ν)〉 is Σ0-elementary by (LP2). But then

(∗) (f � JDν̄ ) : 〈JDν̄ , D � ν̄,Λ(x̄, ν̄)〉 → 〈JDλ , D � λ,Λ(x, ν) ∩ λ〉 is also Σ0-
elementary.
On the other hand, by (CP2) and (LP2),

(∗∗) (f � JDν̄ ) : 〈JDν̄ , D � ν̄,Λ(x̄, ν̄)〉 → 〈JDλ , D � λ,Λ(x, λ)〉 is also Σ0-
elementary.
Consider the following three cases:
(1) Λ(x̄, ν̄) = ∅
Then, by (∗), Λ(x, ν) ∩ λ = ∅ and, by (∗∗), Λ(x, λ) = ∅.
(2) η̄ := max(Λ(x̄, ν̄)) exists
Let f(η̄) = η. Then, by (∗) and (∗∗),

η = max(Λ(x, ν) ∩ λ) = max(Λ(x, λ)).
And by (CP2), we have

z ∈ Λ(x̄, ν̄) ⇔ z ∈ Λ(x̄, η̄) ∪ {η̄}.
But then, by (∗),

z ∈ Λ(x, ν) ∩ λ ⇔ z ∈ Λ(x, η) ∪ {η}.
and, because of (∗∗),

z ∈ Λ(x, λ) ⇔ z ∈ Λ(x, η) ∪ {η}.
That’s it!
(3) Λ(x̄, ν̄) is unbounded in ν̄

Then, by (∗), Λ(x, ν)∩ λ is unbounded in λ. Hence λ ∈ Λ(x, ν) because Λ(x, ν)
is closed. Therefore Λ(x, λ) = Λ(x, ν) ∩ λ by (CP2). 2

Lemma 6

Let f : ν̄ ⇒ ν.
(a) If qν � k ∈ rng(f), then f(qν̄ � k) = qν � k.
(b) If f is cofinal, then f(qν̄) = qν .
Proof:

(a) That is proved by induction on k using (LP2) to show f(max(Λ(x̄, ν̄)) =
max(Λ(x, ν)) whenever max(Λ(x, ν)) ∈ rng(f).
(b) Like (a). Since f is cofinal, qν � (k + 1) lies always in rng(f). 2

Lemma 7

λ ∈ Cν implies λ ∈ Λ(qλ, ν).
Proof: Since λ ∈ Cν , qλ ∈ rng(f) for some f : ν̄ ⇒ ν by lemma 6 (b).
So Λ(qλ, ν) ∩ λ = Λ(qλ, λ) by lemma 5. Therefore, by the definition of qλ,
max(Λ(qλ, ν) ∩ λ) does not exist. But if Λ(qλ, ν) ∩ λ is unbounded in λ, then
λ ∈ Λ(qλ, ν) by the closedness of Λ(qλ, ν). So let Λ(qλ, ν) ∩ λ = ∅. But then
λ = λ(f(0,qλ,ν)). For λ(f(0,qλ,ν)) ≥ λ, since otherwise Λ(qλ, ν) ∩ λ 6= ∅. And
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λ(f(0,qλ,ν)) ≤ λ, because λ ∈ Cν . Thus qλ ∈ rng(f) for some f : ν̄ ⇒ ν by
lemma 6 (b). But then rng(f(0,qλ,ν)) ⊆ rng(f). 2

Lemma 8

Let ρ ∈ Cν ∩ λ such that ρ > qλ. Then qλ is an initial segment of qρ.
Proof:

qρ(k) = max(Λ(qρ � k, ρ)) = max(Λ(qρ � k, ν) ∩ ρ),
as long as these maxima exist, because ρ ∈ Cν . Hence qρ � k ∈ rng(f) for some
f : ν̄ ⇒ ν by lemma 6 (b). So Λ(qρ � k, ν) ∩ ρ = Λ(qρ � k, ρ) by lemma 5.
Analogously

qλ(k) = max(Λ(qλ � k, λ)) = max(Λ(qλ � k, ν)∩ λ) = max(Λ(qλ � k, ν)∩ ρ),

as long as these maxima exist, because qλ < ρ < λ. The lemma follows from
these two equations by induction. 2

