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Introduction

Most, if not all, questions in infinite combinatorics can be posed in form of
questions about colorings like f : κ× λ→ µ.

λ

µ colors

κ

It makes sense to ask such questions for cardinals κ, λ, µ as well as for
ordinals.

The most famous question about colorings is if they have homogeneous sets
of a certain size. This can be denoted in the famous arrow notation. We
write

κ→ (λ)nµ

for the following statement: Every partition f : [κ]n → µ of [κ]n into µ pieces
has a homogeneous set h of size λ, i.e. f : [κ]n → µ is constant on [H]n for
some H ⊆ κ with otp(h) = λ.

We write κ→ (λ)nµ for the negation of this statement.

The relation κ→ (λ)nµ remains true if κ is made larger or if λ, n, µ are made
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6 1. INTRODUCTION

smaller.

If n = 2, then f : [κ]2 → µ is a coloring of a triangle with sides of length κ
and µ colors.

H

κ

κ

same color

Theoerem 1.1 (Erdös-Rado)

(2<κ)+ → (κ)2
γ

for all regular κ ≥ ω and all γ < κ.

Proof: Let λ = (2<κ)+ and let f : [λ]2 → γ be a partition of [λ]2 into γ
pieces. For a ∈ κ, let Fa : λ− {a} → γ be defined by Fa(β) = F ({a, β}).

dom(Fa)

We claim that there exists a set a ⊆ λ such that |A| = 2<κ and such that for
every C ⊆ A of otp(C) < κ and every u ∈ λ−C there exists ν ∈ A−C such
that Fν agrees with Fu on C.
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A

C

u

v

same colors

here

and

here

To prove the claim, we construct a sequence 〈Ai | i < κ〉 such that ai ⊆ Aj
for all i ≤ j < κ, Ai ⊆ λ and card(Ai) = 2<κ for all i < κ. Let A0 =

⋃
{Aj |

j < i} for i ∈ Lim. For the successor step assume that Ai is given. Then
choose Ai ⊆ Ai+1 such that card(Ai+1) = 2<κ and for every C ⊆ Ai with
otp(C) < κ and every u ∈ λ−C there exists v ∈ Ai+1 −C such that Fv and
Fu agree on C. This is possible since there are at most (2<κ)<κ = 2<κ many
subsetes C ⊆ Ai and (2<κ)<κ = 2<κ many functions g : C → γ. If we set
A =

⋃
{Ai | i < κ}, then A is as wanted.

Now we choose an arbitrary a ∈ λ−A. We construct a sequence 〈xα | α < κ〉
in A as follows. Let x0 be arbitrary. If 〈xβ | β < α〉 is already defined, then
set C = {xβ | β < α} and let xα be some v ∈ A − C such that Fv agrees
with Fa on C. Let X = {xα | α < κ}. Consider G : Fα � X : X → γ. Since
γ < κ, there exists X ⊆ H such that G is constant on H. On the other hand
F ({xα, xβ}) = Fxβ(xα) = Fa(xα) = G(xα) for all α < β < κ. Hence F is
constant on [H]2. 2

For every cardinal κ define expn(κ) by recursion:

exp0(κ) = κ

expn+1(κ) = 2expn(κ).
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Theorem 1.2 (Erdös-Rado)

(expn(2<κ))+ → (κ)n+2
γ

for each cardinal κ ≥ ω, for each ordinal γ < cf(κ) and all n ∈ ω.

Proof: By induction on n using the argument of the previous proof. See for
example the book by Hajnal and Hamburger. 2

For colorings f : κ× λ→ ρ there is the so-called polarized partition relation(
κ
λ

)
→
(
µ
ν

)
ρ

which holds iff for all f : κ × λ → ρ there are A ⊆ κ and B ⊆ λ such that
otp(A) = µ and otp(B)ν and f is constant on A×B.

We write (
κ
λ

)
6→
(
µ
ν

)
ρ

for the negation of this statement.

Theorem 1.3 (Baumgartner-Hajnal)(
(2<κ)++

(2<κ)+

)
→
(
κ
κ

)
γ

for all infinite cardinals κ and all γ < κ.

Proof: See Baumgartner, Hajnal: ”Polarized partition relations”, JSL 66
(2001), 811 - 821. 2

Many questions can be understood as questions on colorings. An example
is: Does there exist (at least consistently) a family of functions fα : ω1 → ω
such that {ξ < ω1 | fα(ξ) 6= fβ(ξ)} is finite for all α 6= β ∈ ω2? Obviously,
the existence of such a family implies(

ω2

ω1

)
6→
(

2
ω

)
ω

.

Another example is:

Is it consistent that there exists a chain 〈Xα | α < ω2〉 such that Xα ⊆ ω1,
Xβ −Xα is finite and Xα −Xβ has size ω1 for all β < α < ω2?

As we will see, both consistency questions can be answered positively.
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We will approach such questions by a method which we call ”higher-dimensional
forcing”. The basic idea is to generalize iterated forcing.

Let us recall the following basic facts about iterated forcing (see e.g. Kunen’s
textbook):

Let P be a forcing notion and Q̇ be a P-name such that P  (Q̇ is a forcing).

Let P ∗ Q̇ = {〈p, q̇〉 | p ∈ P and P  q̇ ∈ Q̇}. Define a partial order on P ∗ Q̇
by setting

〈p1, q̇1〉 ≤ 〈p2, q̇2〉 iff p1 ≤ p2 and p1  q̇1 ≤ q̇2.

Define i : P→ P ∗ Q̇, p 7→ 〈p, 1̇Q〉.
Then i : P→ P ∗ Q̇ is a complete embedding, i.e.

(1) ∀p, p′ ∈ P (p′ ≤ p→ i(p′) ≤ i(p))

(2) ∀p, p′ ∈ P (p′⊥p→ i(p′)⊥i(p))
(3) ∀q ∈ P∗ Q̇ ∃p ∈ P ∀p′ ∈ P (p′ ≤ p→ i(p′) and q are compatible in P∗ Q̇).

In (3), we call p a reduction of q to P.

Assume conversely that i : P → Q is a complete embedding. Then there
exists a P-name Ḃ such that

Q ' P ∗ Ḃ.

A finite support iteration of length λ ∈ Lim is a system 〈σην | η < ν ≤ λ〉 of
complete embeddings σην : Pη → Pν between partial orders which is

(1) commutative, i.e. σηγ = σνγ ◦ σην for all η < ν < γ ≤ λ

(2) continuous, i.e. Pγ =
⋃
{σηγ[Pη] | η < γ} for all γ ≤ λ with γ ∈ Lim.

Suppose that 〈σην : Pη → Pν | η < ν ≤ λ〉 is afinite support iteration. Then
there exist sequences 〈Qν | ν ≤ λ〉 and 〈Ḃ | ν < λ〉 such that:

(1) Pν ' Qν for all ν ≤ λ

(2) Qν is a forcing notion for all ν ≤ λ and Ḃν is a Qν-name such that
Qν  (Ḃν is a forcing).

(3) If ν < λ, then

Qν+1 = {p : ν + 1→ ν | p � Qν ∧ Qν  p(ν) ∈ Ḃν}

and
p ≤ν+1 q iff p � ν ≤ν q � ν and p � ν  p(ν) ≤ q(ν).
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(4) If ν ≤ λ and ν ∈ Lim, then

Qν = {p : ν → V | ∀γ < ν p � γ ∈ Qγ

and for all but finitely many γ Qγ  p(γ) = 1̇γ}

and
p ≤ν q iff p � γ ≤γ q � γ for all γ < ν.

This explains why 〈σην : Pη → Pν | η < ν ≤ λ〉 is called a finite support
iteration. For p ∈ Qλ, the finite set

supp(p) = {γ < λ | Pγ 6 p(γ) = 1̇γ}

is called the support of p.

Theorem 1.5

Assume that P is a partial order which satisfies the κ-cc for a regular κ ≥ ω.
Assume moreover that Q̇ is a P-name for a partial order such that P  (Q̇
satisfies the κ̌-cc). Then P ∗ Q̇ satisfies the κ-cc.

Proof: See for example Kunen’s book. 2

Theorem 1.6

Assume that 〈σην : Pη → Pν | η < ν ≤ λ〉 is a finte support iteration of
length λ ∈ Lim such that every Pν with ν < λ satisfies the κ-cc for a regular
κ ≥ ω. Then Pλ also satifies the κ-cc.

Proof: Let 〈Qν | ν ≤ λ〉, 〈Ḃν | ν < λ〉 be like above. We prove that Qλ

satisfies κ-cc. Assume that card(A) = κ, A ⊆ Qλ. We may assume by the
∆-system lemma, that {supp(p) | p ∈ A} forms a ∆-system with root ∆. Set
γ = max(∆). Since Pγ satisfies the κ-cc, there are p 6= q in A such that p � γ
and q � γ are compatible in Qγ. Hence p, q are compatible in Qλ. 2

As we will see, there is also a proof which avoids the use of 〈Qν | ν ≤ λ〉 and
〈Ḃν | ν < λ〉.

We will call such an iteration sometimes a ”linear” or ”one-dimensional”
iteration.

P1

P2

P3

P4

Pω

Pω+1P0
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Higher-dimensional forcing generalizes this to higher dimensions:

Pγτ

To do this we need an appropriate structure to replace the ordinal λ, i.e. a
structure whose elements we can use to index the partial orders and along
which we can define things by induction. The appropriate structures are
simplified morasses. The ”two-dimensional” morass is called gap-1 morass.

Historical remarks and references

The study of partition relations was started by B. Dushnik and E. W. Miller,
who tried to generalize Ramsey’s theorem. P. Erdös and R. Rado began a
systematic exploration [10, 9, 7, 8] of the arrow relation κ → (λ)nµ, which
was invented by Rado. The proof of the Erdös-Rado theorem which we
presented here is the proof which is given by T. Jech in his textbook [21].
We used it because it is purely combinatorial and avoids the use of elementary
substructures. An up to date overview of the field of partition relations is
given in the chapter [15] of A. Hajnal and J. Larson for the Handbook of Set
Theory. The reference for the Baumgartner-Hajnal theorem is [2].

The idea of iterated forcing was developed by S. Tennenbaum and R. M.
Solovay [37] and is nowadays an indispensable tool for every set theorist. A
modern approach is given in Kunen’s textbook [31]. Another approach to
non linear forcing iterations was developed by M. Groszek and T. Jech [13].
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2

Gap-1 morasses

A simplified (κ, 1)-morass is a structure M = 〈〈θα | α ≤ κ〉, 〈Fαβ | α < β ≤
κ〉〉 satisfying the following conditions:

(P0) (a) θ0 = 1, θκ = κ+, ∀α < κ 0 < θα < κ.

(b) Fαβ is a set of order-preserving functions f : θα → θβ.

(P1) |Fαβ| < κ for all α < β < κ.

(P2) If α < β < γ, then Fαγ = {f ◦ g | f ∈ Fβγ, g ∈ Fαβ}.

κ

γ

β

α

θα

θβ

θγ

κ+

f ∈ Fαβ

(P3) If α < κ, then Fα,α+1 = {id � θα, fα} where fα is such that fα � δ = id � δ
and fα(δ) ≥ θα for some δ < θα.

(P4) If α ≤ κ is a limit ordinal, β1, β2 < α and f1 ∈ Fβ1α, f2 ∈ Fβ2α, then

13



14 2. GAP-1 MORASSES

there are a β1, β2 < γ < α, g ∈ Fγα and h1 ∈ Fβ1γ, h2 ∈ Fβ2γ such that
f1 = g ◦ h1 and f2 = g ◦ h2.

(P5) For all α > 0, θα =
⋃
{f [θβ] | β < α, f ∈ Fβα}.

By (P3) and (P5) our picture looks in the successor step as follows:

α + 1

α

θα + ν

δ

θα+1

δ + ν θα

The picture for (P4) is the following:

α

γ

β2

β1

h1

h2

h ∈ Fγα

θβ1

θβ2

θγ

θα
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Lemma 2.1

Let α < β ≤ κ, τ1, τ2 < θα, f1, f2 ∈ Fαβ and f1(τ1) = f2(τ2). Then τ1 = τ2

and f1 � τ1 = f2 � τ2.

τ1
τ2

f1 f2

f1(τ1) = f2(τ2)

⇒

τ1 = τ2

f1 � τ1 = f2 � τ2

Note, that this is clear for the case β = α + 1.

Proof by induction over β. The base case of the induction is β = α + 1.
Then the claim follows immediately from (P3). So assume that β = γ + 1.
Let, by (P2), fi = gi ◦ f ′i where f ′i ∈ Fαγ, gi ∈ Fγβ. Let τ ′i = f ′i(τi). It follows
like in the base case that τ ′1 = τ ′2 and f ′1 � τ1 = f ′2 � τ2. So, by the induction
hypothesis, τ1 = τ2 and f ′1 � τ1 = f ′2 � τ2. Hence f1 � τ1 = f2 � τ2.

Finally, let β ∈ Lim. Then there exists by (P4) α < γ < β and g ∈ Fγβ
such that fi = g ◦ f ′i , f ′i ∈ Fαγ. So f ′1(τ1) = f ′2(τ2). Hence τ1 = τ2 and
f ′1 � τ1 = f ′2 � τ2 by the induction hypothesis. Therefore f1 � τ1 = f2 � τ2. 2

A simplified morass defines a tree 〈T,≺〉:

Let T = {〈α, γ〉 | α ≤ κ, γ < θα}.

For t = 〈α, ν〉 ∈ T set α(t) = α and ν(t) = ν.

Let 〈α, ν〉 ≺ 〈β, τ〉 iff α < β and f(ν) = τ for some f ∈ Fαβ.

If s := 〈α, ν〉 ≺ 〈β, τ〉 =: t, f ∈ Fαβ and f(ν) = τ , then f � (ν(s) + 1) does
not depend on f by lemma 3.1. So we may define πst := f � (ν(s) + 1).
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θβ

θαν
α

β

κ
κ+

τ = f(ν)

t = 〈β, τ〉

s = 〈α, ν〉

πst

Lemma 2.2

The following hold:

(a) ≺ is a tree, htT (t) = α(t).

(b) If t0 ≺ t1 ≺ t2, then πt0t1 = πt1t2 ◦ πt0t1 .

(c) Let s ≺ t and π = πst. If π(ν ′) = τ ′, s′ = 〈α(s), ν ′〉 and t′ = 〈α(t), τ ′〉,
then s′ ≺ t′ and πs′t′ = π � (ν ′ + 1).

πs′t′
πst

ν ′

τ ′

= πst � (ν ′ + 1)
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(d) Let γ ≤ κ, γ ∈ Lim. Let t ∈ Tγ. Then ν(t) + 1 =
⋃
{rng(πst) | s ≺ t}.

s ≺ t

t
γ

Proof: (a) First, we prove that ≺ is transitive. Let 〈α, ν〉 ≺ 〈β, τ〉 be
witnessed by f ∈ Fαβ and 〈β, τ〉 ≺ 〈γ, η〉 by g ∈ Fαβ. Set h = g ◦ f ∈ Fαγ by
(P2). Then h(ν) = η. So 〈α, ν〉 ≺ 〈γ, η〉.

Now, let 〈α, ν〉, 〈β, τ〉 ≺ 〈γ, η〉 and 〈α, ν〉 6= 〈β, τ〉.

〈γ, η〉

〈β, τ〉

〈α, ν〉

It follows from lemma 3.1 that α 6= β. Let w.l.o.g. α < β. Let 〈α, ν〉 ≺ 〈γ, η〉
be witnessed by f ∈ Fαγ. By (P2) choose g ∈ Fβγ and h ∈ Fαβ such that
f = g ◦ h. Then 〈α, ν〉 ≺ 〈β, h(ν)〉 ≺ 〈γ, η〉. However, h(ν) = τ by lemma
3.1. Hence 〈α, ν〉 ≺ 〈β, τ〉. This proves that ≺ is a tree.

Finally, by (P2), for all t ∈ T there is s ≺ t such that α(s) = β if β < α(t).
This shows the second claim.

(b) follows immediately from (a) and the definition.

(c) Let s ≺ t be witnessed by f ∈ Fαβ. Then s′ ≺ t′ is also witnessed by f
and πs′t′ = π � (ν ′ + 1) holds by definition.

(d) It suffices to prove ⊆. Let ν = ν(t) and τ < ν. By (P5) choose α1, α2 < γ
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and fi ∈ Fαiγ such that τ ∈ rng(f1) and ν ∈ rng(f2). By (P4) choose β such
that α1, α2 < β < γ and f ′i ∈ Fαiβ, g ∈ Fβγ where fi = g ◦ f ′i . Then
τ, ν ∈ rng(g). So let g(τ̄) = τ and g(ν̄) = ν. Hence τ̄ < ν̄, since g is
order-preserving. Let s = 〈β, ν̄〉. Then s ≺ t and πst(τ̄) = τ . 2

α1

α2

β

γ
τ t = 〈γ, ν〉

g

ν̄τ̄

f1

f2

Lemma 2.3

Let α < β ≤ κ. Then id � θα ∈ Fαβ.

Proof by induction on β. The base case of the induction is β = α + 1.
Then the claim is part of (P3). So assume that β = γ + 1. By the induction
hypothesis, id � θα ∈ Fαγ. By (P3), id � θγ ∈ Fγβ. Hence id � θα = (id �
θγ) ◦ (id � θα) ∈ Fαβ by (P2).

Finally, let β ∈ Lim. Assume towards a contradiction that id � θα /∈ Fαβ.
Let f ∈ Fαβ be such that sup(f [θα]) is minimal. Since f 6= id � θα, there are
ν < τ ∈ θβ such that ν /∈ rng(f) and τ ∈ rng(f).

β

α

τ̄
ν̄

θα

θβν < τ

γ + 1
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Let t = 〈β, τ〉. By lemma 3.2 (d), there is an s ≺ t such that ν ∈ rng(πst).
Let s = 〈γ + 1, τ̄〉 be the minimal such s. Let ν = πst(ν̄). Furthermore,
let f = f3 ◦ f2 ◦ f1 where f3 ∈ Fγ+1,β, f2 ∈ Fγ,γ+1 and f1 ∈ Fαγ. Then
πst = f3 � τ̄ + 1. Hence by the minimality of s, f2 6= id � θγ, ν̄ < θγ and
τ̄ ≥ θγ.

γ + 1

γ θγ

θγ+1

τ̄ν̄

Define g := f3 ◦ (id � θγ) ◦ f1. Then g ∈ Fαγ by (P2) and rng(g) ⊆ f3[θγ] ⊆
f3(τ̄) = τ . Hence sup(f [θα]) was not minimal. Contradiction! 2

Theorem 2.4

(a) If V = L, then there is a simplified (κ, 1)-morass for all regular κ > ω.

(b) If κ is an uncountable regular cardinal such that κ+ is not inaccessible
in L, then there is a simplified (κ, 1)-morass.

(c) For every regular κ > ω, there is a κ-complete (i.e. every decreasing
sequence of length < κ has a lower bound) forcing P satisfying κ+-cc such
that P  ( there is a simplified (κ, 1)-morass).

Theorem 2.5

There exists a simplified (ω, 1)-morass.

The consistency results of two-dimensional forcing can often be also obtained
by forcing constructions which are based on ordinal walks as described in
S. Todorcevic’s book ”Walks on ordinals and their characteristics. Such
constructions assume 2ω1 instead of the existence of a simplified (ω1, 1)-
morass.

Theorem 2.6

Assume that there exists a simplified (ω1, 1)-morass. Then 2ω1 holds, i.e.
there exists a sequence 〈Cα | α ∈ Lim∩ ω2〉 such that for all α ∈ Lim∩ ω2:

(i) Cα ⊆ α is club.



20 2. GAP-1 MORASSES

(ii) ∀β ∈ Lim(Cα) Cβ = Cα ∩ β.

(iii) If cf(α) < ω1, then card(Cα) < ω1.

Proof: Let M = 〈〈θα | α ≤ ω1〉, 〈Fαβ | α < β ≤ ω1〉〉 be a simplified (ω1, 1)-
morass. We construct a sequence 〈Cων | ν ∈ ω2〉 by induction over the levels
of M which we enumerate by β ≤ ω1 such that

(i) Cων ⊆ ων is unbounded in ων.

(ii) ωβ ∈ acc(Cων) := {γ | γ = sup(Cων ∩ γ)} ⇒ Cωβ = Cων ∩ ωβ
(iii) cf(ων) < ω1 ⇒ card(Cων < ω1.

From 〈Cων | ν ∈ ω2〉 we get a 2ω1-sequence 〈C̃ων | ν ∈ ω2〉 by setting
C̃ων = Cων ∪ acc(Cων).

For πst : ν(s) + 1→ ν(t) + 1 define

π̃st : ω(ν(s) + 1)→ ω(ν(t) + 1), ωα + n 7→ ωπst(α) + n

for all n ∈ ω.

Base case: β = 0

Since by (P0) θ0 = 1, we only need to define C0. Set C0 = ∅.

0

β

θ0 = 1

ω1

ω2

induction
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Successor case: β = α + 1

Hence Cων is already defined for all ν < θα. For θα < ν < θβ set t〈β, ν〉. Let
s ≺ t, s ∈ Tα and s = 〈α, ν̄〉. Then we set Cων = π̃st[Cων̄ ].

δ
θα

θβθα

α

β = α + 1

s = 〈α, ν̄〉

t = 〈β, ν〉

It remains to define Cων for ν = θα. Let f ∈ Fαβ, f 6= id, δ = crit(f). In this
case let C ⊆ ων be any unbounded set with C ⊆ [ωδ, ωθα) and otp(C) = ω.

We set Cων = Cωδ ∪ C.

Limit case: β ∈ Lim

For v < θβ set t = 〈β, ν〉. Set

Cων =
⋃
{π̃st[Cων(s)] | s ≺ t}.

This is well-defined, because if ν < θα for some α < β, then πst = id � ν(s)+1
for all s ≺ t.

s ≺ t

t

Cs3

Cs2

Cs1

β
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We have to prove that (i) - (iii) from above hold. We do this by induction
over β ≤ ω1. Moreover, we check

(iv): If s ≺ t, then Cων(t) is an end-extension of π̃st[Cων(s)], i.e. π̃st[Cων(s)] =
Cων(t) ∩ γ for some γ ∈ On.

Base case: β = 0

Trivial.

Sucessor case: β = α + 1

Let f ∈ Fαβ, f 6= id, δ = crit(f).

We have to prove (i) - (iv) for θα ≤ ν < θα+1.

(i) If ν = θα, then Cων is unbounded in ων by definition. So let θα < ν < θα+1.
Let f(ν̄) = ν. By the induction hypothesis Cων̄ is unbounded in ων̄. Hence
Cων = f̃ [Cων̄ ] is unbounded in ων by (P3) and (P5).

(ii) Assume ν = θα and ωβ ∈ acc(Cων). Then either ωβ = ωδ or ωβ < ωδ. If
ωβ = ωδ, then by definition Cωβ = Cων∩ωβ. So assume that ωβ < ωδ. Then
Cων ∩ ωβ = Cωδ ∩ ωβ and ωβ ∈ acc(Cωδ). So by the induction hypothesis
Cων ∩ ωβ = Cωδ ∩ ωβ = Cωβ.

Now, let θα < ν < θα+1 and ωβ ∈ acc(Cων). Then by (P3) either ωβ ∈ rng(f̃)
or ωβ = ωδ. Let f(ν̄) = ν. Then Cων = f̃ [Cων̄ ]. If ωβ ∈ rng(f̃), let
f(β̄) = β. By the induction hypothesis Cων̄ ∩ ωβ̄ = Cωβ̄. Hence Cωβ =

f̃ [Cωβ̄] = f̃ [Cων̄ ∩ ωβ̄] = f̃ [Cων̄ ] ∩ ωβ = Cων ∩ ωβ where the first equality
holds because ωβ 6= ωθα.

δ
θα

θβθα

α

β = α + 1

β̄
ν̄

β
ν
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Assume ωβ = ωδ. Let f(ν̄) = ν.

δ
θα

θβθα

α

β = α + 1

ν̄

ν

β

Then by definition Cων = f̃ [Cων̄ ]. Hence by (P3) Cων̄ ∩ ωβ = Cων ∩ ωβ
and ωβ ∈ acc(Cων̄). By the induction hypothesis Cων̄ ∩ ωβ = Cωβ. Hence
Cων ∩ ωβ = Cων̄ ∩ ωβ = Cωβ.

(iii) β < ω1. Hence (iii) is trivial by (P0).

(iv) Clear by the definition.

Limit case: β ∈ Lim

Let ν < θβ, t = 〈β, ν〉. We have to prove (i) - (iv) for

Cων = {π̃st[Cων(s)] | s ≺ t}.

For s ≺ t set

Cs = π̃[Cων(s)].

If s ≺ s′ ≺ t, then by (iv) of the induction hypothesis Cων(s′) is an end-
extension of π̃ss′ [Cων(s)]. So Cs′ = π̃s′t[Cων(s′)] is an end-extension of Cs =
π̃s′t[π̃ss′ [Cων(s)]]. Hence Cων =

⋃
{Cs | s ≺ t} is an end-extension of Cs′ =

π̃s′t[Cων(s′)]. This proves (iv).
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s′

s

t
β

Cs′ ⊆end Cs

π̃s′s[Cων(s′)] ⊆end Cων(s)

(i) Let η < ων. We have to show that there exists η < γ ∈ Cων . Since
ν =

⋃
{πst[ν(s)] | s ≺ t}, there exists s ≺ t such that η ∈ rng(π̃st). By the

induction hypothesis Cων(s) is unbounded in ων(s).

β
η γ t

s
γ̄ ∈ Cων(s)η̄

Let π̃st(η̄) = η. Choose γ̄ ∈ Cων(s) such that η̄ < γ̄. Set γ = π̃st(γ̄). Then
η < γ ∈ π̃st[Cων(s)] ⊆ Cων .

(ii) Let ωγ ∈ acc(Cων). Since ν =
⋃
{πst[ν(s)] | s ≺ t}, we can pick s ≺ t

such that ωγ ∈ rng(π̃st). By (iv), ωγ ∈ acc(π̃st[Cων(s)]). Let πst(γ̄) = γ.
Then ωγ̄ ∈ acc(Cων(s)). So Cωγ̄ = Cων(s) ∩ ωγ̄ by the induction hypothesis.
Let t′ = 〈β, γ〉 and s′ = 〈α(s), γ̄〉. Then πs′t′ = πst � ν(s) + 1. Hence
Cωγ = π̃s′t′ [Cωγ̄] = π̃st[Cωγ̄] = π̃st[Cων(s) ∩ ωγ̄] = π̃[Cων(s)] ∩ ωγ = Cων ∩ ωγ
where the first and last equality hold by (iv).
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β

s
s′

t = 〈β, ν〉t′ = 〈β, γ〉

Finally, we prove (iii). Suppose cf(ν) < ω1. If ν < ω1, then (iii) is clear. So
suppose that ω1 ≤ ν. Then Cων is defined in step β = ω1 in the recursion.
Hence t = 〈ω1, ν〉. By a previous lemma, ων =

⋃
{π̃st[ων(s)] | s ≺ t}. Since

cf(ν) < ω1, there is s ≺ t such that π̃st[Cων(s)] and therefore |Cων | < ω1. 2

Remark 2.7

If κ > ω1, we only get the following weak 2κ:

There is a set of limit ordinals S ⊆ κ+, {α ∈ κ+ | cf(α) = κ} ⊆ S, and a
sequence 〈Cα | α ∈ S〉 such that for all α ∈ S:

(i) Cα is club in α

(ii) β ∈ Lim(Cα) ⇒ Cβ = Cα ∩ β and β ∈ S
(iii) cf(α) < κ ⇒ |Cα| < κ.

Historical remarks and references

Morasses were introduced by R. Jensen in the early 1970’s to solve the cardi-
nal transfer problem of model theory in L (see e.g. Devlin [5]). For the proof
of the gap-2 transfer theorem a gap-1 morass is used. For higher-gap trans-
fer theorems Jensen has developed so-called higher-gap morasses [24]. In his
Ph.D. thesis, the author generalized these to gaps of arbitrary size [19, 18, 16].
The theory of morasses is very far developed and very well examined. In par-
ticular it is known how to construct morasses in L [5, 12, 19, 16] and how to
force them [38, 39].

Simplified morasses were introduced by D. Velleman [44]. He also proved
that the existence of a classical (κ, 1)-morass is equivalent to the existence
of a simplified (κ, 1)-morass for all regular κ > ω [44]. Along simplified
morasses, morass constructions can be carried out very easily compared to
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classical morasses. A good example for a construction along a simplified gap-
1 morass is the proof of theorem 2.6. This result was proved by D. Velleman
in [48]. He, however, does not directly use the morass, but he uses a forc-
ing axiom which is equivalent to the existence of a simplified morass. An
example for a direct construction along a simplified morass can be found in
Devlin’s book [5].

The definition of a simplified morass and lemmas 2.1 and 2.2 are from Velle-
man [44]. A direct proof of theorem 2.4 (a) was given by D. Donder [6]. A
rather indirect way to prove theorem 2.4 (a) and (c) is taken by D. Velleman
in [44]. Theorem 2.4 (b) was observed by Velleman in [45]. Theorem 2.5 was
shown by Velleman [47]. Remark 2.7 was observed by L. Stanley [39].
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Two-dimensional forcing which
preserves GCH

Let M be a simplified (κ, 1)-morass. We want to define a generalization of a
FS iteration which is not indexed along an ordinal but along M. One way of
doing this is the following definition:

We say that 〈〈Pη | η ≤ κ+〉, 〈σst | s ≺ t〉, 〈eα | α < κ〉〉 is a FS system along
M if the following conditions hold:

(FS1) 〈Pη | η ≤ κ+〉 is a sequence of partial orders such that Pη ⊆⊥ Pν if
η ≤ ν and Pλ =

⋃
{Pη | η < λ} for λ ∈ Lim.

(FS2) 〈σst | s ≺ t〉 is a commutative system of injective embeddings σst :
Pν(s)+1 → Pν(t)+1 such that if t is a limit point in ≺, then

Pν(t)+1 =
⋃
{σst[Pν(s)+1] | s ≺ t}.

(FS3) eα : Pθα+1 → Pθα .

(FS4) Let s ≺ t and π = πst. If π(ν ′) = τ ′, s′ = 〈α(s), ν ′〉 and t′ = 〈α(t), τ ′〉,
then σst : Pν(s)+1 → Pν(t)+1 extends σs′t′ : Pν′+1 → Pτ ′+1.

Hence for f ∈ Fαβ, we may define σf =
⋃
{σst | s = 〈α, ν〉, t = 〈β, f(ν)〉}.

27
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α

α + 1

β

κ
κ+

t θβPν ⊆ Pη

Pν

ν

s

σst : Pν(s)+1 → Pν(t)1

β

α

τ

ν

f ∈ Fαβ

ν ′

t = 〈β, τ〉

s = 〈α, ν〉s′ = 〈α, ν ′〉

σs′t′ = σst � Pν′+1

τ ′
t′ = 〈β, τ ′〉

(FS5) If πst = id � ν(s) + 1, then σst = id � Pν(s)+1.

(FS6)(a) If α < κ, then Pθα is completely contained in Pθα+1 in such a way
that eα(p) is a reduction of p ∈ Pθα+1 .

(b) If α < κ, then σα := σfα : Pθα → Pθα+1 is a complete embedding such
that eα(p) is a reduction of p ∈ Pθα+1 .

(FS7)(a) If α < κ and p ∈ Pθα , then eα(p) = p.

(b) If α < κ and p ∈ rng(σα), then eα(p) = σ−1
α (p).

To simplify notation, set P := Pκ+ .
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Recall: σ : P→ Q is called complete embedding, if

(1) ∀p, p′ ∈ P (p′ ≤ p→ σ(p′) ≤ σ(p))

(2) ∀p, p′ ∈ P (p′⊥p→ σ(p′)⊥σ(p))

(3) ∀q ∈ Q ∃p ∈ P ∀p′ ∈ P (p′ ≤ p→ σ(p′) ‖ q).

q is called reduction.

If only (1) and (2) hold, we say that σ is an embedding. If id � P : P→ Q is
an embedding, we also write P ⊆⊥ Q.

Unlike in the case of FS iterations, it is unclear how a generic extension with
respect to Pκ+ can be viewed as being obtained by successive extensions.
This would justify to call a FS system along M a FS iteration along M.

We want to prove that P satisfies ccc if all Pν satisfy ccc for ν < κ. To do
this, we want to apply an argument like in the introduction. For this we need
something like the support of a condition p ∈ P, i.e. we need to represent
p ∈ P as a function p∗ : κ→ V such that p∗(α) ∈ Pθα for all α < κ.

To define such a function p∗ from p ∈ P set recursively

p0 = p

νn(p) = min{η | pn ∈ Pη+1}

tn(p) = 〈κ, νn(p)〉

p(n)(α) = σ−1
st (pn) if s ∈ Tα, s ≺ tn(p) and pn ∈ rng(σst).

Note that, since ≺ is atree, s is uniquely determined by α and tn(p). Hence
we really define a function. Set

γn(p) = min(dom(p(n))).

By (FS2), γn(p) is a successor ordinal or 0. Hence, if γn(p) 6= 0, we may
define

pn+1 = eγn(p)−1(p(n)(γn(p))).

If γn(p) = 0, we let pn+1 be undefined.

Finally, set p∗ =
⋃
{p(n) � [γn(p), γn−1(p)[ | n ∈ ω} where γ−1(p) = κ.
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p0 = p

α

γ0(p)

γ0(p)− 1

γ1(p)

γ1(p)− 1

p∗(α)

σ−1
st0(p0)

s

s

σ−1
st1(p1)

eγ0(p)−1(σ−1
st0(p0)) =: p1

eγ1(p)−1(σ−1
st1(p1)) =: p2

ν0(p)=̂t0(p)

κ

Note: If n > 0 and α ∈ [γn(p), γn−1(p)[, then p∗(α) = σ−1
st̄ (pn) where t̄ =

〈γn(p)− 1, νn(p)〉,

ν1(p)

t1(p) t0(p)

κ

γ0(p)

γ0(p)− 1

α

p∗(α)

t̄ = 〈γ0(p)− 1, ν1(p)〉

= 〈κ, ν1(p)〉

= 〈κ, ν0(p)〉

because p∗(α) = p(n)(α) = σ−1
st (pn) = (σt̄t ◦ σst̄)−1(pn) = σst̄(pn) with s ≺ t

and s ∈ Tα where the first two equalities are just the definitions of p∗ and p(n).
For the third equality note that t̄ ≺ t since id � θα ∈ Fαβ for all α < β ≤ κ.
So the equality follows from the commutativity of 〈σst | s ≺ t〉. The last
equality holds by (FS5).

It follows from the previous observation that 〈γn(p) | n ∈ ω〉 is decreasing.
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So the recursive definition above breaks down at some point, i.e. γn(p) = 0
for some n ∈ ω.

For p ∈ P define its support by

supp(p) = {γn(p) | n ∈ ω}.

Hence supp(p) is finite.

Lemma 3.1

If p∗(α) and q∗(α) are compatible for α = max(supp(p) ∩ supp(q)), then p
and q are compatible.

Proof: Suppose that p and q are incompatible. Without loss of generality
let ν := min{η | p ∈ Pη+1} ≤ min{η | q ∈ Pη+1} =: τ . Set s = 〈κ, ν〉 and
t = 〈κ, τ〉. Let t′ ≺ t be minimal such that ν ∈ rng(πt′t) and p, q ∈ rng(σt′t).
By (FS2), t′ ∈ Tα0+1 for some α < κ. Let πt′t(ν

′) = ν and s′ = 〈α+1, ν ′〉. Let
s̄, t̄ be the direct predecessors of s′ and t′ in ≺. Set p′ = σ−1

s′s(p), q
′ = σ−1

t′t (q).

κ

α0 + 1

α0

p′

p q

q′ν ′ τ ′

ν τ

θα0+1

t = 〈κ, τ〉

s = 〈κ, ν〉

s̄
t̄

t′ = 〈α0 + 1, τ ′〉

Then p′ = p∗(α0 + 1), q′ = q∗(α0 + 1) by the definition of p∗. Moreover, p′

and q′ are not compatible, because if r ≤ p′, q′, then σt′t(r) ≤ p, q by (FS2).
Now, we consider several cases.
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Case 1: ν ′ /∈ rng(πt̄t′)

α0

α0 + 1
ν ′ t′

t̄

θα0+1

θα0

Then πs̄s′ = id � ν(s̄) + 1 and σs̄s′ = id � Pν(s̄)+1 by the minimality of
α0. Moreover, p̄ := p′ and q̄ := eα(q′) are not compatible, because if r ≤
p′, eα(q′), then there is u ≤ r, q′, p′ by (FS6)(a). There is no difference between
compatibility in Pθα+1 and in Pν(t′)+1 by (FS1). Finally, note that p̄ = p∗(α0)
and q̄ = q∗(α0) by the definition of p∗ and (FS7).

Case 2: ν ′ ∈ rng(πt̄t′) and πs̄s′ = id � ν(s̄) + 1

α0

α0 + 1
t′

t̄

θα0+1

θα0

ν ′

ν̄

q′

Then πt̄t′ 6= id � ν(t̄) + 1 by the minimality of α0 and p̄ := p′ and q̄ := eα(q′)
are not compatible (like in case 1). However, p̄ = p∗(α0) and q̄ = q∗(α0) by
the definition of p∗ and (FS7).

Case 3: ν ′ ∈ rng(πt̄t′), πs̄s′ 6= id � ν(s̄) + 1 and α0 + 1 /∈ supp(p)

α0

α0 + 1 θα0+1

θα0

t′

t̄ν̄

ν ′
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Then πt̄t′ 6= id � ν(t̄) + 1 by the minimality of α0. Set p̄ := σ−1
s̄s′ (p

′) and
q̄ = eα(q′). Then p̄ and q̄ are not compatible, because if r ≤ p̄, q̄, then there
is u ≤ σα(r), q′, p′ by (FS6)(b). However, p̄ = p∗(α0) and q̄ = q∗(α0) by the
definition of p∗ and (FS7).

Case 4: ν ′ ∈ rng(πt̄t′), πs̄s′ 6= id � ν(s̄) + 1 and α0 + 1 /∈ supp(q)
Then πt̄t′ 6= id � ν(t̄) + 1. Set q̄ := σ−1

s̄s′ (q
′) and p̄ = eα(p′). Then q̄ and

p̄ are not compatible, because if r ≤ p̄, q̄, then there is u ≤ σα(r), p′, q′ by
(FS6)(b).

Case 5: α0 + 1 ∈ supp(p) ∩ supp(q)
Then α0 +1 = max(supp(p)∩supp(q)), since α0 +1 ≥ max(supp(q)) because
by definition q ∈ rng(σrt) where r ≺ t and r ∈ Tmax(supp(q)). However,
p′ = p∗(α0 + 1), q′ = q∗(α0 + 1) are not compatible. Contradiction.

So in case 5 we are finished. If we are in cases 1 - 4, we define recursively
αn+1 from p∗(αn) and q∗(αn) in the same way as we defined α0 from p and
q. Like in the previous proof that 〈γn(p) | n ∈ ω〉 is decreasing, we see that
〈αn | n ∈ ω〉 is decreasing. Hence the recursion breaks off, we end up in case
5 and get the desired contradiction. 2

Theorem 3.2

Let µ, κ > ω be cardinals, κ regular. Let 〈〈Pη | η ≤ κ+〉, 〈σst | s ≺ t〉, 〈eα |
α < κ〉〉 be a FS system along a (κ, 1)-morass M. Assume that all Pη with
η < κ satisfy the µ-cc. Then Pκ+ also does.

Proof: Let A ⊆ Pκ+ be a set of size µ. Assume by the ∆-system lemma that
{supp(p) | p ∈ A} forms a ∆-system with root ∆. Set α = max(∆). Then
Pθα satisfies the µ-cc by the hypothesis of the lemma. So there are p 6= q ∈ A
such that p∗(α) and q∗(α) are compatible. Hence p and q are compatible by
the previous lemma. 2

κ κ+
p2 ∈ A p3 ∈ A . . .p1 ∈ A

α

= max(∆)
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As an application, we will construct along an (ω1, 1)-morass a ccc forcing P
of size ω1 which adds an ω2-Suslin tree. An ω2-Suslin tree is a tree of size (or
equivalently height) ω2 which has neither a chain nor an antichain of size ω2.