Lemma 9

Cν is closed in ν.
Proof: Let λ ∈ Lim(Cν). Consider the sequence 〈qρ | ρ ∈ Cν∩λ〉. By lemma 8,
there is some ρ0 ∈ Cν ∩ λ such that qρ = qρ0 for all ρ0 < ρ ∈ Cν ∩ λ. Therefore,
by lemma 7, ρ ∈ Λ(qρ0 , ν) for all ρ0 < ρ ∈ Cν ∩λ. But Λ(qρ0 , ν) is closed. Hence
λ ∈ Λ(qρ0 , ν) ⊆ Cν . 2

Lemma 10

λ ∈ Cν ⇒ Cλ = Cν ∩ λ.
Proof by induction on λ and ν. Suppose the lemma to be proved already for all
ρ < λ and µ ≤ ν. By lemma 7, Λ(qλ, λ) = Λ(qλ, ν) ∩ λ. Therefore ρ ∈ Cν ∩ Cλ
for all ρ ∈ Λ(qλ, λ). Hence Cλ ∩ ρ = Cν ∩ ρ = Cρ by the induction hypothesis.
If Λ(qλ, λ) is unbounded in λ, we are finished. If Λ(qλ, λ) = ∅, then (Cν ∩ λ)−
(qλ(kλ) + 1) = ∅ by lemma 8. To see this, assume (Cν ∩ λ)− (qλ(kλ) + 1) 6= ∅.
Let ρ = min(Cν− (qλ(kλ)+1)). Then qρ = qλ by lemma 8. Hence ρ ∈ Λ(qλ, λ).
Contradiction! Therefore (Cν ∩ λ) − (qλ(kλ) + 1) = Cλ − (qλ(kλ) + 1) = ∅. If
qλ(kλ) = 0, then we are finished. If qλ(kλ) 6= 0, then qλ(kλ) = max(Cλ) =
max(Cν ∩ λ). But Cλ ∩ qλ(kλ) = Cν ∩ qλ(kλ) = Cqλ(kλ). Hence Cλ = Cν ∩ λ.
2

Lemma 11

Let f : ν̄ ⇒ ν. Then (f � JDν̄ ) : 〈JDν̄ , D � ν̄, Cν̄〉 → 〈JDν , D � ν, Cν〉 is Σ0-
elementary.
Proof: Show f(Cν̄∩η̄) = Cν∩f(η̄) for all η̄ < ν̄. By (LP1), we have f(Cν̄∩λ̄) =
f(Cλ̄) = Cλ = Cν ∩ f(λ) for all λ̄ ∈ Cν̄ . Therefore, if Cν̄ is cofinal in ν̄, we are
finished. If it is not, then f(qν̄) = qν . If qν̄(kν̄) = 0, then Λ(0, ν̄) = Λ(0, ν) = ∅,
implying that Cν̄ = Cν = ∅. If qν̄(kν̄) 6= 0, then we use f(max(Cν̄)) = max(Cν).
But max(Cν̄) = qν̄(kν̄) and max(Cν) = qν(kν). 2

Lemma 12

Set ατ(0,ν) = µν and x(0, ν) = ∅ for all ν. Then the following holds for all 0 ≤ n
and ν ∈ Ŝ:
(i) If f : ν̄ ⇒n+1 ν, α := ατ(n,ν) and ᾱ := f−1[α ∩ rng(f)], then ᾱ = ατ(n,ν̄).
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(ii) If f : ν̄ ⇒n+1 ν, then f(x(n, ν̄)) = x(n, ν).
(iii) If f : ν̄ ⇒n+1 ν and K̄ = f−1[Kn

ν ∩ rng(f)], then K̄ = Kn
ν̄ .

(iv) If f, g ⇒n+1 ν and rng(f) ⊆ rng(g), then g−1f ⇒n+1 d(g).
(v) For all u ⊆ JDµν , there is fn+1

(u,ν).

(vi) For all β < ν and x ∈ JDµν , fn+1
(β,x,ν) is uniformly definable over 〈JDν , D �

ν,Dν〉.
Proof by induction on n. For n = 0, (i) to (v) hold by the morass axioms.
(vi) By (DF), the rng(f1

(0,x,ν)) are uniformly definable over 〈JDν , D � ν,Dν〉. Like
in the proof of lemma 1, rng(f1

(β,z0,ν)) =
⋃
{rng(f1

(0,z,ν)) | z ∈ (β ∪ {z0})<ω}.
And f1

(β,z0,ν)(x) = y may be defined by: There is some ν̄ and some z̄0 such that,
for all z1 ∈ β<ω,

d(f(0,〈z1,z̄0〉,ν̄)) = d(f(0,〈z1,z0〉,ν))

and, for all t ∈ JDν̄ , there is some z1 ∈ β<ω such that

t ∈ rng(f(0,〈z1,z̄0〉,ν̄))

and there is some z and some z1 ∈ β<ω such that

f(0,〈z1,z̄0〉,ν̄)(z) = x⇔ f(0,〈z1,z0〉,ν)(z) = y.