The natural forcing to do this with finite conditions is Tennenbaum’s forcing
(see S. Tennenbaum:”Souslin’s problem”, PNAS 59 (1968), 60 - 63).

Let P (θ) be the set of all finite trees p = 〈xp, <p〉, xp ⊆ θ, such that α < β
if α <p β.

Set p ≤ q iff xp ⊃ xq and <q=<p ∩x2
q.

0 θ

For θ = ω1, P (θ) is Tennenbaum’s forcing to add an ω1-Suslin tree which
satisfies ccc.

However, if θ > ω1 + 1, then

A = {p ∈ P (θ) | xp = {α, α + 1, α + 2, ω1, ω1 + 1}, α < ω1,

α <p α + 1 <p ω1, α <p α + 2 <p ω1 + 1, α + 1 6<p α + 2}

is an antichain of size ω1.

ω1

ω1 + 1

α′ + 2

α + 2

α

α + 1

α′ + 1

α′

So P (θ) does not satisfy the ccc and in order to thin it out so that it obtains
ccc, we have to restrict the possible values of the infima in our trees.

Let π : θ̄ → θ be a order-preserving map. Then π : θ̄ → θ induces maps
π : θ̄2 → θ2 and π : P (θ̄)→ P (θ) in the obvious way:

π : θ̄2 → θ2, 〈α, β〉 7→ 〈π(α), π(β)〉
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π : P (θ̄)→ P (θ), 〈xp, <p〉 7→ 〈π[xp], π[<p]〉.

If p ∈ P (θ), then set

π−1[p] := 〈π−1[xp ∩ rng(π)], π−1[<p ∩rng(π)]〉.

It is easily seen that then π−1[p] ∈ P (θ̄).

We define our FS system by induction over β ≤ ω1.

Base Case: β = 0

Then we need to define only P1. Set P1 := P (1).

Successor Case: β = α + 1

We first define Pθβ . To do so, let

P′θβ := {〈xp ∪ xfα(p), <p ∪ <fα(p)〉 | p ∈ Pθα}

∪{〈xp ∪ xfα(p), tc(<p ∪ <fα(p) ∪{〈η,min{γ ∈ [θα, θα+1[| γ ≤fα(p) fα(η)}〉}〉

| p ∈ Pθα , η ∈ xp, η < fα(η)}.

In this definition, tc(x) denotes the transitive closure of the binary relation
x.

Well, what does this definition say? Obviously there are two types of condi-
tions in P′θβ .

Type 1: Let p ∈ Pϕθβ . Then a condition of type 1 is just the union of the

two possible copies of p to the next level.

β = α + 1

α

p
θα

fαid

p fα(p)

θα+1

It is easy to see that p ∪ fα(p) is a tree again.

Type 2: Let p ∈ Pϕθβ . Then a condition of type 1 is just the union of the

two possible copies of p to the next level plus one additional edge which
connects one vertex η with the minimal element in fα(p) below fα(η) which
was moved by fα.
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β = α + 1

α

η

fα(η)

new edge

This complicated definition is necessary to get a tree again!

Now, define

Pθβ := {p ∈ P (θβ) | r ≤ p for some r ∈ P′θβ}.

For t ∈ Tβ set Pν(t)+1 = P (ν(t) + 1) ∩ Pθβ and Pλ =
⋃
{Pη | η < λ} for

λ ∈ Lim. Let σst : Pν(s)+1 → Pν(t)+1, p 7→ πst(p).

We still need to define eα. If p ∈ rng(σα), then set eα(p) = σ−1
α (p). If p ∈ Pθα ,

then set eα(p) = p. Finally, if p /∈ rng(σα) ∪ Pθα , then pick an r ∈ P′θβ such

that r ≤ p and set eα(p) = f−1
α [r].

Limit Case: β ∈ Lim

Then everything is already uniquely determined by (FS1) and (FS2). That
is, for t ∈ Tβ set Pν(t)+1 =

⋃
{σst[Pν(s)+1] | s ≺ t} and Pλ =

⋃
{Pη | η < λ}

for λ ∈ Lim. Let σst : Pν(s)+1 → Pν(t)+1, p 7→ πst(p).

s ≺ t

t
β

Pν(s3)+1

Pν(s2)+1

Pν(s1)+1
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Lemma 3.3

P satisfies the ccc.

Proof: Since all P (θ) for θ < ω1 have size ≤ ω, it suffices by theorem 4.2 to
show that 〈〈Pη | η ≤ κ+〉, 〈σst | s ≺ t〉, 〈eα | α < κ〉〉 is a FS system along the
morass.

Most conditions of the definition of a FS system are clear. We only prove
(FS6). Let p ∈ Pθβ and β = α+ 1. We may assume that p ∈ P′θβ , because by

definition Pθβ is dense in P′θβ . We have to prove that σ−1
α [p] is a reduction of p

with respect to σα and id � Pθα . To do so for σα, let q ≤ σ−1
α [p] =: s. We have

to find an r ≤ p, σα(q) such that r ∈ Pθβ . We consider two cases. If p is of
the form 〈xs ∪ xfα(s), <s ∪ <fα(s)〉, then define r := 〈xq ∪ xfα(q), <p ∪ <fα(q)〉.
It is easily seen that this is an extension of p and σα(q).

����������

����������

��
��
��
��

α θα

fαid

θα+1α + 1

s q

r

p

If p is of the form

〈xs ∪ xfα(s), tc(<s ∪ <fα(s) ∪{〈η,min{γ ∈ [θα, θα+1[| γ ≤fα(s) fα(η)}〉}〉

for some η ∈ xs, then define r as

〈xq ∪ xfα(q), tc(<q ∪ <fα(q) ∪{〈η,min{γ ∈ [θα, θα+1[| γ ≤fα(q) fα(η)}〉}〉.

It is not difficult to see that r is an extension of p and σα(q).
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α

α + 1

s

q

η

fα(η)

p
r

Let us sketch the proof of r ≤ p. Assume α, β ∈ xp. Then we must show
that α <r β ⇔ α <p β.

Case 1: α, β ∈ xs
Then α <p β ⇔ α <s β ⇔ α <q β ⇔ α <r β where the middle eqivalence
holds because q ≤ s. For the first and last eqivalence note that <p� θα =<s

and <r� θα =<q.

Case 2: α, β ∈ xfα(s)

Then α <p β ⇔ α <s β ⇔ α <q β ⇔ α <r β where the middle equivalence
holds because q ≤ s. For the first and last equivalence note that by the
definition of the additional edge in r (or p respectively) α and β are connected
if and only if they were before adding the edge.

Case 3: α ∈ xs − xfα(s), β ∈ xfα(s) − xs
Assume first that α <p β. Then α <s η and γ0 <fα(s) β where

γ0 = min{γ ∈ [θα, θα+1[| γ ≤fα(s) fα(η)}.

Hence α <q η and γ1 <fα(q) β where

γ1 = min{η ∈ [θα, θα+1[| γ ≤fα(q) fα(η)}.

However, η <r γ1 by definition. So α <r β.

Now, assume that α 6<p β. Then α 6<s η or γ0 6<fα(s) β. Hence α 6<q η or
γ1 6<fα(q) β. So α 6<r β by definition.

Case 4: β ∈ xfα(s) − xs, α ∈ xs − xfα(s)

Then both α <r β and α <p β are false, because the tree orders are supposed
to be compatible with the order of the ordinals.
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This proves that σ−1
α [p] is a reduction of p with respect to σα. The proof that

σ−1
α [p] is a reduction of p with respect to id � Pθα is completely analogous. 2

Lemma 3.4

If γ0(p) = γ0(q), p∗(γ0(p)) = q∗(γ0(q)), π : p ∼= q and α ≤ π(α), then there
exists an r ≤ p, q such that 〈α, π(α)〉 ∈≤r.

γ0(p) = γ0(q)
ᾱ

p̄ = q̄

θγ0

ω1

ω2

α π(α)

∈<rp q

Proof: Let p and q be as in the hypothesis of the lemma. We prove by
induction over η ∈ [γ0(p), ω1] that if π : p∗(η) ∼= q∗(η) (where p∗(ω1) := p)
and α ≤ π(α), then there exists an r ≤ p∗(η), q∗(η) such that 〈α, π(α)〉 ∈≤r.

Base Case: η = γ0(p) = γ0(q)

In this case the claim is trivial because p∗(η) = q∗(η).

Successor Case: η = γ + 1

Let π : p∗(η) ∼= q∗(η) and α ≤ π(α). Let σp : p∗(γ) ∼= p∗(η), σq : q∗(γ) ∼= q∗(η)
and σp(ᾱp) = α, σq(ᾱq) = π(α).

By the induction hypothesis, there is an s ≤ p∗(γ), q∗(γ) such that 〈ᾱq, ᾱp〉 ∈≤s
or 〈ᾱp, ᾱq〉 ∈≤s. Let ᾱ := max{ᾱp, ᾱq}. Now, we consider two cases. If
ᾱ < fγ(ᾱ), we define r as

〈xs ∪ xfα(s), tc(<s ∪ <fα(s) ∪{〈ᾱ,min{β ∈ [θγ, θγ+1[| β ≤fα(s) fγ(ᾱ)}〉}〉.

If ᾱ = fγ(ᾱ), then we define

r := 〈xs ∪ xfα(s), <s ∪ <fα(s)〉.
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σp σq

α π(α)

ᾱp ᾱq

p∗(η) q∗(η)

p∗(γ) q∗(γ)
θγ

θηη = γ + 1

γ

�������� ��������

�������� ����������������

θγ

θηη = γ + 1

γ

s

s

ᾱ

ᾱ

min{β ∈ [θγ, θγ+1[| β ≤fγ(s) fγ(ᾱ)}

In both cases, it is easily seen that r ≤ p∗(η), q∗(η) and 〈α, π(α)〉 ∈≤r.

Limit Case: η ∈ Lim

By (FS1) and (FS2), there are a t ∈ Tη and an s ≺ t such that p∗(η), q∗(η) ∈
rng(σst).
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�������� ��������

�������� ��������

γ

η

s

tp q

α π(α)

r̄

ᾱ π̄(ᾱ)

Let s ∈ Tγ, σst(ᾱ) = α and σst ◦ π̄ = π ◦ σst. Then σst(p
∗(η)) = p∗(γ)

and σst(q
∗(η)) = q∗(γ). Moreover, by the induction hypothesis, there is a

r̄ ≤ p∗(γ), q∗(γ) such that 〈ᾱ, π̄(ᾱ)〉 ∈≤r̄. Set r := σst(r̄). Then r is as
desired. 2

Lemma 3.5

If γ0(p) = γ0(q), p∗(γ0(p)) = q∗(γ0(q)), π : p ∼= q and α < π(α), then there
exists an r ≤ p, q such that 〈α, π(α)〉 /∈<r.

Proof: Basically the proof proceeds like the previous proof. However, in the
successor case, we always use common extensions of the form 〈xp ∪ xfγ(p), <p

∪ <fγ(p)〉. 2

Theorem 3.6

If there is a simplified (ω1, 1)-morass, then there is a ccc forcing that adds
an ω2-Suslin tree.

Proof: Let G be a P-generic filter. Let T =
⋃
{p | p ∈ G}. Well-known

arguments show that T is a tree. We prove that T has neither an antichain
nor a chain of size ω2. First, assume towards a contradiction that there is an
antichain of size ω2. Then there is a p ∈ P and names ḟ , Ȧ such that

p  (Ȧ is an antichain and ḟ : ω̌2 → Ȧ is a bijection).

Since P satisfies ccc, it preserves cardinals. Hence p  (ḟ : ω2 → Ȧ is a
bijection). Let 〈αi | i ∈ ω2〉 and 〈pi | i ∈ ω2〉 be such that pi ≤ p for all
i ∈ ω2 and pi  (ẋi = α̌i ∧ ẋi ∈ x̌pi). Since card(Pω1) = ω1, there is q ∈ Pω1 ,
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η ∈ ω1 and a subset X ⊆ ω2 of size ω2 such that γ0(pi) = η and p∗i (γ0(pi)) = q
for all i ∈ X. Hence all pi with i ∈ X are isomorphic. Since xq is finite,
there are i 6= j ∈ X such that π(αi) = αj and αi ≤ αj where π : pi ∼= pj. By
a previous lemma, there exists an r ≤ pi, pj such that 〈αi, αj〉 ∈≤r. Hence
r  (αi and αj are comparable). That contradicts the definition of p. The
proof that there is no chain of size ω2 works the same using the respective
lemma. 2

This proves that there can be a ccc forcing which adds an ω2-Suslin tree.
However, we claimed that there can be such a forcing of size ω1.

To this end, we define a forcing Q and an embedding i : P → Q such
that i[P ] = Q. In particular, i[P] is dense in Q. It is well-known (see e.g.
Kunen’s book), that in this case P ' Q, i.e. they generate the same generoc
extensions. Hence also Q adds an ω2-Suslin tree. Moreover, it also satisfies
ccc, because if A ⊆ Q was an antichain of size ω1, also i−1[A] ⊆ P was one.

Set

Q = {p∗ � supp(p) | p ∈ P}.

For p, q ∈ Q set p ≤ q iff dom(q) ⊆ dom(p) and p(η) ≤ q(η) for all η ∈
dom(q).

Define

i : P→ Q, p 7→ p∗ � supp(p).

Theorem 3.7

Assume that

(i) ∀p, q ∈ P ∀α ∈ κ : p ≤ p ∈ Pθα+1 → eα(p) ≤ eα(q)

(ii) ∀p ≤ q ∈ P ∀s ≺ t : p ∈ rng(σst)→ q ∈ rng(σst).

Then i : P→ Q is an embedding.

Proof: We must prove

(1) ∀p, q ∈ P (p ≤ q → i(p) ≤ i(q))

(2) ∀p, q ∈ P (p⊥q ↔ i(p)⊥i(q)).
To show (1), let p ≤ q ∈ P. Let τ = min{η | p ∈ Pη+1} and t = 〈κ, τ〉.
Let t′ ≺ t be minimal such that p ∈ rng(σt′t). By (FS2), t′ ∈ Tγ0+1 for
some γ0 ∈ κ. By definition of supp(p), γ0 + 1 ∈ supp(p). By (FS4) and (ii),
p∗(η) = σ−1

t̃t
(p) and q∗(η) = σ−1

t̃t
(q) where t̃ ∈ Tη for all γ0 < η < κ. Hence

η /∈ supp(p) ∪ supp(q) for all γ0 + 1 < η < κ.
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��������

�������� t′

t̃

tp

q

σ−1
t̃t

(q)

σ−1
t̃t

(p)

p̄

q̄

η

κ

γ0 + 1

Moreover, by (FS2), p̄ := p∗(γ0 + 1) ≤ q∗(γ0 + 1) =: q̄. By (FS7), p∗(γ0) =
eα(p̄) and q∗(γ0) = eα(q̄). Hence by (i), p∗(γ0) ≤ q∗(γ0). Now, we re-
peat this argument finitely many times and get that supp(q) ⊆ supp(p) and
p∗(η) ≤ q∗(η) for all η ∈ supp(q).
It remains to prove (2). However, if p ‖ q, then there is an r ≤ p, q.
Hence i(r) ≤ i(p), i(q) by (1), i.e. i(p) ‖ i(q). So assume that p⊥q.
Let ∆ = supp(p) ∩ supp(q). Then by a previous lemma, p∗(α)⊥q∗(α) for
α = max(∆). Hence i(p)⊥i(q). 2

Theorem 3.8

If there exists a simplified (ω1, 1)-morass, then there is a ccc forcing of size
ω1 which adds an ω2-Suslin tree.

Proof: It is easily seen that the forcing P which we constructed previously
satisfies (i) and (ii) of the previous theorem. Moreover, Q has size ω1. Hence
Q is as wanted. 2

Assume that 〈〈Pη | η ≤ ω2〉, 〈σst | s ≺ t〉, 〈eα | α < ω1〉〉 is a FS system along
a simplified (ω1, 1)-morass, P := Pω2 and all Pη are countable for η < ω1.
Then we saw that under ery natural circumstances i : P → Q is a dense
embedding and Q has size ω1. Therefore, by the following lemma ,which is
quoted from Kunen’s textbook, our approach will usually produce forcings
which preserve GCH.
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Lemma

Assume that P satisfies ccc and |P| = κ ≥ ω. Let λ > ω be a cardinal and
θ = κλ. Then P  2λ ≤ θ̌.

This is sometimes useful. On the other hand, many statements in whose con-
sistency we are interested imply ¬GCH. In the next section, we will discuss
how we can change our approach to force such statements.

Historical remarks and references

It is a well known result by S. Shelah that adding a Cohen real also adds a
Suslin tree. For a proof see for example theorem 28.12 in Jech’s book [21].
A related result was proved by L. Stanley and S. Shelah [36]: If 2κ = κ+

and there is a (κ+, 1)-morass, then there exists a κ++-Suslin tree. A similar
result was proved by D. Velleman [45].

It is also possible to use S. Todorcevic’s method of walks on ordinals [42]
(theorem 7.5.1) to construct a ccc forcing which adds an ω2-Suslin tree. This
forcing, however, has size ω2. On the other hand, it suffices to assume 2ω1 .

Tennenbaum’s forcing was introduced in [40].

Most of the material in this section appeared first in the paper Irrgang [20].
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Two-dimensional forcing which
destroys GCH

We will now construct along a simplified gap-1 morass forcings which destroy
GCH.

Our first example is a ccc forcing which adds a function f : [ω2]2 → ω such
that {ξ < α | f(ξ, α) = f(ξ, β)} is finite for all α < β < ω2.

ω2

ω2

{ξ < α | f(ξ, α) = f(ξ, β)}

f(·, α)

f(·, β)

Such a forcing was constructed by S. Todorcevic using only the assumption
that 2ω1 holds. He uses ordinal walks and ∆-functions.

By the Erdös-Rado Theorem a function f like above implies ¬GCH. Because
if CH holds, then ω2 → (ω1)2

ω. Hence if f : [ω2]2 → ω is given, then it has a
homogeneous set H of size ω1. Therefore, if we take α to be the ω-th and β
the (ω + 1)-st one, f(ξ, α) = f(ξ, β) for all ξ ∈ H ∩ α.

45
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α

β

ξ

same color

H

The existence of such a function is interesting for the partition calculus. If
an f.[ω2]2 → ω exists such that {ξ < α | f(ξ, α) = f(ξ, β)} is finite for all
α < β < ω2, then (

ω2

ω2

)
6→
(
ω
ω

)
ω

.

To see this, define g : ω2 × ω2 → ω by

g(α, β) = 2f(α, β) if α < β

g(α, β) = 2f(α, β) + 1 if α > β

g(α, β) = 0 if α = β.

Now, let A,B ⊆ ω2, otp(A) = otp(B) = ω Set γ = sup(A), δ = sup(B).
If γ = δ, we can pick α1, α2 ∈ A and β ∈ B such that α1 < β < α2.
Hence g(α1, β) = 2f(α1, β) 6= 2f(β, α2) + 1 = g(α2, β), i.e. A × B is not
homogeneous.
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β

α2α1

γ = δ

A
γ

δ
B

If γ < δ, then we can find β1, β2 ∈ B such that α < β1, β2 for all α ∈
A. However, g(α, β1) = 2f(α, β1) and g(α, β2) = 2f(α, β2). So {α ∈ A |
g(α, β1) = g(α, β2)} is finite, i.e. A×B is not homogeneous.

β1

β2

finite

A

B

γ

δ

The case γ > δ is entirely symmetric to the case γ < δ. It is open if(
ω3

ω3

)
6→
(
ω
ω

)
ω

is consistent. Another related partition relation is the following. We write
κ → (σ : τ)2

γ for: Every partition f : [κ]2 → γ has a homogeneous set
[A;B] := {{α, β} | α ∈ A, β ∈ B} where α < β for all α ∈ A, β ∈ B,
card(A) = σ and card(B) = τ ; i.e. f is constant on [A;B].

As usual, we write κ 6→ (σ : τ)2
γ for the negation of this statement.
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B

A

κ

κ

We used the consistency of ω2 → (ω : 2)2
ω to prove that(

ω2

ω2

)
6→
(
ω
ω

)
ω

is consistent. This will not work for the consistency of(
ω3

ω3

)
6→
(
ω
ω

)
ω

,

because ω3 6→ (ω : 2)2
ω is inconsistent, i.e. ω3 → (ω : 2)2

ω is a theorem of
ZFC:

Suppose that f : [ω3]2 → ω was a witness for ω3 6→ (ω : 2)2
ω. Let A ⊆ [ω2, ω3[

be a set of size ω1. For α 6= β ∈ A let B(α, β) be the set {γ ∈ ω2 | f(α, γ) =
f(β, γ)}.

B(α, β)

γ ∈ ω2 −B

A

α β

ω2
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Since f witnesses ω3 6→ (ω : 2)2
ω, every B(α, β) is countable. Hence B =⋃

{B(α, β) | α 6= β ∈ A} has size ≤ ω1. Now, consider γ ∈ ω2 − B. Then
by the definition of B, f(α, γ) 6= f(β, γ) for all α 6= β ∈ A. However, this is
impossible because rng(s) ⊆ ω while |A| = ω1.

By the way,
¬CH ⇒ ω2 6→ (3)2

ω.

In fact, 2κ 6→ (3)2
κ for all κ. To see this, let S = {0, 1}κ and F : [S] → κ be

defined by F ({f, g}) = the least α < κ such that f(α) 6= g(α). If f, g, h are
distinct, it is impossible to have F ({f, g}) = F ({f, h}) = F ({g, h}).

However, same colors here

are allowed

Now, we are going to force an f : [ω2]2 → ω such that {ξ < α | f(ξ, α) =
f(ξ, β)} is finite for all α < β < ω2.

The natural forcing to add such an f would be as follows: For a, b ⊆ ω2 let
[a, b] := {〈α, γ〉 | α ∈ a, β ∈ b, γ < α}. Set

P := {〈ap, bp, fp〉 | fp : [ap, bp]→ ω, ap, bp ⊆ ω2 finite}.

Note, that ap, bp are not determined by fp. For example, if ap = {α} and
bp ⊆]α, ω2[, then [ap, bp] = ∅ indepedently of what bp exactly is. Nevertheless,
we will abuse notation and just write p : [ap, bp] → ω for the condition
〈ap, bp, fp〉.
We set p ≤ q iff aq ⊆ ap, bq ⊆ bp and p(α, γ) 6= p(β, γ) for all α < β ∈ aq and
all γ ∈ bp − bq with γ < α.
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bp

ap

��
��
��
��
��

��
��
��
��
��

α

β

γ new

two different values

Like Tennenbaum’s forcing on ω2, P does not satisfy ccc: Let α 6= β ∈
[ω1, ω2[. Then

A = {p ∈ P | ap = {α, β}, bp = {γ}, γ ∈ ω1, p(α, γ) = p(β, γ)}

is an antichain of size ω1.
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α

β

γ3

γ2

γ1

We want to thin out P to a forcing P which satisfies ccc. More precisely, we
want to thin it out so that for every ∆ ⊆ ω2

P∆ := {p ∈ P | ap ⊆ ∆}

satisfies ccc. Moreover, we want that there remain enough conditions that a
proof like the following still works: Let A be an uncountable set of conditions.
Let w.l.o.g. {ap | p ∈ A} be a ∆-system with root ∆. Consider {p � (∆×ω2) |
p ∈ A}. Then there are p 6= q ∈ A such that p � (∆ × ω2) and q � (∆ × ω2)
are compatible. Hence, p and q are compatible, too.

From now on, let M = 〈〈θα | α ≤ ω1〉, 〈Fαβ | α < β ≤ ω1〉〉 be a simplified
(ω1, 1)-morass.

In the recursive definition of P, we use the morass tree s ≺ t and the mappings
πst to map conditions. Let more generally π : θ̄ → θ be any order-preserving
map. Then π : θ̄ → θ induces maps π : θ̄2 → θ2 and π : θ̄2 × ω → θ2 × ω in
the obvious way:

π : θ̄2 → θ2, 〈γ, δ〉 7→ 〈π(γ), π(δ)〉

π : θ̄2 × ω → θ2 × ω, 〈x, ε〉 7→ 〈π(x), ε〉.

We define a system 〈〈Pη | η ≤ ω2〉, 〈σst | s ≺ t〉〉 by induction on the levels of
〈〈θα | α ≤ ω1〉, 〈Fαβ | α < β ≤ ω1〉〉 which we enumerate by β ≤ ω1.

Base Case: β = 0

Then we need only to define P1.

Let P1 := {p ∈ P | ap, bp ⊆ 1}.
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Successor Case: β = α + 1

We first define Pθβ . Let it be the set of all p ∈ P such that:

(1) ap, bp ⊆ θβ

(2) f−1
α [p], (id � θα)−1[p] ∈ Pθα

(3) p � ((θβ \ θα)× (θα \ δ)) is injective

where fα and δ are like in (P3) in the definition of a simplified gap-1 morass.

����
����
����
����
����

����
����
����
����
����

δ

θα

θβ

θβ
θαδ

β = α + 1

α
δ θα

p � ((θβ \ θα)× (θα \ δ))
injective

For ν ≤ θα, Pν is already defined. For θα < ν ≤ θβ set Pν = {p ∈ Pθβ |
ap, bp ⊆ ν}.

Set

σst : Pν(s)+1 → Pν(t)+1, p 7→ πst[p].

Limit Case: β ∈ Lim

For t ∈ Tβ set Pν(t)+1 =
⋃
{σst[Pν(s)+1] | s ≺ t} and Pλ =

⋃
{Pη | η < λ} for

λ ∈ Lim where σst : Pν(s)+1 → Pν(t)+1, p 7→ πst[p].

We set P := Pω2 .
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Lemma 4.1

For p ∈ P , p ∈ P iff for all α < ω1 and all f ∈ Fα+1,ω1

f−1[p] � ((θα+1 \ θα)× (θα \ δα)) is injective

where δα is the critical point of fα which is like in (P3) of the definition of a
gap-1 morass.

Proof:
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δ

θα

θβ

α + 1

α + 2

id

θα+2

fα+1

θα+1

is injective

p � ((θα+2 \ θα+1)× (θα+1 \ δα+1))

p � fα+1[(θα+1 \ θα)× (θα \ δα)]

is injective

p � ((θα+1 \ θα)× (θα \ δα))

is injective

α + 1

α

δα+1

θαδα

θα+1
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We prove by induction on γ ≤ ω1 the following

Claim: p ∈ Pθγ iff p ∈ P , ap ⊆ θγ, bp ⊆ θγ and for all α < γ and all f ∈ Fα+1,γ

f−1[p] � ((θα+1 \ θα)× (θα \ δα)) is injective.

Base case: γ = 0

Then there is nothing to prove.

Successor case: γ = β + 1

Assume first that p ∈ Pθγ . Then, by (2) in the successor step of the definition
of Pω3 , f

−1[p], (id � θβ)−1[p] ∈ Pθβ . Now assume f ∈ Fα+1,γ and α < β. Then
f = fβ ◦ f ′ or f = f ′ for some f ′ ∈ Fα+1,β by (P2) and (P3).

id
fβ

γ

β

α + 1

So by the induction hypothesis

f−1[p] � ((θα+1 \ θα)× (θα \ δα)) is injective

for all f ∈ Fα+1,γ and all α < β. Moreover, if α = β then the identity is the
only f ∈ Fα+1,γ. In this case

f−1[p] � ((θα+1 \ θα)× (θα \ δα)) is injective

by (3) in the successor case of the definition of P.

Now suppose that

f−1[p] � ((θα+1 \ θα)× (θα \ δα)) is injective

for all α < γ and all f ∈ Fα+1,γ. We have to prove that (2) and (3) in
the successor step of the definition of P hold. (3) obviously holds by the
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assumption because the identity is the only function in Fγγ = Fβ+1,γ. For
(2), it suffices by the induction hypothesis to show that

f−1[f−1
β [p]] � ((θα+1 \ θα)× (θα \ δα)) is injective

and
f−1[(id � θβ)−1[p]] � ((θα+1 \ θα)× (θα \ δα)) is injective

for all f ∈ Fα+1,β. This, however, holds by (P2) and the assumption.

Limit case: γ ∈ Lim
Assume first that p ∈ Pθβ . Let α < γ and f ∈ Fα+1,γ. We have to prove that

f−1[p] � ((θα+1 \ θα)× (θα \ δα)) is injective.

By the limit step of the definition of P, there are β < γ, g ∈ Fβγ and p̄ ∈ Pθβ
such that p = g[p̄]. By (P4) there are α, β < δ < γ, g′ ∈ Fβδ, f

′ ∈ Fαδ and
h ∈ Fδγ such that g = h ◦ g′ and f = h ◦ f ′. Let p′ := g′[p̄]. Then, by the
induction hypothesis

(f ′)−1[p′] � ((θα+1 \ θα)× (θα \ δα)) is injective.

γ

δ

β

α

h h

p

p′

p̄

f−1[p]
θα

θβ

f

g

g′

h′

θγ

However, (f ′)−1[p′] = (f ′)−1[h−1[p]] = f−1 and we are done.

Now assume that

f−1[p] � ((θα+1 \ θα)× (θα \ δα)) is injective
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for all α < γ and all f ∈ Fα+1,γ. We have to prove that p ∈ Pθγ , i.e. that
there exists t ∈ Tγ and s ≺ t such that p = πst[p̄] for some p̄ ∈ Pν(s)+1.
To find such t, s ≺ t and p̄, let ν < θγ be such that ap, bp ⊆ ν. Since
ν = {πst[ν(s)] | s ≺ t} and p : [ap, bp] → ω is finite, there exist s ≺ t such
that ap, bp ⊆ rng(πst). Let p = πst[p̄].

α + 1

β

γ

θβ

θγt

s

g

πst = g � ν(s) + 1

f

θα+1

p̄

p

We need to prove that p̄ ∈ Pθβ where β = α(s). By the induction hypothesis
it suffices to prove that

f−1[p̄] � ((θα+1 \ θα)× (θα \ δα)) is injective

for all α < β and all f ∈ Fα+1,β. So let f ∈ Fα+1,β and g ∈ Fβγ such that
πst = g � ν(s) + 1. Then

f−1[p̄] � ((θα+1 \ θα)× (θα \ δα)) = f−1[g−1[p]] � ((θα+1 \ θα)× (θα \ δα)) =

= (g ◦ f)−1[p] � ((θα+1 \ θα)× (θα \ δα))

which is injective by our assumption. 2

For p ∈ P set

Dp = {α < ω1 | ∃f ∈ Fα+1,ω1 f
−1[p] � ((θα+1 \ θα)× (θα \ δα)) 6= ∅}.

Lemma 4.2

Dp is finite for all p ∈ P.
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Proof: For every 〈γ, ξ〉 ∈ dom(p) set s(γ, ξ) := 〈ω1, γ〉 and let t(γ, ξ) be the
minimal t ≺ s(γ, ξ) such that ξ ∈ rng(πt,s(γ,ξ)). Then

(∗) Dp := {α | ∃〈γ, ξ〉 ∈ dom(p) t(γ, ξ) ∈ Tα}.

Hence Dp is finite because dom(p) is finite.

γ=̂sξ

ξ

γ

ω1

α + 1

α

t

ξ̄ γ̄

θα+1

Let us prove (∗).
Let 〈γ, ξ〉 ∈ dom(p), s := s(γ, ξ), t := t(γ, ξ) and t ∈ Tα+1. Let πst(γ̄) = γ,
πst(ξ̄) = ξ. Then γ̄ ∈ θα+1 \ θα and ξ̄ ∈ θα \ δα by the minimality of t ≺ s.
Moreover, πst = f � ν(s) + 1 for some f ∈ Fα+1,ω1 . Hence α ∈ Dp.

Now, assume conversely that 〈γ, ξ〉 ∈ dom(p) and f(γ̄) = γ, f(ξ̄) = ξ for
some f ∈ Fα+1,ω1 such that γ̄ ∈ θα+1 \ θα, ξ̄ ∈ θα \ δα. Then t ≺ s and
πst(ξ̄) = ξ where t := 〈α + 1, γ̄〉, s := 〈ω1, γ〉. Moreover, there is no t′ ≺ t
such that ξ̄ ∈ rng(πt′t). Hence t ≺ s is minimal. 2
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Let ∆ ⊆ ω2 be finite and P∆ = {p ∈ P | ap ⊆ ∆}. We want to represent every
p ∈ P∆ as a function p∗ : [α0, ω1[→ P such p∗(α) ∈ Pθα for all α0 ≤ α < ω1:
Set

η = max(∆)

t = 〈ω1, η〉
s0 = min{s ≺ t | ∆ ⊆ rng(πst)}
α0 = α(s0)

p∗(α) = π−1
st [p] for α0 ≤ α < ω1 where s ∈ Tα, s ≺ t

supp(p) =

{α + 1 | α0 ≤ α < ω1, p
∗(α + 1) 6= p∗(α), p∗(α + 1) 6= fα[p∗(α)]} ∪ {α0}

where fα is like in (P3) of the definition of a simplified gap-1 morass.

Note, that by supp(p) is finite, since p is finite.

∆

p

p∗(α + 1)

α + 1 ∈ supp(p)α + 1

α0

ω1

η=̂t

∆̄

∆′

s ≺ t

α

α + 1

s0

s0∆̄

α0

p∗(α + 1) � ((θα+1 \ θα)× (θα \ δα)) 6= ∅
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Lemma 4.3

If p, q ∈ P∆ and p∗(α), q∗(α) are compatible in Pθα for α = max(supp(p) ∩
supp(q)), then p and q are compatible in P∆.

Proof: Suppose p and q are like in the lemma, but incompatible. Let
(supp(p) ∪ supp(q)) − α = {γn < . . . < γ1}. We prove by induction on
1 ≤ i ≤ n, that p∗(γi) and q∗(γi) are incompatible for all 1 ≤ i ≤ n. Since
γn = α, this yields the desired contradiction.

Note first, that p∗(γ1) and q∗(γ1) are incompatible because otherwise p =
πst[p

∗(γ1)] and q = πst[q
∗(γ1)] were incompatible (for s ∈ Tγ1 , s ≺ t).

q∗(γ1)

γ1 s

t = 〈ω1, η〉
η = max(∆)

πst

p∗(γ1)

ω1

∆

If γ1 = α, we are done. So assume that γ1 6= α. Then either p∗(γ1) =
πs̄s[p

∗(γ1 − 1)] or q∗(γ1) = πs̄s[q
∗(γ1 − 1)] where s̄ ≺ s ≺ t, s̄ ∈ Tγ1−1 and

s ∈ Tγ1 . We assume in the following that p∗(γ1) = πs̄s[p
∗(γ1 − 1)]. Mutatis

mutandis, the other case works the same.
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s

s̄

γ1 − 1

γ1

p∗(γ1 = πs̄s[p
∗(γ1 − 1)]

q∗(γ1)

θγ1

θγ1−1

p∗(γ1 − 1)

q∗(γ1 − 1) = π−1
s̄s [q∗(γ1)]

Claim: p∗(γ1 − 1) and q∗(γ1 − 1) are incompatible in Pθγ1−1

Assume not. Then there is r̄ ≤ p∗(γ1 − 1), q∗(γ1 − 1) in Pθγ1−1 such that
ar̄ = ap∗(γ1−1) ∪ aq∗(γ1−1). Let r′ := πs̄s[r̄].

q∗(γ1 − 1)

θγ1−1
δ

γ1 − 1

r̄

p∗(γ1 − 1)

Then r′ ≤ πs̄s[p
∗(γ1 − 1)] = p∗(γ1) and r′ ≤ πs̄s[q

∗(γ1 − 1)] = q∗(γ1) �
rng(πs̄s)

2. In the following we will construct an r ≤ p∗(γ1), q∗(γ1) which
yields the contradiction we were looking for. Let ar := aq∗(γ1) ∪ ap∗(γ1) and
br := bq∗(γ1) ∪ bp∗(γ1). For 〈ξ, δ〉 ∈ [ar′ , br′ ] set r(ξ, δ) := r′(ξ, δ). For 〈ξ, δ〉 ∈
[aq∗(γ1), bq∗(γ1)] set r(ξ, δ) := q∗(γ1)(ξ, δ). Then r(ξ, δ) is defined for all 〈ξ, δ〉 ∈
[ar, br] except for those in [ap∗(γ1) − aq∗(γ1), bq∗(γ1) − rng(πs̄s)].
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γ′

still undefined

q∗(γ1)

p∗(γ1)

γ1

δ θγ1−1

θγ1

For those choose any values such that (3) in the successor step of the recursive
definition of P holds. Then obviously r ∈ Pθγ1 . It remains to prove r ≤
p∗(γ1), q∗(γ1). That is, we must show that

(1) r(α, ξ) 6= r(β, ξ) for all α < β ∈ ap∗(γ1) and all ξ ∈ br− bp∗(γ1) with ξ < α

(2) r(α, ξ) 6= r(β, ξ) for all α < β ∈ aq∗(γ1) and all ξ ∈ br− bq∗(γ1) with ξ < α.

The first statement is clear if ξ ∈ br′ because r′ ≤ p∗(γ1). So assume ξ /∈ br′ .
Then ξ /∈ rng(πs̄s). Now, we use (P3) in the definition a simplified gap-1
morass. From (P3) and the fact that ξ /∈ rng(πs̄s), α ∈ ap∗(γ1) and ξ < α it
follows that πs̄s 6= id � ν(s̄) + 1. Moreover, if δ is the critical point of fγ1−1

like in (P3), then ξ ∈ θγ1−1\δ and α, β ∈ θγ1\θγ1−1. Hence the first statement
holds because of (3) in the successor step of the recursive definition of P.

The proof of the second statement is mutatis mutandis the same. This proves
the claim.

It follows from the claim, that p∗(γ2) and q∗(γ2) are incompatible. Hence we
can prove the lemma by repeating this argument inductively finitely many
times. 2

Lemma 4.4

P satisfies ccc.

Proof: Let A ⊆ P be a set of size ω1. By the ∆-lemma, we may assume that
{Dp | p ∈ A} forms a ∆-system with root D. We may moreover assume that
for all α ∈ D, all f ∈ Fα+1,ω1 and all p, q ∈ A

f−1[p] � ((θα+1 \ θα)× (θα \ δα)) ⊆ f−1[q] � ((θα+1 \ θα)× (θα \ δα))
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or

f−1[p] � ((θα+1 \ θα)× (θα \ δα)) ⊇ f−1[q] � ((θα+1 \ θα)× (θα \ δα)).

To see this assume that X = {ap | p ∈ A} ⊆ ω2 forms a ∆-system with root
D1 and Y = {bp | p ∈ A} ⊆ ω2 forms a ∆-system with root D2. Fix α ∈ D.
By thinning out A, we can ensure that whenever a 6= b ∈ X, η ∈ a − b,
ν ∈ b− a, α < β, t = 〈ω1, β〉, s ≺ t, s ∈ Tα+1, then η /∈ rng(πst). Moreover,
we can guarantee that whenever a 6= b ∈ Y , η ∈ a − b, ν ∈ b − a, α < β,
t = 〈ω1, β〉, s ≺ t, s ∈ Tα+1, then η /∈ rng(πst). This suffices.

By the ∆-system lemma, we may assume that {ap | p ∈ A} ⊆ ω2 forms a
∆-system with root ∆1. Consider A′ := {p � (∆1 × ω2) | p ∈ A}. By the
∆-system lemma we may also assume that {supp(p) | p ∈ A′} ⊆ ω1 forms a
∆-system with root ∆2. Let α = max(∆2). Since Pθα is countable, there are
q1 6= q2 ∈ A′ such that q∗1(α) = q∗2(α). Hence q1 6= q2 ∈ A′ are compatible
by a previous lemma. Assume that q1 = p∗1 � ∆2 and q2 = p∗2 � ∆2 with
p1, p2 ∈ A.

q2 = p2 � (∆1 × ω2)

p2

p1

q1 = p1 � (∆1 × ω2)

ω2

∆1

We can define p ≤ p1, p2 as follows: ap = ap1 ∪ ap2 , bp = bp1 ∪ bp2 , p �
(ap1 × bp1) = p1, p � (ap2 × bp2) = p2. We still need to define p on [ap, bp] −
((ap1 × bp1) ∪ (ap2 × bp2)). We do this in such a way that the new values are
different from the old ones and distinct among each other. Then p ≤ p1, p2.
We prove p ≤ p1. The other statement is showed similar. Let α < β ∈ ap
and ξ ∈ bp − bp1 . We have to show that p(α, ξ) 6= p(β, ξ). If α, β ∈ aq1 ,
then it holds because q1 = p � (∆1 × bq1) and q2 = p � (∆1 × bq2) are
compatible. If either α or β is in ap1 , while the other one is not, then
p(α, ξ) 6= p(β, ξ) because the new values differ from the old ones. If α, β ∈ ap1 ,
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then p(α, ξ) 6= p(β, ξ) because the new values differ among each other.