Now, assume that (i) to (vi) are proved already for all 0 ≤ m < n.
(i) Let Bn(x, ν) := {β(fn(γ,x,ν)) < ατ(n,ν) | γ < ν} = {β < ατ(n,ν) | β /∈
rng(fn(β,x,ν))}. Let f(x̄) = x(n, ν), B = Bn(x, ν) and B̄ := f−1[B ∩ rng(f)].
Then f ◦ fn(ū,ν̄) = fn(u,ν) for all ū ⊆ JDµν̄ and u = f [ū] by (iv) of the induction
hypothesis (cf. lemma 2b). Therefore, if f(β̄) = β ∈ rng(f(β,x(n,ν),ν)), then β̄ ∈
rng(f(β̄,x̄,ν̄)), because β̄ = f−1[β∩rng(f)]. And if f(β̄) = β 6∈ rng(f(β,x(n,ν),ν)),
then β̄ 6∈ rng(f(β̄,x̄,ν̄)). So, altogether, B̄ = Bn(x̄, ν̄). By (DP3)(b) and (iv)
of the induction hypothesis, Bn(x(n, ν), ν) =

⋃
{Bn(x(n, η), η) | η ∈ Kn

ν }. But
Bn(x(n, ν), ν) is unbounded in α and rng(f) ∩ JDα ≺1 〈JDα , D � α,Kn

ν 〉. Thus
B̄ = Bn(x̄, ν̄) is also unbounded in ᾱ. Assume there were some z ∈ JDµν̄ and
some β < ᾱ such that fn(β,z,ν̄) = idν̄ . Then there was some β ≤ γ < ᾱ such that
z ∈ rng(fn(γ,x̄,ν̄)). For, by (iv) of the induction hypothesis, fn(ᾱ,x̄,ν̄) = idν̄ . So
fn(γ,x̄,ν̄) = idν̄ . But this contradicts the fact that Bn(x̄, ν̄) is unbounded in ᾱ.

(ii) By the proof of (i), fn(ᾱ,x̄,ν̄) = idν̄ is satisfied for ᾱ = ατ(n,ν̄) and f(x̄) =
x(n, ν̄). Therefore x(n, ν̄) ≤ x̄. Assume x(n, ν̄) < x̄. Then x(n, ν) ∈ rng(fn(α,x,ν))
where x := f(x(n, ν̄)) and α := ατ(n,ν). Thus fn(α,x,ν) = idν for all x < x(n, ν).
But that contradicts the definition of x(n, ν).
(iii) Let f(µ̄) = µ, K+ = Kn

ν − Lim(Kn
ν ) and K̄+ = Kn

ν̄ − Lim(Kn
ν̄ ). First,

prove µ ∈ K+ ⇒ µ̄ ∈ K̄+. By (i) and (ii), we know that B̄ = f−1[B ∩ rng(f)]
where B = Bn(x, ν), B̄ = Bn(x̄, ν̄) and x = x(n, ν), x̄ = x(n, ν̄). Let
µ = d(fn(β,x,ν)). Since µ ∈ K+∩ rng(f), we may assume β ∈ B+∩ rng(f) where
B+ = B − Lim(B). Let δ be the predecessor of β in B. Then fn(δ,〈δ,x〉,µ) = idµ.
Define γ = β if β ∈ S+ ∪ S0, and γ = min{γ @ β | δ < γ} else. Then
γ ∈ rng(f) and µ = µγ by (DP3). Let f(β̄) = β, f(γ̄) = γ. By (iv) of the
induction hypothesis, µ̄ = µγ̄ = d(fn

(β̄,x̄,ν̄)
) ∈ K̄+. In the same way, we show
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µ̄ ∈ K̄+ ⇒ µ ∈ K+. But Kn
ν =

⋃
{Kn

η | η ∈ K+} and Kn
ν̄ =

⋃
{Kn

η | η ∈ K̄+}.
Thus the claim holds.
(iv) follows immediately from (ii), (iii) and the definition of ⇒n+1.
(v) First, we notice that 〈JDα , D � α,Kn