It remains to prove that p ∈ P. For this, we show that for all α < ω1 and all
f ∈ Fα+1,ω1

f−1[p] � ((θα+1 \ θα)× (θα \ δα)) is injective,

i.e. p � f [(θα+1 \ θα)× (θα \ δα)] is injective.

Assume that α ∈ D. Then by our second thinning-out

p1 � f [(θα+1 \ θα)× (θα \ δα)] ⊆ p2 � f [(θα+1 \ θα)× (θα \ δα)]

or
p1 � f [(θα+1 \ θα)× (θα \ δα)] ⊇ p2 � f [(θα+1 \ θα)× (θα \ δα)]

and hence

([ap, bp]− (ap1 × bp1)) ∩ f [(θα+1 \ θα)× (θα \ δα)] =

= [ap, bp]− ((ap1 × bp1) ∪ (ap2 × bp2)) ∩ f [(θα+1 \ θα)× (θα \ δα)]

or
([ap, bp]− (ap2 × bp2)) ∩ f [(θα+1 \ θα)× (θα \ δα)] =

= [ap, bp]− ((ap1 × bp1) ∪ (ap2 × bp2)) ∩ f [(θα+1 \ θα)× (θα \ δα)].

Assume w.l.o.g. the first. Let 〈α1, β1〉 6= 〈α2, β2〉 ∈ [ap, bp] ∩ f [(θα+1 \ θα) ×
(θα \ δα)]. Then either 〈α1, β1〉, 〈α2, β2〉 ∈ (ap1 × bp1) or at least one of both is
not. In the first case p(α1, β1) 6= p(α2, β2) because p ≤ p1 and p1 ∈ P. In the
second case it is clear by our definition of p on [ap, bp]−((ap1×bp1)∪(ap2×bp2)).

Finally assume that α /∈ D. Then by our first thinning-out

p1 � f [(θα+1 \ θα)× (θα \ δα)] = ∅

or p2 � f [(θα+1 \ θα)× (θα \ δα)] = ∅.

Hence
([ap, bp]− (ap1 × bp1)) ∩ f [(θα+1 \ θα)× (θα \ δα)] =

= [ap, bp]− ((ap1 × bp1) ∪ (ap2 × bp2)) ∩ f [(θα+1 \ θα)× (θα \ δα)]

or
([ap, bp]− (ap2 × bp2)) ∩ f [(θα+1 \ θα)× (θα \ δα)] =

= [ap, bp]− ((ap1 × bp1) ∪ (ap2 × bp2)) ∩ f [(θα+1 \ θα)× (θα \ δα)].

From this the injectivity follows like in the case α ∈ D. 2
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Lemma 4.5

Let p ∈ P and α, β ∈ ω2. Then there exists q ≤ p such that α ∈ aq and
β ∈ bq.
Proof: Let aq = ap ∪ {α}, bq = bp ∪ {β} and q � (ap × bp) = p. We have to
define q(α, β) on [aq, bq]− ((ap1× bp1)∪ (ap2× bp2)). We do this in such a way
that the new values are different from the old ones and distinct among each
other. Then obviously q ≤ p and

f−1[p] � ((θα+1 \ θα)× (θα \ δα)) is injective

for all α < ω1 and all f ∈ Fα+1,ω1 . Hence also q ∈ P. 2

Theorem 4.6

Assume that there exists a simplified (ω1, 1)-morass. Then there is a ccc
forcing which forces ω2 6→ (ω : 2)2

ω.

Proof: Of course, P is the forcing which we defined above. LetG be P-generic
and set f =

⋃
{p | p ∈ G}. Since P satisfies ccc, cardinals are preserved. By

the previous lemma, f is defined on all of [ω2]2. By the definition of ≤, f is
as wanted. 2

There are other applications of two-dimensional forcing which also require
destroying GCH.

Let us commence with considering strongly almost disjoint subsets of ω1.
Assume that 〈Xα | α < ω2〉 is a family of infinite subsets Xα ⊆ ω1 such that
|Xα ∩Xβ| < ω for all α 6= β ∈ ω2. Then there exists a family 〈X ′α | α < ω2〉
of infinite subsets X ′α ⊆ ω1 such that |X ′α ∩ X ′β| < ω and |X ′α| = ω for all
α 6= β ∈ ω2. To see this, let X ′α ⊆ Xα be any subset of Xα with size ω.

ω1

ω2
α

X ′α

sα

s

For every α ∈ ω2 set sα = sup(X ′α). Since sα ∈ ω1 for all α ∈ ω2, there exists
D ⊆ ω2 with |D| = ω2 and s ∈ ω1 such that sα = s for all α ∈ D. Hence
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Xα 6= Xβ and Xα ⊆ s for all α 6= β ∈ D. However, s is countable. Therefore,
2ω ≥ ω2.

In the following, we will use two-dimensional forcing to add a chain 〈Xα |
α ∈ ω2〉 such that Xα ⊆ ω1, Xβ − Xα is finite and Xα − Xβ has size ω1

for all β < α < ω2. The consistency of such a chain was first proved by P.
Koszmider using ordinal walks / ∆-functions.

ω1

ω2
αβ

Xα⊆∗Xβ

Note, that if we set Yα = Xα+1 − Xα then 〈Yα | α < ω2〉 forms a family of
uncountable subsets of ω1 such that |Yα ∩ Yβ| < ω for all α 6= β ∈ ω2. Hence
by the argument above, if such a family exists, CH cannot hold.

The natural forcing would be

P := {p : ap × bp → 2 | ap × bp ⊆ ω2 × ω1 finite }

where we set p ≤ q iff p ⊆ p and

∀α1 < α2 ∈ ap ∀β ∈ bp − bq p(α1, β) ≤ p(α2, β).
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ω1

ω2

α1

α2

γ

0 1

q

p

Obviously, we will set Xα = {β ∈ ω1 | p(α1, β) = 1 for some p ∈ G} where G
is P -generic. However, like the forcing for ω2 6→ (ω : 2)2

ω, P does not satisfy
ccc. If α < β ∈ ω2, then the set

A = {p ∈ P | ap = {α, β}, bp = {γ}, γ ∈ ω1, p(α, γ) = 1, p(β, γ) = 0}

is an antichain of size ω1.

βα

1 0

γ1

γ2

γ3

To thin P out to a forcing P we proceed like before: Let M = 〈〈θα | α ≤
ω1〉, 〈Fαβ | α < β ≤ ω1〉〉 be a simplified (ω1, 1)-morass. We define 〈〈Pη | η ≤
ω2〉, 〈σst | s ≺ t〉〉 by induction on the levels of M which we enumerate by
β ≤ ω2.

Base case: β = 0

Then we only need to define P1. Set P1 := {p ∈ P | ap × bp ⊆ 1× 1}.

Successor case: β = α + 1.

We first define Pθβ . Let it be the set of all p ∈ P such that
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(1) ap × bp ⊆ θβ × β
(2) f−1

α [p] � (θα × α) ∈ Pθα , p � (θα × α) ∈ Pθα where fα is like in (P3) in the
definition of a simplified gap-1 morass. For its extension to P see below.

(3) If α ∈ bp, then p(γ, α) ≤ p(δ, α) for all γ < δ ∈ ap, i.e.

p � (θβ × {α}) is monotone.

������
������
������
������

������
������
������
������

�������������������������������������� here p is monotone

α

θβ

α

α

θα

{α}

β = α ∪ {α}

β = α + 1

p

For all ν ≤ θα, Pν is already defined. For θα < ν ≤ θβ set

Pν := {p ∈ Pθβ | ap × bp ⊆ ν × β}.

Set
σst : Pν(s)+1 → Pν(t)+1, p 7→ πst[p].

For the definition of πst[p], note that any map π : θ̄ → θ induces maps
π : θ̄ × ω1 → θ × ω1 and π : (θ̄ × ω1)× 2→ (θ × ω1)× 2 by:

π : θ̄ × ω1 → θ × ω1, 〈γ, δ〉 7→ 〈π(γ), δ〉

π : (θ̄ × ω1)× 2→ (θ × ω1)× 2, 〈x, ε〉 7→ 〈π(x), ε〉.
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Limit case: β ∈ Lim

For t ∈ Tβ set Pν(t)+1 =
⋃
{σst[Pν(s)+1] | s ≺ t} and Pλ =

⋃
{Pη | η < λ} for

λ ∈ Lim where

σst : Pν(s)+1 → Pν(t)+1, p 7→ πst[p].

Like before we can prove the following

Lemma 4.7

For p ∈ P , p ∈ P iff for all α < ω1 and all f ∈ Fα+1,ω1

f−1[p] � (θα+1 × {α}) is monotone.

If we follow the consistency proof for ω2 6→ (ω : 2)2
ω, we finally get:

Theorem 4.8

Assume that there exists a simplified (ω1, 1)-morass. Then there exists a ccc
forcing which adds a chain 〈Xα | α < ω2〉 such that Xα ⊆ ω1, Xβ − Xα is
finite and Xα −Xβ is uncountable for all β < α < ω2.

Closely related to ω2 6→ (ω : 2)2
ω are families of ω2-many strongly almost

disjoint functions fα : ω1 → ω. Of course, our proof of the consistency of
ω2 6→ (ω : 2)2

ω also shows that there can be consistently ω2-many strongly
almost disjoint functions fα : ω1 → ω. To force it directly, consider

P =: {p : ap × bp → ω | ap × bp ⊆ ω2 × ω1 finite}

with p ≤ q iff q ⊆ p and

∀α1 < α2 ∈ ap ∀β ∈ bp − bq p(α1, β) 6= p(α2, β).
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ω1

ω2

α1

α2

γ

q

p

different colors

We replace (3) in the recursive definition of P in our last example by

(3)′ If α ∈ bp, then p(γ, α) 6= p(δ, α) for all γ < δ ∈ ap, i.e.

p � (θβ × {α}) is injective.

Then we get:

Theorem 4.9

Assume that there exists a simplified (ω1, 1)-morass. Then there is a ccc
forcing which adds a family 〈fα | α < ω2〉 of functions fα : ω1 → ω such that
{ξ < ω1 | fα(ξ) = fβ(ξ)} is finite for all α < β < ω2.

It is known that there can be families {fα : ω1 → ω | α ∈ κ} of arbitrary pre-
scribed size κ such that {ξ < ω1 | fα(ξ) = fβ(ξ)} is finite for all α < β < κ.
This was proved by J. Zapletal using proper forcing and Todorcevic’s method
of models as side conditions.

Note, that such a family of functions is a family of ω2-many uncountable sub-
sets of ω1 × ω such that the intersection of two distinct members is always
finite. Hence by our above observations 2ω ≥ ω2.

Our final application of two-dimensional forcing is to add an (ω, ω2)-superatomic
Boolean algebra.

Let us recall some facts about Boolean algebras which can be found in the
Handbook of Boolean Algebras:

B = 〈B,+, ·,−, 0, 1〉 is a Boolean algebra if the following axioms hold for all
x, y, z ∈ B:

(B1) x+ (y + z) = (x+ y) + z, x · (y · z) = (x · y) · z
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(B2) x+ y = y + x, x · y = y · x
(B3) x+ (x · y) = x, x · (x+ y) = x

(B4) x · (y + z) = x · y + x · z, x+ (y · z) = (x+ y) · (x+ z)

(B5) x+ (−x) = 1, x · (−x) = 0.

A homomorphism f : B1 → B2 is a map such that for all x, y ∈ B1:

f(0) = 0, f(1) = 1

f(x+ y) = f(x) + f(y), f(x · y) = f(x) · f(y)

f(−x) = −f(x).

Define a relation on B by setting

x ≤ y iff x+ y = y.

This is a partial order.

An a ∈ B is called atom if 0 < a but there is no x ∈ A with 0 < x < a.

B is called atomic if for each 0 < x there exists an atom a < x.

If B is atomic and At(B) is its set of atoms, then

f(x) = {a ∈ At(B) | a ≤ x}

is an injective homomorphism f : B→ P(At(B)).

Hence every atomic Boolean algebra can be represented as an algebra of sets.
This is possible in general.

A filter F on B is a subset F ⊆ B such that for all u, v ∈ B:

(i) 0 /∈ F , 1 ∈ F
(ii) u ∈ F , v ∈ F ⇒ u · v ∈ F
(iii) u, v ∈ B, u ∈ F , u ≤ v ⇒ v ∈ F .

A filter F on B is an ultrafilter if for all u ∈ B either u ∈ F or −u ∈ F .

Set S(B) := {F ⊆ B | F is an ultrafilter on B}.
Then the map

f : B→ P(S(B)), x 7→ {F ∈ S(B) | x ∈ F}

is an injective homomorphism.

Note, that f [B] is a family of subsets of S(B) which is closed under finite
intersections. Hence it is the base of a unique topology. S(B) equipped with
this topology is called the Stone space of B.

An ideal I on B is a subset I ⊆ B such that for all u, v ∈ B:
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(i) 0 ∈ I, 1 /∈ I
(ii) u ∈ I, v ∈ I ⇒ u+ v ∈ I
(iii) u, v ∈ B, u ∈ I, v ≤ u ⇒ v ∈ I.

Let I be an ideal on B. Consider the equivalence relation

u ∼ v iff u∆v := u · (−v) + v · (−u) ∈ I

on B. Let [u] = {v ∈ B | u ∼ v}. Then B/I := {[u] | u ∈ B} with

0 = [0], 1 = [1]

[u] + [v] = [u+ v], [u] · [v] = [u · v]

−[u] = [−u]

forms a Boolean algebra. B/I is called a quotient algebra.

A Boolean algebra is called superatomic if every quotient algebra is atomic.

Assume that B is superatomic. Then we can define recursively:

I0 = {0}
Iα+1 = the ideal generated by Iα ∪ {u ∈ B | [u] is an atom in B/Iα}
Iλ =

⋃
{Iα | α < λ} for λ ∈ Lim.

Finally, Iα = B for some α. Conversely, if Iα = B for some α, then B is
superatomic. The recursive definition of Iα corresponds to recursively taking
Cantor-Bendixon derivatives in the Stone space.

The least α such that At(B/Iα) is finite, or equivalently that Iα+1 = B, is
called the height ht(B) of B. For every α < ht(B) the width wdα(B) is
the cardinality of At(B/Iα). We say that B is a (κ, α)-superatomic Boolean
algebra (sBa), if ht(B) = α and wdβ(B) ≤ κ for all β < α.

It was shown by Baumgartner and Shelah that there can be consistently an
(ω, ω2)-sBa B. Note that in this case 2ω ≥ ω2 because by definition B has
size ω2 but only ω-many atoms.

We obtain an (ω, ω2)-sBa by reversing the recursive definition of the Iα.

Assume that there is a partial order <B on ω2 such that:

(a) ∀α, β ∈ ω2 α <B β → α < β

(b) If α, β ∈ [ωγ, ωγ + ω[, then α and β are incompatible.

(c) If α, β are compatible in <B, then they have an infimum i(α, β).

(d) If α ∈ [ωγ, ωγ +ω[, then there exist for all δ < γ infinitely many β <B α
such that β ∈ [ωδ, ωδ + ω[.
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α

β

[ωγ, ωγ + ω[

[ωδ, ωδ + ω[
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α

β
i(α, β)

For γ < ω2 let xγ = {n ∈ ω | n ≤B γ}.
Let B be the subalgebra of P(ω) which is generated by {xγ | γ < ω2}.
Then

(∗) At(B/Iα) = {[xγ] | ωα ≤ γ < ωα + ω} for all α < ω2

where [xγ] 6= [xγ′ ] if γ 6= γ′.

Hence |At(B/Iα)| = ω for all α < ω2 and B is an (ω, ω2)-sBa.

We prove (∗) by induction over α < ω2.

We have to show that

(i) [xγ] 6= 0 for all ωα ≤ γ < ωα + ω

(ii) [xγ] 6= [xγ′ ] for all γ 6= γ′ ∈ [ωα, ωα + ω[

(iii) ∀0 6= u ∈ B/Iα ∃ωα ≤ γ < ωα + ω: [xγ] ≤ u.

This suffices because [xγ] · [x′γ] = 0 for all γ 6= γ′ ∈ [ωα, ωα + ω[ by (b).

Proof: (i) If α = 0, then the claim is is obvious. So assume that α 6= 0.
Then by the induction hypothesis Iα is the ideal on B which is generated
by {xγ | γ < ωα}. Let γ ∈ [ωα, ωα + ω[. Assume towards a contradiction
that [xγ] = 0, i.e. xγ∆∅ = (xγ − ∅) + (∅ − xγ) = xγ ∈ Iα. So there are
γ1, . . . , γn ∈ ωα such that xγ − (xγ1 ∪ . . . ∪ xγn) = ∅. Hence we are done, if
we can find a δ ∈ xγ such that δ /∈ xγi for all 1 ≤ i ≤ n. We find such a δ
by induction. Note first that xγ − (xγ1 ∪ . . .∪ xγn) = xγ − ((xγ ∩ xγ1)∪ . . .∪
(xγ ∩ xγn)) = xγ − (xi(γ,γ1) ∪ . . . ∪ xi(γ,γn)). Let

{η1 > η2 > . . . > ηk} = {η | ∃1 ≤ i ≤ n i(γ, γn) ∈ [ωη, ωη + ω[}.

Then we can find by (d) a δ1 ∈ [ωη1, ωη1 + ω[ such that δ1 <B γ and
δ1 6= i(γ, γi) for all 1 ≤ i ≤ n. In a second step, we can find by (d) a
δ2 ∈ [ωη2, ωη2 + ω[ such that δ2 <B δ1 and δ2 6= i(γ, γi) for all 1 ≤ i ≤ n.
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By (b), we have δ2 6<B i(γ, γi) for all 1 ≤ i ≤ n. Continuing in this way we
finally find a δ ∈ [0, ω[ such that δ <B γ and δ 6<B i(γ, γi) for all 1 ≤ i ≤ n.
Hence we are done.

γ1

γ2

γ

δ

η1

η2

i(γ, γ2)

δ1

i(γ, γ1)

δ2

(ii) We want to show that [xγ] 6= [xγ′ ] for γ 6= γ′, i.e. (xγ−xγ′)∪ (xγ′−xγ) /∈
Iα. By (b), (xγ − xγ′) ∪ (xγ′ − xγ) = (xγ ∪ xγ′) − (xγ ∩ xγ′) = xγ ∪ xγ′ . By
(i), 0 6= [xγ] ≤ [xγ] + [xγ′ ]. So [xγ] + [xγ′ ] = [xγ + xγ′ ] 6= 0, i.e. xγ ∪ xγ′ /∈ Iα.

(iii) Every 0 6= [u] ∈ B/Iα can be written in disjunctive normal form as

[u] = [xγ′1 ] · [xγ′2 ] · . . . · [xγ′n ] · . . . (−[xγ1 ]) · . . . · (−[xγn ]) + . . . .

Assume w.l.o.g. that [u′] := [xγ′1 ] · [xγ′2 ] · . . . · [xγ′n ] · . . . (−[xγ1 ]) · . . . · (−[xγn ]) 6=
0. Hence it suffices to find [xδ] ≤ [u′] with ωα ≤ δ < ωα + ω. By (c),
xγ′1 ∩ xγ′2 = xi(γ′1,γ′2). So there exists a γ such that [xγ′1 ] · . . . · [xγ′n ] = [xγ]. So

[u′] = [xγ] · (−[xγ1 ]) · . . . · (−[xγn ]) = [xγ]− ([xγ1 ] + . . .+ [xγn ]) =

= [xγ]− ([xγ] · [xγ1 ] + . . .+ [xγ] · [xγn ]) = [xγ]− ([xi(γ,γ1)] + . . .+ [xi(γ,γn)]).