ν 〉 where α := ατ(n,ν) is rudimentary
closed. Then Kn

ν ∩ η = Kn
η for all η ∈ Kn

η by (iv). But, by (vi) of the
induction hypothesis, Kn

η is uniformly definable over 〈JDη , D � η,Dη〉. Since
〈JDα , D � α,Kn

ν 〉 is rudimentary closed, by the definition of ⇒n+1,

fn+1
(u,ν) = fn(w∪u∪{x(n,ν)},ν)

where w := h[ω × (u ∩ JDα )<ω].
Here, h denotes the canonical Σ1-Skolem function of 〈JDα , D � α,Kn

ν 〉.
(vi) If w ≺1 〈JDατ(n,ν)

, D � ατ(n,ν),K
n
ν 〉, then there is a uniquely determined

f ⇒n+1 ν such that rng(f) ∩ JDατ(n,ν)
= w.

Existence :
Let α := ατ(n,ν) and

fβ = fn(β,x(n,ν),ν)

ν(β) = d(fβ)

H =
⋃
{fβ [w ∩ JDν(β)] | β < α}.

Then H ∩ JDα = w. For w ⊆ H ∩ JDα is clear, since fβ � JDβ = id � JDβ .
So let y ∈ H ∩ JDα . Thus y = fβ(x) for some x ∈ w and some β < α. Let
K+ = Kn

ν − Lim(Kn
ν ) and β(η) = sup{β | fn(β,x(n,η),η) 6= idη}. Then

〈JDα , D � α,Kn
ν 〉 |= (∃y)(∃η ∈ K+)(y = fm+1

(β,x(m+1,η),η)(x) ∈ JDβ(η)).

Since w ≺1 〈JDα , D � α,Kn
ν 〉, y = fn(β,x(n,η),η)(x) ∈ w for all such η and x ∈ w.

But since y = fn(β,x(n,η),η)(x) ∈ JDβ(η), we get fβ(x) = fn(β,x(n,η),η)(x) ∈ w.
Let |f | : JDν̄ → JDν be the uncollapse of H and f = 〈ν̄, |f |, ν〉. Then

f : ν̄ ⇒n+1 ν. For, for all β < α by (DF), f (ν̄(β)) : ν̄(β) ⇒n ν(β) where
f(ν̄(β)) = ν(β) if ν(β) ∈ rng(f). Let Γ = {β < α | ν(β) ∈ rng(f)}. For
β, γ ∈ Γ, let gβ = fβ ◦ f (ν̄(β)) and gβγ = g−1

γ ◦ gβ . Let 〈hβ | β ∈ Γ〉 be the
transitive, direct limit of the directed system 〈gβγ | β ≤ γ ∈ Γ〉. Then f◦hβ = gβ
for all β ∈ Γ. Thus, by (CP1) and (iv) of the induction hypothesis, f : ν̄ ⇒n ν.
But x(n+ 1, ν) ∈ H = rng(f) and rng(f) ∩ JDα = w ≺1 〈JDα , D � α,Kn

ν 〉. Thus
f : ν̄ ⇒n+1 ν.
Uniqueness:
Let f : ν̄ ⇒n+1 ν such that rng(f) ∩ JDατ(n,ν)

= w and ᾱ := f−1[α ∩ rng(f)].
Then ᾱ = ατ(n,ν̄) by (i). And f ◦ fn+1

(ᾱ,ν̄) = fn+1
(w,ν) by (iv) (cf. lemma 2a). But

fn+1
(ᾱ,ν̄) = idν̄ , since ᾱ = ατ(n,ν̄). Therefore, f = fn+1

(w,ν) is uniquely determined.

Let fn(0,〈x(n,ν),z0〉,ν)(z
∗
0) = z0. Use w = h(n,ν)[ω × (β<ω × {z0})] where h(n,ν) is

the canonical Σ1-Skolem function of 〈JDατ(n,ν)
, D � ατ(n,ν),K

n
ν 〉. By (vi) of the

induction hypothesis, Kn
ν is uniformly definable over 〈JDν , D � ν,Dν〉. Therefore,

w is uniformly definable over 〈JDν , D � ν,Dν〉. Let π be the uncollapse of w.
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Then we can define π(x) = y by: There is some ν̄ ≤ ν and some z̄0 ≤ z∗0 such
that, for all i ∈ ω and z1 ∈ β<ω,

(∃z ∈ JDατ(n,ν̄)
)(z = h(n,ν̄)(i, 〈z1, z̄0〉))⇔ (∃z ∈ JXατ(n,ν)

)(z = h(n,ν)(i, 〈z1, z
∗
0〉))

and, for all z ∈ JXατ(n,ν̄)
, there is some i ∈ ω and some z1 ∈ β<ω such that

z = h(n,ν̄)(i, 〈z1, z̄0〉)

and there is some i ∈ ω and some z1 ∈ β<ω such that

h(n,ν̄)(i, 〈z1, z̄0〉) = x⇔ h(n,ν)(i, 〈z1, z
∗
0〉) = y.

By this, ν̄ is uniquely determined. By what was shown above, one can define
fn+1

(β,z0,ν)(x) = fn(w,ν)(x) = y by: For all z0 ∈ α<ωτ(n,ν̄),

d(fn(0,〈z0,x(n,ν̄)〉,ν̄)) = d(fn(0,〈π(z0),x(n,ν)〉,ν))

and, for all t ∈ JDν̄ , there is some z0 ∈ α<ωτ(n,ν̄) such that

t ∈ rng(fn(0,〈z0,x(n,ν̄)〉,ν̄))

and there is some z and some z0 ∈ α<ωτ(n,ν̄) such that

fn(0,〈z0,x(n,ν̄)〉,ν̄)(z) = x⇔ fn(0,〈π(z0),x(n,ν)〉,ν)(π(z)) = y.

2

Now, it is an immediate consequence of lemma 12 and (DF) that (×) holds for
all ν such that µν = µ.

3 The inner model L[X]

Of course my definition of (ω1, β)-morass makes also sense if β < ω1. Hence a
natural question is:
Is the existence of an (ω1, β)-morass in this new sense equivalent to the existence
of an (ω1, β)-morass in Jensen’s sense?
In asking this question one has to be careful what an (ω1, β)-morass in Jensen’s
sense is, because there are also different definitions. But for the case β = 1, I
expect an equivalence between all existing definitions.
In the following, I will define a strengthening of the notion of a Jensen (ω1, β)-
morass which I also expect to be equivalent to my notion of (ω1, β)-morass. If
we construct a morass in the usual way in L, the properties of this stronger
notion hold automatically (see the paper [Irr2] or my dissertation [Irr1]).

A structure M = 〈S,C,F, D〉 is called an ω1+β-standard morass if it satisfies all
axioms of an (ω1, β)-morass except (DF) which is replaced by:

ν C τ ⇒ ν is regular in JDτ

and there are functions σ(x,ν) for ν ∈ Ŝ and x ∈ JDν such that:
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(MP)+

σ(x,ν)[ω] = rng(f(0,x,ν))

(CP1)+

If f : ν̄ ⇒ ν and f(x̄) = x, then σ(x,ν) = f ◦ σ(x̄,ν̄).

(CP3)+

If Cν is unbounded in ν, then σ(x,ν) =
⋃
{σ(x,λ) | λ ∈ Cν , x ∈ JDλ }.

(DF)+

(a) If f(0,x,ν) = idν for some x ∈ JDν , then

{〈i, z, σ(z,ν)(i)〉 | z ∈ JDν , i ∈ dom(σ(z,ν))}

is uniformly definable over 〈JDµν , D � µν , Dµν 〉.
(b) If Cν is unbounded in ν, then Dν = Cν . If it is bounded, then Dν =
{〈i, σ(qν ,ν)(i)〉 | i ∈ dom(σ(qν ,ν))}.

Lemma 13

(DF) and (×) also hold in a standard morass.

Proof: First, we prove by induction on µ ∈ Ŝ that the set

{〈i, x, σ(x,µ)(i)〉 | x ∈ JDµ , i ∈ dom(σ(x,µ))}

is uniformly definable over 〈JDµ , D � µ,Dµ〉 for all µ ∈ Ŝ. Assume that this has
been proved already for all τ < µ, τ ∈ Ŝ.
If Cµ is unbounded in µ, then, by (CP3)+,

σ(x,ν) =
⋃
{σ(x,λ) | λ ∈ Cν , x ∈ JDλ }.