By the induction hypothesis, Iα is the ideal on B which is generated by
{xγ | γ < ωα}. Hence ωα ≤ γ because [u′] 6= 0. We are done if we can
find a δ such that δ ∈ [ωα, ωα + ω[, [xδ] ≤ [xγ] and [xδ] · [xi(γ,γi)] = 0 for all
1 ≤ i ≤ n. Hence by (b) it suffices to find a δ ≤B γ such that δ ∈ [ωα, ωα+ω[
and δ 6≤B i(γ, γi) for all 1 ≤ i ≤ n. We find such a δ very much like in (i). 2
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γ1

γ2

γ

δ

η1

η2

i(γ, γ2)

δ1

i(γ, γ1)

δ2

α

The natural forcing to add a partial ordering like above is the set P of all
finite (strict) partial orders p = 〈xp. <p〉 such that

(a) ∀α, β ∈ ω2 α <B β → α < β

(b) If α, β ∈ [ωγ, ωγ + ω[, then α and β are incompatible.

(c) If α, β are compatible in <p, then they have an infimum ip(α, β).

For p, q ∈ P , we set p ≤ q iff

(i) xq ⊆ xp, <p� xq =<q

(ii) If α, β are compatible in<p, then they are compatible in<q and ip(α, β) =
iq(α, β).

This forcing is very similar to the ones we considered before. For p ∈ P
define fp : [ap, bp]→ 2 by

ap = {β | ∃α α <p β} bp = {α | ∃β α <p β}

fp(α, β) = 1 ⇔ α <p β.
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Then the forcing colors a triangle

p

bp

ap

ω2

ω2

Like in the previous examples, it does not satisfy ccc. To thin it out so that it
obtains ccc, we proceed exactly like in our consistency proof of ω2 6→ (ω : 2)2

ω,
except that we change (3) in the successor step of the definition of P. We
replace it by

(3): ∀γ ∈ θα \ δ card({δ ∈ θβ \ θα | fp(γ, δ) = 1}) ≤ 1.
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δ2δ1
γ

There is at most one δ such that

fp(γ, δ) = 1

θββ = α + 1

α
δ θα

If we now proceed like in the consistency proof for ω2 6→ (ω : 2)2
ω, we obtain:

Theorem 4.10

Assume that there is a simplified (ω1, 1)-morass. Then there exists a ccc
forcing P which adds an (ω, ω2)-sBa.

Historical remarks and references

P. Koszmider [30] proved that it is consistent that there exists a sequence
〈Xα | α < ω2〉 of subsets Xα ⊆ ω1 such that Xβ−Xα is finite and Xα−Xβ is
uncountable for all β < α < ω2. He uses S. Todorcevic’s method of ordinal
walks [42]. It is also known as the method of ρ-functions [29] and provides
a powerful tool to construct ccc forcings in the presence of 2ω1 . Other ap-
plications are a ccc forcing that adds an ω2-Suslin tree [42], a ccc forcing for
ω2 6→ (ω : 2)2

ω [42], a ccc forcing to add a Kurepa tree [42, 43] and a ccc
forcing to add a thin-very tall superatomic Boolean algebra [42]. The last
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forcing was first found by Baumgartner and Shelah [3] independently from
ρ-functions. That there can be a ccc forcing for ω2 6→ (ω : 2)2

ω was first ob-
served by Galvin [27]. That 2ω1 implies the existence of a ccc forcing which
adds a Kurepa tree was first proved by Jensen [23, 22]. Note, that we do
not need a forcing at all in the context of morasses, because the morass tree
〈T,≺〉 which was defined in section 2 is a Kurepa tree.

How ρ-fuctions can be constructed from morasses is explained by C. Morgan
[32]. P. Koepke and J. C. Martinez [28] proved that the existence of a sim-
plified (κ, 1)-morass implies the existence of a (κ, κ+)-superatomic Boolean
algebra. J. Rebholz [34] showed that ω2 6→ (ω1 : ω)2

2 and ω3 6→ (ω2 : ω1)2
2

hold in L using morasses and diamond.

The fact that the existence of ω2-many strongly almost disjoint subsets of
ω1 implies 2ω ≥ ω2 is from Baumgartner’s paper [1]. The existence of an
(ω, ω1)-sBa follows from ZFC. This was proved by I. Juhasz and W. Weiss
[26], and, independently, by M. Rajagopalan [33].

That there can be families {fα : ω1 → ω | α ∈ κ} of arbitrary prescribed size
κ such that {ξ < ω1 | fα(ξ) = fβ(ξ)} is finite for all α < β < κ was proved
by J. Zapletal in [49].

The reference for the Handbook of Boolean Algebras is [35].

The question of whether (
ω3

ω3

)
6→
(
ω
ω

)
ω

is consistent was first asked by S. Todorcevic [41].

The idea to construct forcings like in this chapter was first presented in
Irrgang [17].
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5

Gap-2 morasses

In what follows, we will generalize our approach to three dimensions and
therefore we will need a three-dimensional system along which we can index
our forcings. An appropriate structure is a so-called gap-2 morass. The idea
behind it is that we want to approximate a simplified (ω2, 1)-morass in the
same way as we approximated the ordinal ω2 before.

We imagine the situation to be as follows. First, we turn around the simplified
(ω2, 1)-morass.

⇒

ω2

ω3

ω3

ω2

Then we think of it as the backside of a box which is ω3 high, ω2 wide and
ω1 deep.

79
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ω1

ω2

ω3

The ω1-many slices of the box which are parallel to this backside are thought
of as approximations to the gap-1 morass on the backside.

ω1
ω2

ω3

Of course, these approximations will not fill the whole box.

They look themseves like morasses and are called fake gap-1 morasses.

A fake gap-1 morass is a structure 〈〈ϕζ | ζ ≤ θ〉, 〈Gζξ | ζ < ξ ≤ θ〉〉 which
satisfies the definition of simplified gap-1 morass, except that θ need not be
a cardinal and there is no restriction on the cardinalities of ϕζ and Gζξ. Let
Gζ,ζ+1 = {id, b}. Then the critical point of b is denoted by σζ and called the
split point of Gζ,ζ+1 = {id, b}.
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θ

ϕθ

ϕζ+1

ζ0

ϕζ

σζ

ϕξ

ζ + 1 ξ

The fake morass 〈〈ϕζ | ζ ≤ θ〉, 〈Gζξ | ζ < ξ ≤ θ〉〉 will replace in the gap-2
morass the ordinal levels θα of the gap-1 morass.

ω1

β

α
θα

ϕθα

θβ

ϕθβ

ω2

ω3

We need of course also replacements for the order-preserving maps f : θα →
θβ, i.e. maps which preserve the order of the fake morasses. The appropriate
maps are called embeddings.

Suppose that 〈〈ϕζ | ζ ≤ θ〉, 〈Gζξ | ζ < ξ ≤ θ〉〉 and 〈〈ϕ′ζ | ζ ≤ θ′〉, 〈G′ζξ | ζ <
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ξ ≤ θ′〉〉 are fake gap-1 morasses. An embedding from the first one to the
second will be a function f with domain

(θ + 1) ∪ {〈ζ, τ〉 | ζ ≤ θ, τ < ϕζ} ∪ {〈ζ, ξ, b〉 | ζ < ξ ≤ θ, b ∈ Gζξ}

satisfying certain requirements. We will write fζ(τ) for f(〈ζ, τ〉) and fζξ(b)
for f(〈ζ, ξ, b〉).

The properties are the following ones:

(1) f � (θ + 1) is an order preserving function from θ + 1 to θ′ + 1 such that
f(θ) = θ′.

θ

θ′

ϕθ′

f � (θ + 1)

(2) For all ζ ≤ θ, fζ is an order preserving function from ϕζ to ϕ′f(ζ).

f(ζ)

ζ

fζ

ϕζ

ϕθ

θ

θ′

ϕ′θ′

ϕ′f(ζ)
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(3) For all ζ < ξ ≤ θ, fζξ maps Gζξ to G′f(ζ)f(ξ).

ξζ

f(ξ)f(ζ) θ′

θ

b

ϕ′θ′

fζξ(b)

(4) If ζ < θ, then fζ(σζ) = σ′f(ζ).

θ′

ϕ′θ′

fζ

θ

ϕθ

σζ

fζ(σζ) = σ′f(ζ)

ζ

f(ζ)
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(5) If ζ < ξ ≤ θ, b ∈ Gζξ and c ∈ Gξη, then fζη(c ◦ b) = fξη(c) ◦ fζξ(b).

θ

θ′

ϕ′θ′

ηξζ

cb

fξη(c)

fζξ(b)

(6) If ζ < ξ ≤ θ and b ∈ Gζξ, then fξ ◦ b = fζξ(b) ◦ fζ .

θ

θ′

ϕ′θ′

ξζ

b

fζ

fξ

fζξ(b)

An embedding from one fake gap-1 morass to another preserves its whole
structure. The notion of embedding will play in the definition of gap-2
morasses the role which the order-preserving maps f ∈ Fαβ played in the
gap-1 case. Note, however, one difference. The levels θα of the gap-1 morass
did not necessarily have a greatest element, while all fake gap-1 morasses
have a top-level, namely ϕθ. This correspondes to the fact that we approxi-
mate with a gap-1 morass the ordinal κ+, while we approximate a simplified
(κ+, 1)-morass with a gap-2 morass. And κ+ does not have a greatest ele-
ment, while the simplified (κ+, 1)-morass has a top-level. This results in the
condition f(θ) = θ′ in (1) in the definition of embedding.
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Before we can give the definition of a simplified gap-2 morass, we still need to
replace the identity and the splitting map of (P3) in the definition of gap-1
morasses by appropriate notions.

Let like before 〈〈ϕζ | ζ ≤ θ〉, 〈Gζξ | ζ < ξ ≤ θ〉〉 to 〈〈ϕ′ζ | ζ ≤ θ′〉, 〈G′ζξ | ζ <
ξ ≤ θ′〉〉 be fake gap-1 morasses. Assume moreover that 〈〈ϕζ | ζ ≤ θ〉, 〈Gζξ |
ζ < ξ ≤ θ〉〉 is an initial-segment of 〈〈ϕ′ζ | ζ ≤ θ′〉, 〈G′ζξ | ζ < ξ ≤ θ′〉〉, i.e.
θ < θ′, ϕ′ζ = ϕζ for ζ ≤ θ and G′ζξ = Gζξ for ζ < ξ ≤ θ. We define an
embedding, which is as close to the identity as we can get, as follows: Let
f � θ = id, fζ = id for all ζ < θ and fζξ = id for all ζ < ξ < θ. Then we can
define an embedding by picking fθ ∈ G′θθ′ and setting fζθ(b) = fθ ◦ b for all
ζ < θ and all b ∈ Gζθ.

id

b

ζ ξ

ϕζ

ϕξ

ζ ξ

fζξ(b) = b

θ

θ θ′

ϕ′θ′

ϕθ

ϕθ

fθ

fθ

id
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θ

θ θ′

ϕ′θ′

fθ

b

ϕζ

ζ

ζ

ϕζ
b

fθ
fζθ(b) = fθ ◦ b

ϕθ

We call such an embedding f a left-branching embedding. There are many
left-branching embeddings, one for every choice of fθ.

An embedding f is right-branching if for some η < θ,

(1) f � η = id

(2) f(η + ζ) = θ + ζ if η + ζ ≤ θ

(3) fζ = id for ζ < η

(4) fζξ = id for ζ < ξ < η

(5) fη ∈ Gηθ

(6) fζξ[Gζξ] = G′f(ζ)f(ξ) if η ≤ ζ < ξ ≤ θ.
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id

η

η θ

θ′

ϕθ′

fη

fη ∈ Gηθ
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An amalgamation is a family of embeddings that contains all possible left-
branching embeddings, exactly one right-branching embedding and nothing
else.

Now, we are ready to define gap-2 morasses.

Let κ ≥ ω be regular and 〈〈ϕζ | ζ ≤ κ+〉, 〈Gζξ | ζ < ξ ≤ κ+〉〉 a simplified
(κ+, 1)-morass such that ϕζ < κ for all ζ < κ. Let 〈θα | α < κ〉 be a sequence
such that 0 < θα < κ and θκ = κ+. Let 〈Fαβ | α < β ≤ κ〉 be such that
Fαβ is a family of embeddings from 〈〈ϕζ | ζ ≤ θα〉, 〈Gζξ | ζ < ξ ≤ θα〉〉 to
〈〈ϕζ | ζ ≤ θβ〉, 〈Gζξ | ζ < ξ ≤ θβ〉〉.
This is a simplified (κ, 2)-morass if it has the following properties:

(1) |Fαβ| < κ for all α < β < κ.

(2) If α < β < γ, then Fαγ = {f ◦ g | f ∈ Fβγ, g ∈ Fαβ}.
Here f ◦ g is the composition of the embeddings f and g, which are defined
in the obvious way: (f ◦g)ζ = fg(ζ) ◦gζ for ζ ≤ θα and (f ◦g)ζξ = fg(ζ)g(ξ) ◦gζξ
for ζ < ξ ≤ θα.

(3) If α < κ, then Fα,α+1 is an amalgamation.

(4) If α ≤ κ is a limit ordinal, β1, β2 < α and f1 ∈ Fβ1α, f2 ∈ Fβ2α, then there
are a β1, β2 < γ < α, g ∈ Fγα and h1 ∈ Fβ1γ, h2 ∈ Fβ2γ such that f1 = g ◦ h1

and f2 = g ◦ h2.

(5) For all α ≤ κ, α ∈ Lim:

(a) θα =
⋃
{f [θβ] | β < α, f ∈ Fβα}.

(b) For all ζ ≤ θα, ϕζ =
⋃
{fζ̄ [ϕζ̄ ] | ∃β < α (f ∈ Fβα and f(ζ̄) = ζ)}.

(c) For all ζ < ξ ≤ θα, Gζξ =
⋃
{fζ̄ξ̄[Gζ̄ξ̄] | ∃β < α (f ∈ Fβα, f(ζ̄) = ζ and

f(ξ̄) = ξ)}.

The notion of simplified gap-2 morass was introduced by D. Velleman in his
elegant paper “Simplified gap-2 morasses” (APAL 34, 171 - 208). He also
proved almost all of the following results.

Theorem 5.1

(a) If V = L, then there is a simplified (κ, 2)-morass for all regular κ > ω.

(b) If κ > ω is regular, then there is a forcing P which preserves cardinals
and cofinalities such P  (there is a simplified (κ, 2)-morass).

Since 〈〈ϕζ | ζ ≤ κ+〉, 〈Gζξ | ζ < ξ ≤ κ+〉〉 is a simplified (κ+, 1)-morass, there
is a tree 〈T,≺〉 with levels Tη for η ≤ κ+. And there are maps πst for s ≺ t.
Moreover, if we set F′αβ = {f � θα | f ∈ Fαβ}, then 〈〈θα | α ≤ κ〉, 〈F′αβ | α <
β ≤ κ〉〉 is a simplified (κ, 1)-morass. So there is also a tree 〈T ′,≺′〉 with
levels T ′η for η ≤ κ.
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s′

ϕθβ

θα

θβ

ϕθβ

t

s

≺

t′

≺′

α

β

Lemma 5.2

Suppose α < β ≤ κ, f1, f2 ∈ Fαβ, ζ1, ζ2 < θα and f1(ζ1) = f2(ζ2).

f1 f2

α ζ1
ζ2

f1(ζ1) = f2(ζ2)

θα

θββ

⇒

τ1 = τ2
α

β

f1 � ζ1 = f2 � ζ2

Then ζ1 = ζ2, f1 � ζ1 = f2 � ζ1, (f1)ξ = (f2)ξ for all ξ ≤ ζ1, and (f1)ξη = (f2)ξη
for all ξ < η ≤ ζ1.

Now, let s = 〈α, ν〉 ∈ T ′α, t = 〈β, τ〉 ∈ T ′β and s ≺′ t. Then there is some
f ∈ F′αβ such that f(ν) = τ . By the previous lemma

f � ((ν + 1) ∪ {〈ζ, τ〉 | ζ ≤ ν, τ < ϕζ} ∪ {〈ζ, ξ, b〉 | ζ < ξ ≤ ν, b ∈ Gζξ})

does not depend on f . So we may call it π′st.

Lemma 5.3

If α < β ≤ κ, then there is an f ∈ Fαβ such that f � θα = id � θα, fη = id � ϕη
for all η < θα, and fξη(b) = b for all ξ < η < θα and all b ∈ Gξη.

In addition to the maps f ∈ Fαβ, we need maps f̄ that are associated to f .
For a set of ordinals X, let ssup(X) be the least α such that X ⊆ α. And
let f̄(ζ) = ssup(f [ζ]) ≤ f(ζ).
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. . .

f̄

f

Lemma 5.4

For every α < β ≤ κ, f ∈ Fαβ and ζ ≤ θα, there are unique functions
f̄ζ : ϕζ → ϕf̄(ζ), f̄ξζ : Gξζ → Gf(ξ)f̄(ζ) for all ξ < ζ, and f#(ζ) ∈ Gf̄(ζ)f(ζ)

such that:

(1) fζ = f#(ζ) ◦ f̄ζ
(2) ∀ξ < ζ ∀b ∈ Gξζ fξζ(b) = f#(ζ) ◦ f̄ξζ(b).

α

β

ξ ζ

b

fξ

f̄ξζ(b)

f̄ζ

fζ

f̄(ζ)

f(ζ)

f#(ζ)

From the previous lemma, we get of course also maps (π′st)ζ and (π′st)ξζ for
s ≺′ t and ξ < ζ ≤ ν(t). To be more explicit, let s ≺′ t, s = 〈α, ν〉 and
t = 〈β, τ〉. Then there exists by the definition of ≺′ an f ∈ Fαβ such that
f(ν) = τ . By the previous lemma f � ν + 1, all fξ for ξ ≤ ν and fξη for all
ξ < η ≤ ν do not depend on the choice of f . So we may set (π′st)ζ = f̄ζ and
(π′st)ξζ = f̄ξζ for all ξ < ζ ≤ ν.

Note, that the existence of functions like in the previous lemma is clear in
the case β = α+ 1 by the definition of left-branching embeddings and right-
branching ones.
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Let us first consider a left-branching embedding f ∈ Fα,α+1.

fθα = f#(θα)

α

α + 1

θα

id

θα+1

Set f#(ζ) = id for all ζ < θα and f#(θα) = fθα . Set f̄ζ = id for all ζ ≤ θα.
Finally set f̄ξζ = id for all ξ < ζ ≤ θα.

Then (1) holds because

fζ = id = id ◦ id = f#(ζ) ◦ f̄ζ for all ζ < θα

and

fθα = f#(θα) ◦ id = f#(θα) ◦ f̄θα .

Moreover, (2) holds because

fξζ(b) = b = id ◦ b = f#(ζ) ◦ f̄ξζ(b) for all ξ < ζ < θα

and

fξζ(b) = fθα ◦ b = f#(θα) ◦ f̄ξζ(b) for all ξ < ζ = θα

where the first equalitiy holds by the definition of left-branching embedding
and the second by the definition of f#(θα) and f̄ξζ .

Let us now consider the right-branching embedding f ∈ Fα,α+1. Set η :=
crit(f � θα).
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α

α + 1

η θα

ϕθα+1

fη ∈ Gηθα

θα+1

Let f#(ζ) = id for all η 6= ζ ≤ θα and f#(η) = fη. Set f̄ζ = id for all ζ ≤ η
and f̄ζ = fζ for all η < ζ ≤ θα. Finally set f̄ξζ = id for all ξ < ζ ≤ η and
f̄ξζ = fξζ for all ξ < ζ, η < ζ ≤ θα.

Like before, it is easy to check that (1) and (2) hold. We only check (2) for
ξ < ζ = η. In this case

fξζ(b) = fξζ(b) ◦ id = fξζ(b) ◦ fξ = fη ◦ b = f#(η) ◦ f̄ξζ(b)
where the third equality holds by (6) in the definition of embedding.

From the successor case, the general statement of the lemma follows as usual
by induction over the levels of the morass. For more details see Velleman’s
paper.

Lemma 5.5

(3) If ξ < f̄(ζ) and b ∈ Gξf̄(ζ), then ∃η < ζ ∃c ∈ Gηζ ∃d ∈ Gξf(η) b =

f̄ηζ(c) ◦ d.