But, by the induction hypothesis, the σ(x,λ), λ ∈ Cµ, are uniformly definable
over 〈JDµ , D � µ,Dµ〉. And, by (DF)+(b), Cµ = Dµ. Thus σ(x,ν) is uniformly
definable over 〈JDµ , D � µ,Dµ〉.
If Cµ is bounded in µ, then rng(f(0,qµ,µ)) is unbounded in µ. Therefore, by
(CP2),

rng(f(0,〈z0,qµ〉,µ)) = hµ[ω × (rng(f(0,qµ,µ))× {z0})].

Here, hµ is the Σ1-Skolem function of 〈JDµ , D � µ〉. Since Dµ = rng(f(0,qµ,µ)),
the rng(f(0,〈z0,qµ〉,µ)) are uniformly definable over 〈JDµ , D � µ,Dµ〉. Since, by
(CP1)+ and lemma 6 (b), for µ̄ := d(f(0,〈z0,qµ〉,µ)),

f(0,〈z0,qµ〉,µ) ◦ σ(qµ̄,µ̄) = σ(qµ,µ)

holds, we can define f(0,〈z0,qµ〉,µ)(x) = y by: There is some µ̄ ≤ µ and some
z̄0 ≤ z0 such that, for all i, j ∈ ω,

(∃z ∈ JDµ̄ )(z = hµ̄(i, 〈σ(qµ̄,µ̄)(j), z̄0〉))⇔ (∃z ∈ JDµ )(z = hµ(i, 〈σ(qµ,µ)(j), z0〉))

and, for all z ∈ JDµ̄ , there is some i ∈ ω and some j ∈ ω such that

z = hµ̄(i, 〈σ(qµ̄,µ̄)(j), z̄0〉)
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and there is some i ∈ ω and some j ∈ ω such that

hµ̄(i, 〈σ(qµ̄,µ̄)(j), z̄0〉) = x⇔ hµ(i, 〈σ(qµ,µ)(j), z0〉) = y.

If ατ(1,µ) = 0, then it follows from (DF)+ that {〈i, z0, σ(z0,µ)(i)〉 | z0 ∈ JDµ , i ∈
dom(σ(z0,µ))} is uniformly definable over 〈JDµ , D � µ,Dµ〉. If ατ(1,µ) > 0,
then, by (DP3)(b), µ̄ = d(f(0,〈z0,qµ〉,µ)) < µ. But then, by (CP1)+, σ(z0,µ) =
f(0,〈z0,qµ〉,µ) ◦ σ(z̄0,µ̄), where f(0,〈z0,qµ〉,µ)(z̄0) = z0, is definable by the induction
hypothesis.
From the σs, we calculate f(0,z0,µ)(x) = y as follows: There is some µ̄ ≤ µ and
some z̄0 ≤ z0 such that, for all r, s ∈ ω,

σ(z̄0,µ̄)(r) ≤ σ(z̄0,µ̄)(s)⇔ σ(z0,µ)(r) ≤ σ(z0,µ)(s)

and, for all z ∈ JDµ̄ , there exists some s ∈ ω such that

z = σ(z̄0,µ̄)(s)

and there exists some s ∈ ω such that

σ(z̄0,µ̄)(s) = x⇔ σ(z0,µ)(s) = y.

Since the f1
(0,z0,µ) are uniformly definable over 〈JDµ , D � µ,Dµ〉 and (DF) and

(×) hold by the induction hypothesis for all τ ∈ Ŝ ∩ µ, we can define the
fn(0,z0,µ) with z0 ∈ JDµ uniformly over 〈JDµ , D � µ,Dµ〉 like in the proof of lemma
12. Finally,

{〈z0, ν, x, f(0,z0,ν)(x)〉 | ν < µ, µν = µ, z0 ∈ JDµ , x ∈ dom(f(0,z0,ν))}

∪{〈z0, x, f(0,z0,µ)(x)〉 | z0 ∈ JDµ , x ∈ dom(f(0,z0,µ))}

∪(@ ∩µ2)

may be defined over 〈JDµ , D � µ,Dµ〉 using (DF). 2

Let SX ⊆ Lim and X = 〈Xν | ν ∈ SX〉 be a sequence.
Let Iν = 〈JXν , X � ν〉 for ν ∈ Lim − SX and Iν = 〈JXν , X � ν,Xν〉 for ν ∈ SX
where Xν ⊆ JXν and

JX0 = ∅
JXν+ω = rud(IXν )
JXλ =

⋃
{JXν | ν ∈ λ} for λ ∈ Lim2 := Lim(Lim).

Here, rud(IXν ) is the rudimentary closure of JXν ∪ {JXν } relative to X � ν if
ν ∈ Lim− SX and relative to X � ν and Xν if ν ∈ SX .

Let β(ν) be the least β such that JXβ+ω |= ν singular.

Now, let a κ-standard morass be given. I will show that there is an SX ⊆ κ and
a sequence X as above that the following holds:
(Amenability) The structures Iν are amenable.
(Coherence) If ν ∈ SX , H ≺1 Iν and λ = sup(H ∩ On), then λ ∈ SX and
Xλ = Xν ∩ JXλ .
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(Condensation) If ν ∈ SX and H ≺1 Iν , then there is some µ ∈ SX such that
H ∼= Iµ.
(∗) Card ∩ κ = CardLκ[X].
(∗∗) SX = {β(ν) | ν singular in Iκ}.

These properties are good enough to do fine structure proofs in Lκ[X], e.g. to
construct a κ-standard morass. This will be shown in a forthcoming paper [Irr2].

To define X, I will use the sets Cν from (CP3):

If ν ∈ Ŝ and Cν is unbounded in ν, then set

Xν = Cν .

Let ν ∈ Ŝ and Cν be bounded in ν. Then Λ(q, ν) is bounded for all q ∈ ν. Thus
Λ(qν , ν) = ∅. So f(0,qν ,ν) is cofinal. In this case, set

Xν = {σ(qν ,ν)[n] | n ∈ ω}.

Let SX = Ŝ.

Lemma 14

If ν ∈ Ŝ, Cν is unbounded in ν and f : 〈JD̄ν̄ , D̄, C̄〉 → 〈JDν , D � ν, Cν〉 is Σ1-
elementary, then 〈ν̄, f, ν〉 ∈ F.
Proof: Let z0 ∈ rng(f), i ∈ ω and y = σ(z0,ν)(i). Then we must prove
y ∈ rng(f). Since Cν is unbounded in ν, there is some λ ∈ Cν such that
y = σ(z0,λ)(i) by (CP3)+. Since, by lemma 13, the σ(z0,τ) are definable in
〈JDν , D � ν〉 when τ < ν, we have 〈JDν , D � ν, Cν〉 |= (∃y)(∃λ ∈ Cν)(y =
σ(z0,λ)(i)). Therefore, also rng(f) |= (∃y)(∃λ ∈ Cν)(y = σ(z0,λ)(i)). Thus
y ∈ rng(f). 2

Lemma 15

Let ν ∈ Ŝ, H ≺1 Iν and f be the uncollapse of H. Let f � On : ν̄ → ν. Then
〈ν̄, f, ν〉 ∈ F.
Proof: If Cν is bounded in ν, then λ(f(0,qν ,ν)) = ν and rng(f(0,qν ,ν)) ⊆ rng(f)
by the definition of Xν . In addition, f � JDν̄ : 〈JDν̄ , D � ν̄〉 → 〈JDν , D � ν〉 is
Σ1-elementary. So the claim follows from (CP2). If Cν is unbounded in ν, then
it follows from lemma 14. 2

Lemma 16

(Coherence), (Amenability), (Condensation), (∗) and (∗∗) hold for the sequence
X = 〈Xν | ν ∈ SX〉.
Proof:

(Coherence)

Let ν ∈ SX and H ≺1 Iν . If Cν is unbounded in ν, then λ := sup(H ∩ ν) ∈ Cν
and Cν ∩ λ is unbounded in λ by lemma 15. But, by lemma 10, Cν ∩ λ = Cλ.
So Xλ = Xν ∩ λ. But if Cν is bounded in ν, then H ∩ ν is unbounded in ν by
the definition of Xν . So there is nothing to prove.
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(Amenability)

If ν ∈ SX and Cν is bounded in ν, then Xν ∩ JXη , η < ν, is always finite.
Therefore amenability is trivial. If ν ∈ SX and Cν is unbounded in ν, then
Cν ∩ λ = Cλ for all λ ∈ Cν by lemma 10. Therefore Xλ = Xν ∩ λ for all
λ ∈ Lim(Cν) . If Lim(Cν) is unbounded in ν, we are finished. If it is not, then
let λ := max(Lim(Cν)). Then Xν ∩JXη = Cλ∪E where E is finite for all η > λ.