(4) ∀ξ < ζ ∀b ∈ Gξζ f̄ζ ◦ b = f̄ξζ(b) ◦ fξ.
(5) If η < ξ < ζ, b ∈ Gξζ and c ∈ Gηξ, then f̄ηζ(b ◦ c) = f̄ξζ(b) ◦ fηξ(c).
(6) If α < β < γ ≤ κ, f ∈ Fβγ, g ∈ Fαβ and ζ ≤ θα, then

(f ◦ g)ζ = f̄ḡ(ζ) ◦ ḡζ
(f ◦ g)#(ζ) = fḡ(ζ)g(ζ)(g

#(ζ)) ◦ f#(ḡ(ζ)) and

(f ◦ g)ξζ = f̄g(ξ)ḡ(ζ) ◦ ḡξζ for all ξ < ζ.
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Historical remarks and references

Practically everything in this section is due to D. Velleman [47, 46].



6

Spread and size of Hausdorff
spaces

As an application of three-dimensional forcing, we will prove it to be consis-
tent that there exists a Hausdorff space X with spread s(X) = ω1 and size

card(X) = 22s(X)

As every mathematician knows, a topology τ on a set X is a subset τ ⊆ P(X)
such that

(1) ∅, X ∈ τ
(2) U, V ∈ τ ⇒ U ∩ V ∈ τ
(3) {Ui | i ∈ A} ⊆ τ ⇒

⋃
{Ui | i ∈ A} ∈ τ .

The pair (X, τ) is called a topological space. The U ∈ τ are called open sets,
their complements are called closed sets. A set is clopen if it is closed and
open.

A base B of τ is a subset B ⊆ τ such that every element of τ is a union of
elements of B. A space is 0-dimensional if it has a base which contains only
clopen sets.

A space is a Hausdorff space if for all x 6= y ∈ X there are x ∈ U ∈ τ and
y ∈ V ∈ τ such that U ∩V = ∅. A Hausdorff space is regular if for all closed
C ⊆ X and all x ∈ X − C, there exist C ⊆ U ∈ τ and x ∈ V ∈ τ such that
U ∩ V = ∅.
Every 0-dimensional Hausdorff space (X, τ) is regular. To see this, let B be
a clopen base of τ , C ⊆ X be closed and x ∈ X − C. Since C is closed,
X − C is open. Hence there is an U ∈ B such that x ∈ u ⊆ X − C, because
B is a base of τ . By the choice of B, U is clopen. So X − U is open, U is
open, C ⊆ X − U , x ∈ U , (X − U) ∩ U = ∅, and we are done.

93
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A subset D ⊆ X is called discrete if for every x ∈ D there exists an U ∈ τ
such that U ∩D = {x}.
The spread s(X) of X is defined as

s(X) = ω · sup{card(D) | D is a discrete subset of X}.

Theorem 6.1 (Hajnal, Juhasz)

Assume that X is a Hausdorff space. Then

card(X) ≤ 22s(X)

.

Proof: Let α := s(X). Assume towards a contradiction that card(X) ≥
(22α)+. We will define a partition f of [X]3 into 4 pieces. By the Erdös-Rado
theorem

(22α)+ → (α+)3
4.

Hence f has a homogeneous set H of size α+. However, from H, we will
be able to define a discrete subspace of size α+. This is a contradiction to
α = s(X).

We define f : [X]3 → 4 as follows: Let <X be a well-ordering of X. Since X
is a Hausdorff space, we can choose for each pair {x, y} ∈ [X]2 with x <X y
disjoint open sets x ∈ U(x, y) and y ∈ V (x, y). For x <X y <X z set

f(x, y, z) = 0 if x ∈ U(y, z) and z ∈ V (x, y)

x y z

U(y, z) V (x, y)

f(x, y, z) = 0 if x ∈ U(y, z) and z ∈ V (x, y)

x y z

U(y, z) V (x, y)
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f(x, y, z) = 0 if x ∈ U(y, z) and z ∈ V (x, y)

x y z

U(y, z) V (x, y)

f(x, y, z) = 0 if x ∈ U(y, z) and z ∈ V (x, y).

x y
z

U(y, z) V (x, y)

By the Erdös-Rado theorem, there exists H ⊆ X such that |H| = α+ and
|f [[H]3]| = 1. Suppose now y ∈ H and y has both an immediate predecessor
x in <X and an immediate successor z in <X . Then

(∗) H ∩ U(y, z) ∩ V (x, y) = {y}.

Hence D = H − {x ∈ H | x limit point in <X} is a discrete subspace of X
of size α+.

To see (∗), assume that p ∈ H ∩ U(y, z) ∩ V (x, y) and p 6= y. Since p 6= x
and p 6= y are obvious, we have either p <X x or z <X p. Assume first that
p <X x. Then f(p, y, z) ∈ {0, 2} because p ∈ U(y, z).

p y z

U(y, z)

Hence by the homogeneity of H, f(p, x, y) ∈ {0, 2}. So p ∈ U(x, y) and
thus p /∈ V (x, y), which is a contradiction. Now, assume z <x p. Then
f(x, y, p) ∈ {0, 1} because p ∈ V (x, y).
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x
y p

V (x, y)

So also f(y, z, p) ∈ {0, 1} by homogeneity of H. Hence p ∈ V (y, z) and thus
p /∈ U(y, z). Contradiction. 2

This proof is given by I. Juhasz in his book “Cardinal functions in topol-
ogy” (1971). He continues by asking if the second exponentiation is really
necessary. This was answered shortly after by Fedorcuk who constructed a
0-dimensional Hausdorff space with spread ω and size 22ω in L. Up to now,
it has not been known whether there can be a Hausdorff space with spread
ω1 and size 22ω1 . Given a simplified (ω1, 2)-morass, we will construct a ccc
forcing of size ω1 which adds such a space that is 0-dimensional.

The natural forcing to add a 0-dimensional Hausdorff space is Cohen forcing.
Let

P := {p : xp → 2 | xp ⊆ ω3 × ω2 finite}.

As usual, we set p ≤ q iff q ⊆ p.

Let G be P -generic. Set F =
⋃
{p | p ∈ G}. Then F : ω3 × ω2 → 2 by a

simple density argument. Let τ be the topology on ω3 which is generated by
the sets

Aiν := {α ∈ ω3 | F (α, ν) = i}.

Thus a base for τ is formed by the sets

Bε :=
⋂
{Aε(ν)

ν | ν ∈ dom(ε)}

where ε : dom(ε)→ 2 is finite and dom(ε) ⊆ ω2.

Hence τ is 0-dimensional because if Bε :=
⋂
{Aε(ν)

ν | ν ∈ dom(ε)} then

ω3 −Bε =
⋃
{Aε̄(ν)

ν | ν ∈ dom(ε)} ∈ τ

(where ε̄(ν) = 0 iff ε(ν) = 1).
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ν

A0
ν

A1
ν

ω2

ω3

It is also a Hausdorff space because for all γ 6= δ there is by genericity of
G some µ ∈ ω2 such that F (γ, ν) 6= F (δ, µ). This, however, means that

γ ∈ AF (γ,µ)
µ , δ ∈ AF (δ,µ)

µ and A
F (δ,µ)
µ ∩ AF (γ,µ)

µ = ∅.

Moreover, (ω3, τ) has spread ≤ ω1:

Suppose not. Let Ẋ, ḣ, Ḃ be P -names and p ∈ P such that

p  (Ẋ ⊆ ω3, ḣ : ω2 → Ẋ is bijective, Ḃ : ω2 → V , ∀i ∈ ω2 Ḃ(i) is a
basic open set, ∀i 6= j ∈ ω2 ḣ(i) ∈ Ḃ(i) ∧ ḣ(i) /∈ Ḃ(j)).

For every i ∈ ω2 let pi ≤ p, δi and εi be such that p  ḣ(̌i) = δ̌i ∧ Ḃ(̌i) = Bε̌i .
Assume that all conditions are of the form pi : api × bpi → 2 and that all
pi are isomorpic. That is, all api ’s have the same size and all bpi ’s have the
same size. And if σij : api → apj and πij : bpi → bpj is order-preserving, then
pi(γ, δ) = pj(σij(γ), πij(δ)). Then we can assume by the ∆-system lemma
that the api ’s and bpi ’s form ∆-systems with roots ∆a and ∆b. Moreover, we
can assume that ∆a is always at the same place in api . We can assume the
same for the bpi ’s. Furthermore, we can assume that δi always has the same
position in api and dom(εi) in bpi .
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r(δj, µ) = εi(µ)

∆a

∆b
dom(εi)

dom(εj)
µ

δj

δi

pj

pi

ω3

ω2

Then for i, j ∈ ω2 there exists r ≤ pi, pj such that 〈δj, µ〉 ∈ dom(r) and
r(δj, µ) = εi(µ) for all µ ∈ dom(εi). Hence r  ḣ(ǰ) = δ̌j ∈ Ḃ(̌i) which
contradicts the definition of p.

Of course, the Cohen forcing P also satisfies ccc and hence preserves cardi-
nals. However, P  2ω ≥ ω3 and hence P  22ω1 ≥ ω4. So (ω3, τ) will not be
as wanted. In the following, we will use our methods to thin out P so that
the remaining forcing is equivalent to a ccc forcing of size ω1. In this case,
the usual argument for Cohen forcing shows that GCH is preserved. This
argument was given at the end of section 3.

Now, let M be a simplified (κ, 2)-morass like in section 5.

We say that

〈〈Pη | η ≤ κ++〉, 〈σst | s ≺ t〉, 〈σ′st | s ≺′ t〉, 〈eα | α < κ+〉, 〈e′α | α < κ〉〉

is a FS system along M if the following conditions hold:

(FS21) 〈〈Pη | η ≤ κ++〉, 〈σst | s ≺ t〉, 〈eα | α < κ+〉〉 is a FS system along
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〈〈ϕζ | ζ ≤ κ+〉, 〈Gζξ | ζ < ξ ≤ κ+〉〉.

Let Q = {p∗ � supp(p) | p ∈ P}.

Define a partial order ≤ on Q by setting p ≤ q iff dom(q) ⊆ dom(p) and
p(α) ≤ q(α) for all α ∈ dom(q).

Set Qγ := {p ∈ Q | dom(p) ⊆ γ}.

(FS22) 〈σ′st | s ≺′ t〉 is a commutative system of injective embeddings
σ′st : Qν(s)+1 → Qν(t)+1 such that if t is a limit point in ≺′, then Qν(t)+1 =⋃
{σ′st[Qν(s)+1] | s ≺′ t}.

(FS23) e′α : Qθα+1 → Qθα .

(FS24) Let s ≺′ t and π = π′st. If π(ν ′) = τ ′, s′ = 〈α(s), ν ′〉 and t′ = 〈α(t), τ ′〉,
then σ′st : Qν(s)+1 → Qν(t)+1 extends σ′s′t′ : Qν′+1 → Qτ ′+1.

Hence for f ∈ Fαβ, we may define σf =
⋃
{σst | s = 〈α, ν〉, t = 〈β, f(ν)〉}.

(FS25) If π′st � ν(s) + 1 = id � ν(s) + 1, then σ′st = id � Qν(s)+1.

(FS26)(a) If α < κ, then Qθα is completely contained in Qθα+1 in such a way
that e′α(p) is a reduction of p ∈ Qθα+1 .

(b) If α < κ, then σ′α := σ′fα : Qθα → Qθα+1 (where fα is the unique right-
branching f ∈ Fα,α+1) is a complete embedding such that e′α(p) is a reduction
of p ∈ Qθα+1 .

(FS27)(a) If α < κ and p ∈ Qθα , then e′α(p) = p.

(b) If α < κ and p ∈ rng(σ′α), then e′α(p) = (σ′α)−1(p).

That is,

〈〈Qη | η ≤ κ+〉, 〈σ′st | s ≺′ t〉, 〈e′α | α < κ〉〉

is a FS system along 〈〈θα | α ≤ κ〉, 〈F′αβ | α < β ≤ κ〉〉.
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p ∈ P
q = p∗ � supp(p) ∈ Q

κ
κ+

α

q∗(α)

Theorem 6.2

Let κ, µ > ω be cardinals, κ regular. Let 〈〈Pη | η ≤ κ++〉, 〈σst | s ≺ t〉, 〈σ′st |
s ≺′ t〉, 〈eα | α < κ+〉, 〈e′α | α < κ〉〉 be a FS system along a (κ, 2)-morass.

(a) If 〈Q,≤〉 satisfies the µ-cc, then P also does.

(b) If all Qη with η < κ satisfy the µ-cc, then P also does.

Proof: (a) Exactly like the proof in section 3 that P satisfies the µ-cc, if all
Pη with η < κ+ do.

(b) Since 〈〈Qη | η ≤ κ+〉, 〈σ′st | s ≺′ t〉, 〈e′α | α < κ〉〉 is a FS system along
〈〈θα | α ≤ κ〉, 〈F′αβ | α < β ≤ κ〉〉, Q satisfies the µ-cc by results from section
3. Hence (b) follows from (a). 2
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As before, we obtain the maps σst for s ≺ t by extending the morass maps πst
to our forcing P . Let π : θ̄ → θ be an order-preserving map. Then π : θ̄ → θ
induces maps π : θ̄× ω2 → θ× ω2 and π : (θ̄× ω2)× 2→ (θ× ω2)× 2 in the
obvious way:

π : θ̄ × ω2 → θ × ω2, 〈γ, δ〉 7→ 〈π(γ), δ〉

π : (θ̄ × ω2)× 2→ (θ × ω2)× 2, 〈x, ε〉 7→ 〈π(x), ε〉.

Basically, we will define the maps σ of the FS system by setting σ(p) = π[p].

Now, we start our construction of P. Let M be a simplified (ω1, 2)-morass.
In a first step, we define partial orders P (τ) for τ ≤ ω3 and Q(τ) for τ ≤ ω2.
In a second step, we thin out P (τ) and Q(τ) to the Pτ and Qτ which form
the FS system along the gap-2 morass.

We define P (τ) by induction on the levels of 〈〈ϕζ | ζ ≤ ω2〉, 〈Gζξ | ζ < ξ ≤
ω2〉〉 which we enumerate by β ≤ ω2.

Base Case: β = 0

Then we only need to define P (1).

Let P (1) := {p ∈ P | xp ⊆ 1× ω}.

Successor Case: β = α + 1

We first define P (ϕβ). Let it be the set of all p ∈ P such that

(1) xp ⊆ ϕβ × ωβ

(2) p � (ϕα × ωα), f−1
α [p � (ϕβ × ωα)] ∈ P (ϕα)

(3) p � (ϕα × ωα) and f−1
α [p � (ϕβ × ωα)] are compatible in P

where fα is like in (P3) in the definition of a simplified gap-1 morass.
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here p ∈ P (ϕβ)

is arbitrary

are essentially isomorphic

β = α + 1α

ϕα

ϕβ

these two parts of p

ϕβ × [ωα, ωβ[

For all ν ≤ ϕα P (ν) is already defined. For ϕα < ν ≤ ϕβ set

P (ν) = {p ∈ P (ϕβ) | xp ⊆ ν × ωβ}.

Set
σst : P (ν(s) + 1)→ P (ν(t) + 1), p 7→ πst[p].

It remains to define eα. If p ∈ rng(σα), then set eα(p) = σ−1
α (p). If p ∈ P (ϕα),

then set eα(p) = p. And if p /∈ rng(σα) ∪ P (ϕα), then set

eα(p) = p � (ϕα × ωα) ∪ f−1
α [p � (ϕβ × ωα)].

Limit Case: β ∈ Lim

For t ∈ Tβ set P (ν(t)+1) =
⋃
{σst[P (ν(s)+1)] | s ≺ t} and P (λ) =

⋃
{P (η) |

η < λ} for λ ∈ Lim where σst : P (ν(s) + 1)→ P (ν(t) + 1), p 7→ πst[p].

Lemma 6.3

〈〈P (η) | η ≤ ω3〉, 〈σst | s ≺ t〉, 〈eα | α < ω2〉〉 is a FS system along 〈〈ϕζ | ζ ≤
ω2〉, 〈Gζξ | ζ < ξ ≤ ω2〉〉.
Proof: Most things are clear. We only prove (FS6). Let p ∈ P (ϕβ) and
β = α + 1. Let q := p � (ϕα × ωα) ∪ f−1

α [p � (ϕβ × ωα)]. We have to prove
that q is a reduction of p with respect to σα and id � P (ϕα). To do so, let
r ≤ q. We have to find an s ≤ p, σα(r), r such that s ∈ P (ϕβ). Define s as
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s := p ∪ r ∪ fα[r]. It is easily seen that s is as wanted. 2

By the previous lemma every p ∈ P (ω3) has finite support and we may define
p∗ for p ∈ P (ω3) like in section 3.

Set Q = {p∗ � supp(p) | p ∈ P (ω3)}.

Define a partial order ≤ on Q by setting p ≤ q iff dom(q) ⊆ dom(p) and
p(α) ≤ q(α) for all α ∈ dom(q).

Set Q(γ) = {p ∈ Q | dom(p) ⊆ γ}.

Now, we thin out Q along 〈〈θα | α ≤ κ〉, 〈F′αβ | α < β ≤ κ〉〉 to obtain Q. We

will, however, not use the maps f ∈ Fαβ but f̄ to map p ∈ Q(θα) to Q(θβ).

For f ∈ Fαβ and p ∈ Q(θα) we may define f̄ [p] with dom(f̄ [p]) = f̄ [dom(p)]
by setting

f̄ [p](f̄(η)) = f̄η ⊗ f [p(η)] for all η ∈ dom(p)

where f̄ , f̄η are as at the end of section 5 and

f̄η ⊗ f : ϕη × ωη → ϕf̄(η) × ωf̄(η), 〈γ, ωδ + n〉 7→ 〈f̄η(γ), ωf(δ) + n〉

for all n ∈ ω

f̄η ⊗ f : (ϕη × η)× 2→ (ϕf̄(η) × f̄(η))× 2, 〈x, ε〉 7→ 〈f̄η ⊗ f(x), ε〉.

In the same way we may define π′st[p].
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α

β
θβ

θα

q := f̄ [p]

η3η1

ϕη1

f̄η1

f̄η3

p(η1)

q(f̄(η1))

f̄η2

ϕf̄(η1)

f̄(η1) f̄(η2) f̄(η3)

ωη1 ωη2 ωη3

ωf̄(η1)

ωf̄(η2)

ωf̄(η3)

f̃
f̃

f̃

f̃(ωδ + n) = ωf(δ) + n

The reason why we use f̄ instead of f ∈ Fαβ is that f does not map the
support of a condition correctly. For an example, consider the case β = α+1
and let f ∈ Fαβ be right-branching. Let δ be the splitting point of f , i.e.
f(δ) = θβ. Assume that p ∈ Q(θα), δ ∈ dom(p) and dom(p(δ)) ⊆ ϕδ × ωδ.
Let f [p] be defined by dom(f [p]) = f [dom(p)] and f [p](f(η)) := fη ⊗ f [p(η)]
for all η ∈ dom(p). We will show that f [p] /∈ Q(θβ). To do so, notice first
that fδ = f#(δ) ◦ f̄δ by (1) in the lemma about f̄ at the end of section
5. However, f̄δ = id � ϕδ, because f is right-branching with splitting point
δ. So fδ = f#(δ). Hence f [p](θα) = fδ ⊗ f [p(δ)] = f#(δ)[p(δ)] because
dom(p(δ)) ⊆ ϕδ × ωδ and f � δ = id � δ. However, this contradicts the
fact that all q ∈ Q(θβ) are of the form q = r∗ � supp(r) for some r ∈ P (ω3)
because in this case q(θα) 6= g[q̄] for all g ∈ Gγθα , q̄ ∈ P (ϕγ) and γ < θα by
the definition of the support of a condition.
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id

θα

θβ

α

f#(δ)⊗ f

p(δ)

β = α + 1

f [p](θα)

δ

f(δ) = θα

ωδ

ωδ
ωθα

This problem does obviously not occur, if we consider f̄ [p].

Lemma 6.4

(a) If f ∈ Fαβ and p ∈ Q(θα), then f̄ [p] ∈ Q(θβ).