(Condensation)

If ν ∈ SX , H ≺1 Iν and Cν is unbounded in ν, then condensation holds by
lemmas 11 und 15. If ν ∈ SX and Cν is bounded in ν, then H ≺1 Iν is
unbounded in ν by the definition of Xν . Let π be the uncollapse of H and
π � On : ν̄ → ν. By lemmas 6 (b) and 15, π(qν̄) = qν . By the properties of σν
and σν̄ , we have condensation.
(∗)
Let ω < κ be a cardinal. Then all ν ∈ Sκ are independent by (DP1). Therefore
ν̄ < αν = κ for all f(β,0,ν) : ν̄ ⇒ ν where β < αν = κ. Thus rng(F ) =⋃
{rng(f(β,0,ν)) ∩ ν | β < αν} = ν for F : {〈β, x〉 | x < d(f(β,0,ν))} → ν where

F (β, x) = f(β,0,ν)(x). By lemma 13, F ∈ Lκ[X]. So there is a map from a subset
of κ× κ onto ν in Lκ[X]. By axioms (c) and (e), Sκ is unbounded in κ+. Thus
(κ+)Lκ[X] = κ+. Since ω < κ was arbitrary, we get CardL[X]−ω1 = Card−ω1.
It remains to prove ωLκ[X]

1 = ω1. Let ν ∈ Sω1 and η < ω1. By axiom (1),
η ⊆ rng(f(0,η,ν)). By the definition of X, there exists a map from ω onto
η ⊆ rng(f(0,η,ν)) in Lκ[X]. If nν = 1, then σ(〈η,α∗ν ,Pν〉,µν) is a map as needed by
(DF). If nν > 1,

h(i) := hατ(nν−1,µν ),K
nν−1
µν

(i, 〈η, ν∗, α∗∗ν , P ∗ν 〉)

is as needed, by lemma 12 (vi) and (DF), where
fnν−1

(β,〈x(nν−1,µν),α∗ν〉,µν)(α
∗∗
ν ) = α∗ν

fnν−1
(β,〈x(nν−1,µν),Pν〉,µν)(P

∗
ν ) = Pν

ν∗ = ν if ν < ατ(nν−1,µν) and ν∗ = 0 else.

Since η < ω1 was arbitrary, ωLκ[X]
1 = ω1.

(∗∗)
On the one hand, by definition of nν in (DF), there exists some z0 ∈ JDµν and
some γ @ ν such that fnν(γ,z0,µν) is cofinal in ν. If nν = 1, then F : γ × ω → µν
where

〈η, i〉 7→ σ(〈η,z0〉,µν)(i)

is cofinal in ν. If nν > 1, then F : γ × ω → ατ(nν−1,µν) where

〈η, i〉 7→ hατ(nν−1,µν ),K
nν−1
µν

(i, 〈η, z∗0〉)

is cofinal in ν by the proof of Lemma 12 (vi), where
fnν−1

(β,〈x(nν−1,µν),z0〉,µν)(z
∗
0) = z0.

But F is definable over Iµν by lemma 13. On the other hand, in a standard
morass,
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ν C τ ⇒ ν regular in JDτ .
So ν is regular in Iµν . 2

Remark

Let L[X] satisfy (Amenability), (Coherence) and (Condensation). Then we can
do fine structure arguments, especially we have the Σn-Skolem functions hnν of
Iν . As a result, we get: If SX = {β(ν) | ν singular in Iκ}, then SX = {ν | ν
singular in Iν+ω}. Because {ν | ν singular in Iν+ω} ⊆ {β(ν) | ν singular in
Iκ} by definition. For {β(ν) | ν singular in Iκ} ⊆ {ν | ν singular in Iν+ω},
let n be least such that ν becomes singular over Iµν . Let p be minimal such
that ν becomes singular over Iµν in the parameter p. Let p∗ be minimal such
that hnµν (i, p∗) = p for some i ∈ ω. Let π : Iµ̄ → Iµν be the uncollapse of
hnµν [ω × (JXν × {p∗})]. Let π(p̄) = p∗. Then ν becomes singular over Iµ̄ and
hnµ̄[ω × (JXν × {p̄})] = JXµ̄ . By the minimality of µν , we get µ̄ = µν and that
µν ∈ {ν | ν is singular in Iν+ω}.

Conversely, if SX = {ν | ν singular in Iν+ω}, then SX = {β(ν) | ν singular
in Iκ}. We prove {β(ν) | ν singular in Iκ} ⊆ {ν | ν singular in Iν+ω} as
above. And {ν | ν singular in Iν+ω} ⊆ {β(ν) | ν singular in Iκ} holds again by
definition.
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