(b) If s ≺′ t and p ∈ Q(ν(s) + 1), then π′st[p] ∈ Q(ν(t) + 1).

Proof: Set q := f̄ [p]. Let dom(p) = {α1 < . . . < αn} and dom(q) = {β1 <
. . . < βn} := {f̄(α1) < . . . < f̄(αn)}. By the definition of the support of a
condition, all αi are successor ordinals. And f(αi − 1) = f̄(αi) − 1 by the
definition of f̄ . Set q(βi − 1) = eβi−1(q(βi)). Then it suffices to prove that
there are functions gi ∈ Gβi,βi+1−1 such that

(1) q(βi+1 − 1) = gi[q(βi)]

(2) q(βi) /∈ rng(σβi−1), q(βi) /∈ P (ϕβi−1):

Since p is a condition, there are functions hi ∈ Gαi,αi+1−1 such that

p(αi+1 − 1) = hi[p(αi)].

So we can set

gi = fαi,αi+1−1(hi) ◦ f#(αi).
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α

β

αi αi+1

αi − 1 αi+1 − 1

hi

gi = fαi,αi+1−1(hi) ◦ f#(αi)

f(αi)f̄(αi)

f(αi+1 − 1)

f̄(αi+1)

We need to check (1). We first prove that

fαi+1−1 ⊗ f [eαi+1−1(p(αi+1))] = eβi+1−1(q(βi+1)).



107

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��������������

�
�
�
�

�
�
�
�
�
�
�
�

��

�
�
�
�

�
�
�
�

α

β

αi+1αi+1 − 1

ϕαi+1−1

ϕαi+1

βi+1

ϕβi+1

ϕβi+1−1

fαi+1−1

βi+1 − 1

f̄αi+1

[ω(αi+1 − 1), ωαi+1[

f̃
f̃

ω(βi+1 − 1)

ω(αi+1 − 1) ω(αi+1 − 1)

ω(βi+1 − 1)

[ω(βi+1 − 1), ωβi+1[= [ω · f(αi+1 − 1), ω · f̄(αi+1)[

f̃(ωδ + n) = ωf(δ) + n

To see this, we use (4) in the lemma on f̄ in section 5 which says

∀ξ < ζ ∀b ∈ Gξζ f̄ζ ◦ b = f̄ξζ(b) ◦ fξ.

Applying it for ξ = αi+1 − 1, ζ = αi+1 and b = id � ϕαi+1−1, we get

q(βi+1) � (ϕβi+1−1×ω(βi+1−1)) = f̄αi+1
⊗f [p(αi+1)] � (ϕβi+1−1×ω(βi+1−1)) =

= fαi+1−1 ⊗ f [p(αi+1) � (ϕαi+1−1 × ω(αi+1 − 1))]

where the first equality holds by the definition of q = f̄ [p].

Applying it for ξ = αi+1−1, ζ = αi+1 and the splitting map b of Gαi+1−1,αi+1
,

we obtain
f̄ξζ(b)

−1[q(βi+1) � (ϕβi+1
× ω(βi+1 − 1))] =
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= f̄ξζ(b)
−1[f̄αi+1

⊗ f [p(αi+1)] � (ϕβi+1
× ω(βi+1 − 1))] =

(f̄ξζ(b)
−1 ◦ f̄αi+1

)⊗ f [p(αi+1) � (ϕαi+1
× ω(αi+1 − 1))] =

= (fξ ◦ b−1)⊗ f [p(αi+1) � (ϕαi+1
× ω(αi+1 − 1))] =

= (fξ ⊗ f)[b−1[p(αi+1) � (ϕαi+1
× ω(αi+1 − 1))].

However, by definition

eβi+1−1(q(βi+1)) =

q(βi+1) � (ϕβi+1−1×ω(βi+1−1)) ∪ f̄ξζ(b)
−1[q(βi+1) � (ϕβi+1

×ω(βi+1−1))]

and

eαi+1−1(p(αi+1)) =

p(αi+1) � (ϕαi+1−1 × ω(αi+1 − 1)) ∪ b−1[p(αi+1) � (ϕαi+1
× ω(αi+1 − 1))].

This proves that

fαi+1−1 ⊗ f [eαi+1−1(p(αi+1))] = eβi+1−1(q(βi+1)).

Hence

q(βi+1 − 1) = eβi+1−1(q(βi+1)) = fαi+1−1 ⊗ f [eαi+1−1(p(αi+1))] =

= fαi+1−1 ⊗ f [hi(p(αi))] = (fαi+1−1 ◦ hi)⊗ f [p(αi)] =

= (fαi,αi+1−1(hi) ◦ fαi)⊗ f̄ [p(αi)]

by (6) in the definition of embeddings. However, fαi = f#(αi) ◦ f̄αi by the
lemma on f̄ in section 5.. So

(fαi,αi+1−1(hi) ◦ fαi)⊗ f [p(αi)] =

= (fαi,αi+1−1(hi) ◦ f#(αi) ◦ f̄αi)⊗ f [p(αi)] =

= fαi,αi+1−1(hi) ◦ f#(αi)[f̄αi ⊗ f [p(αi)]] =

= fαi,αi+1−1(hi) ◦ f#(αi)[q(βi)]

and we are done.

To see (2), notice that by the definition of the support of a condition p(αi) /∈
rng(σαi−1) and p(αi) /∈ P (ϕαi−1). Now, we can use (4) from the lemma on
f̄ in section 5 to obtain that q(βi) /∈ rng(σβi−1) and q(αi) /∈ P (ϕβi−1). The
argument is very similar to the one we used to prove

fαi+1−1 ⊗ f [eαi+1−1(p(αi+1))] = eβi+1−1(q(βi+1)). 2
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In the following we thin out Q(γ) to Qγ to obtain a FS system along our
gap-2 morass.

We define Qγ by induction on the levels of 〈〈θα | α ≤ ω1〉, 〈F′αβ | α < β ≤
ω1〉〉.

Base Case: β = 0

Then we only need to define Q1.

Let Q1 = Q(1).

Successor Case: β = α + 1

We first define Qθβ . To do so, let Pϕθβ be the set of all p ∈ P (ϕθβ) such that

(1) (f̄θα ⊗ f)−1[p] ∈ Pϕθα
(2) p∗(θα) and (f̄θα ⊗ f)−1[p] are compatible

where f is the unique right-branching embedding of Fαβ.
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ωδ

ωδ

ωθα

ωθβ

p

(f̄−1
θα
⊗ f)−1[p]

f̃

p∗(θα)

δ

δ θα

ωθα

α

θβ

f̄θα = fθα

β = α + 1

f̃(ωδ + n) = ωf(δ) + n
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Set

Qθβ = {p∗ � (supp(p) ∩ θβ) | p ∈ Pϕθβ }.

For t ∈ T ′β set Qν(t)+1 = {p ∈ Qθβ | dom(p) ⊆ ν(t) + 1} and Qλ =
⋃
{Qη |

η < λ} for λ ∈ Lim.

Set

σ′st : Qν(s)+1 → Qν(t)+1, p 7→ π′st[p].

It remains to define e′α. If p ∈ rng(σ′α), then set e′α(p) = σ′−1
α (p). If p ∈ Qθα ,

then set e′α(p) = p. And if p /∈ rng(σ′α) ∪ Qθα , then choose a r ∈ Pϕθβ with

p = r∗ � supp(r) and set

q := r∗(θα) ∪ (f̄θα ⊗ f)−1[r]

Set e′α(p) = q∗ � (supp(q) ∩ θα).

Limit Case: β ∈ Lim

For t ∈ T ′β set Qν(t)+1 =
⋃
{σ′st[Qν(s)+1] | s ≺′ t} and Qλ =

⋃
{Qη | η < λ}

for λ ∈ Lim where σ′st : Qν(s)+1 → Qν(t)+1, p 7→ π′st[p].

Finally, set Pη = {p ∈ P (η) | p∗ � supp(p) ∈ Qω2} and P := Pω3 .

Remark 1:

We postpone the proof that this definies indeed an FS system along our gap-2
morass M. However, we check the crucial condition (FS26) already here. To
do so, let p ∈ Qθβ and β = α+ 1. Let r ∈ Pϕθβ be such that p = r∗ � supp(r)
and

q := r∗(θα) ∪ (f̄θα ⊗ f)−1[r]

where f is the right-branching embedding of Fαβ.
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p = r∗ � supp(r)

r∗(θα)

θα θβ

r

β = α + 1

α
δ ν

θα

s := q∗ � (supp(q) ∩ θα)

q = r∗(θα) ∪ (f̄θα ⊗ f)−1[r]

t(ν)

t ≤ s

We have to prove that s := q∗ � (supp(p)∩ θα) ∈ Qθα is a reduction of p with
respect to σ′α and id � Qθα . To do so, let t ∈ Qθα with t ≤ s. We have to
find an u ∈ Qθβ such that u ≤ p, σ′α(t), t. Notice first that by results from
section 3,

s ≤ r∗ � (supp(r) ∩ θα)

and
s ≤ (f̄θα ⊗ f)−1[r]∗ � supp((f̄θα ⊗ f)−1[r]).

Hence
t ≤ r∗ � (supp(r) ∩ θα)

and
t ≤ (f̄θα ⊗ f)−1[r]∗ � supp((f̄θα ⊗ f)−1[r]).

Let ν = max(dom(t)). Again by results from section 3, t(ν) and q are
compatible. Set ν = q ∪ t(ν) ∈ Pϕθα and w = r ∪ v ∪ (f̄θα ⊗ f)[v]. Then
w ≤ r, t(ν), (f̄θα ⊗ f)[t(ν)]. Hence u := w∗ � supp(w) ≤ p by results from
section 3 because w ≤ r. Moreover, u ≤ t, σ′α(t). This is proved from
w ≤ t(ν), (f̄θα ⊗ f)[t(ν)] like in the proof of

p ∈ Qθα ∧ f ∈ Fαβ ⇒ f̄ [p] ∈ Qθβ .
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Remark 2:

Suppose p ∈ P is given. Let G be any generic filter with p ∈ G. Let
F =

⋃
{p | p ∈ G}. Then by (2) in the successor step of the construction,

F is not only already determined on dom(p), but a lot more of F is already
determined. Set

D = {n ∈ ω | ∃δ, γ 〈γ, ωδ + n〉 ∈ dom(p)}.

Then it will turn out that F is at least not yet determined on

ω3 × {ωδ + n | n ∈ ω −D, δ ∈ ω2}.

Hence we can show with the same argument we used above for the forcing P
also for P that it adds a Hausdorff space.

Remark 3:

Assume that β = α+ 1 and that f is the right-branching embedding of Fαβ.
Let p1, p2 ∈ Pϕθα be compatible and g ∈ Gθαθβ . Then also g[p1] and f̄θα⊗f [p2]
are compatible, i.e. g[p1] and f̄θα ⊗ f [p2] agree on the common part of their
domains. To prove this, let

〈γ, η〉 ∈ dom(g[p1]) ∩ dom(f̄θα ⊗ f [p2])

g(〈γ1, η1〉) = 〈γ, η〉 f̄θα ⊗ f(〈γ2, η2〉) = 〈γ, η〉.

Since f is right-branching, f̄θα = fθα . Let δ be the critical point of f � θα.
Then η < ωδ and therefore η = η1 = η2.
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ωδ ωδ

θα

α

β = α + 1

δ

ωδ ωδ

fδ

fθα

g

b

〈γ̄, η〉
〈γ2, η〉

〈γ1, η〉

〈γ, η〉

By (6) in the definition of right-branching, there exists a b ∈ Gδθα such that
fδθα(b) = g. Hence, by (6) in the definition of embedding,

fθα ◦ b = g ◦ fδ.

So there exists 〈γ̄, η〉 ∈ ϕδ × ωδ such that

fθα ◦ b(〈γ̄, η〉) = g ◦ fδ(〈γ̄, η〉) = 〈γ, η〉

fδ(〈γ̄, η〉) = 〈γ1, η〉 b(〈γ̄, η〉) = 〈γ2, η〉.

By (5) in the definition of right-branching embedding, fδ ∈ Gδθα . Hence
p1(γ1, η) = p∗1(δ)(γ̄, η). Moreover, p2(γ2, η) = p∗2(δ)(γ̄, η) because b ∈ Gδθα .
However, p1 and p2 are compatible. Therefore, also p∗1(δ) and p∗2(δ) are
compatible. So p∗1(δ)(γ̄, η) = p∗2(δ)(γ̄, η). This in turn implies p1(γ1, η) =
p2(γ2, η). Hence g[p1](γ, η) = f̄θα ⊗ f [p2](γ, η). That’s what we wanted to
show.

The same argument shows for all p ∈ Pϕθα and all g ∈ Gθαθβ that g[p] ∈ Pϕθβ ,
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f̄θα ⊗ f [p] ∈ Pϕθβ and g[p] ∪ (f̄θα ⊗ f)[p] ∈ Pϕθβ .

For arbitrary α < β ≤ ω1 and f ∈ Fαβ define

fθα ⊗ f : ϕθα × ωθα → ϕθβ × ωθβ, 〈γ, ωδ + n〉 7→ 〈fθα(γ), ωf(δ) + n〉

for all n ∈ ω and

fθα ⊗ f : (ϕθα × ωθα)× 2→ (ϕθβ × ωθβ)× 2, 〈x, ε〉 7→ 〈fθα ⊗ f(x), ε〉.

If β = α + 1, then Fαβ is an amalgamation by (3) in the definition of a
simplified gap-2 morass. Hence f ∈ Fαβ is either left-branching or right-
branching. Let p ∈ Pϕθα and assume that f is right-branching. Then fθα ⊗
f [p] = f̄θα ⊗ f [p] because f̄θα = fθα . If f is left-branching, then fθα ∈ Gθαθβ

and f � θα = id � θα. Hence fθα ⊗ f [p] = fθα [p]. So in both cases

fθα ⊗ f [p] ∈ Pϕθβ .

By induction, this is also true if β = α + n for some n ∈ ω. What does
happen at limit levels?

Lemma 6.5

For all β ∈ Lim, Pθβ =
⋃
{fθα ⊗ f [Pϕθα ] | f ∈ Fαβ, α < β}.

Proof: We first prove ⊇. Let α < β, p ∈ Pϕθα and f ∈ Fαβ. We have
to prove that r := fθα ⊗ f [p] ∈ Pϕθβ . That is, we have to show that r∗ �

supp(r) ∈ Qθβ . But by the argument of lemma 6.4, r∗ � supp(r) = f̄ [q] where
q := p∗ � supp(p) ∈ Qθα . Hence f̄ [q] = r∗ � supp(r) by the definition of Qθβ .
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For the converse, let p ∈ Pϕθβ . Hence r := p � supp(p) ∈ Qθβ by the definition

of Pϕθβ .

α

β

θα

θβ

p
r

r̄

g

r(ν)

ν=̂t

ν̄=̂s

p̄

ḡ

Set ν := max(dom(r)) and t := 〈β, ν〉. Moreover, let g ∈ Gνθβ be such that
g[r(ν)] = p. Let, by the definition of Qν+1, s ≺′ t be such that r = σ′st(r̄)
for some r̄ in Qν(s)+1. Hence r = f̄ [r̄] for some f ∈ Fαβ such that s := 〈α, ν̄〉
and f(ν̄) = ν. In particular, also f̄(ν̄) = ν. That is, if we set ν = ξ+ 1, then
ξ ∈ rng(f). Hence f̄ν̄ = fν̄ and r(ν) = fν̄ ⊗ f [r(ν̄)]. Moreover, by (5)(c) in
the definition of a simplified gap-2 morass, we may assume that g = fν̄θα(ḡ)
for some ḡ ∈ Gν̄θα . But then p = fθα ⊗ f [p̄] where p̄ = ḡ[r̄(ν̄)] by (6) in the
definition of embedding. 2

Let G be P-generic and F =
⋃
{p | p ∈ G}. By the usual density argument,

the following lemma shows that F : ω3 × ω2 → 2.

Lemma 6.6

〈〈Pη | η ≤ κ++〉, 〈σst | s ≺ t〉, 〈σ′st | s ≺′ t〉, 〈eα | α < κ+〉, 〈e′α | α < κ〉〉

is a FS system along M.

Proof: (FS22), (FS23), (FS24), (FS25) and (FS27) are clear from the con-
struction. (FS26) was proved in remark 1. So we are only left with (FS21).
That is, we have to prove that

〈〈Pη | η ≤ κ++〉, 〈σst | s ≺ t〉, 〈eα | α < κ+〉〉



116 6. SPREAD AND SIZE OF HAUSDORFF SPACES

is a FS system along 〈〈ϕζ | ζ ≤ ω2〉, 〈Gζξ | ζ < ξ ≤ ω2〉〉. We know that

〈〈P (η) | η ≤ ω3〉, 〈σst | s ≺ t〉, 〈eα | α < ω2〉〉

is a FS system along 〈〈ϕζ | ζ ≤ ω2〉, 〈Gζξ | ζ < ξ ≤ ω2〉〉. From this it follows
immediately that (FS4), (FS5) and (FS7) also hold for

〈〈Pη | η ≤ κ++〉, 〈σst | s ≺ t〉, 〈eα | α < κ+〉〉.

Moreover, (FS1) holds, because

(∗) Pη = {p ∈ P | p ∈ P (η)}

and for P (η) we know (FS1) already. By (∗), one has to prove for (FS2),
(FS3) and (FS6) that certain conditions are elements of P. In the case of
(FS2), for example, one has to show that σst(p) ∈ Pν(t)+1 for all p ∈ Pν(s)+1.
In all three cases that’s not difficult. 2

Lemma 6.7

Let p ∈ P and 〈γ, δ〉 ∈ ω3 × ω2 such that 〈γ, δ〉 /∈ dom(p). Then there exists
a q ≤ p such that 〈γ, δ〉 ∈ dom(q).

Proof: We prove by induction over the levels of the gap-2 morass, which we
enumerate by β ≤ ω1, the following

Claim: Let p ∈ Pϕθβ and 〈γ, δ〉 ∈ ϕθβ × ωθβ such that 〈γ, δ〉 /∈ dom(p). Then

there exists a q ≤ p such that 〈γ, δ〉 ∈ dom(q).

Base case: β = 0

Trivial.
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Successor case: β = α + 1

Let f be the right-branching embedding of Fαβ and η := crit(f � θα).
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η

η

fη

α

β = α + 1

θα

θβ

ωθα

ωθβ

ωη

ϕθβ

rng(fθα)

We consider three cases.

Case 1: γ ∈ rng(fθα), δ ∈ [0, ωη[∪[ωθα, ωθβ[

Let p̄ = (fθα ⊗ f)−1[p] ∪ p∗(θα), fθα(γ̄) = γ and f̃(δ̄) = δ where f̃(ωτ + n) =
ωf(τ) + n for all n ∈ ω. Then by the induction hypothesis, there exists in
Pϕθα a q̄ ≤ p̄ such that 〈γ̄, δ̄〉 ∈ dom(q̄). Set

q := p ∪ (fθα ⊗ f)[q̄].

Then q ≤ p, 〈γ, δ〉 ∈ dom(q) and q ∈ Pϕθβ by remark 3.

Case 2: δ ∈ [0, ωθα[

Let γ̄ ≺ γ, γ ∈ Tθα . Then there exists a g ∈ Fθαθβ such that g(γ̄) = γ. Pick
such a g. By the induction hypothesis, there exists a q̄ ≤ p∗(θα)∪(fθα⊗f)−1[p]
such that 〈γ̄, δ〉 ∈ dom(q̄). Set

q := p ∪ g[q̄].

Then q ≤ p, 〈γ, δ〉 ∈ dom(q) and q ∈ Pϕθβ by remark 3.
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Case 3: δ ∈ [ωθα, ωθβ[, γ /∈ rng(fθα)

Then set q = p ∪ {〈〈γ, δ〉, 1〉}. According to the case which we are in,
q∗(θα) = p∗(θα) and (fθα ⊗ f)−1[q] = (fθα ⊗ f)−1[p]. Hence q∗(θα) and
(fθα ⊗ f)−1[q] are compatible, because p∗(θα) and (fθα ⊗ f)−1[p] are compat-
ible. So q ∈ Pϕθβ . Obviously, q ≤ p and 〈γ, δ〉 ∈ dom(q).

Limit case: β ∈ Lim

By the previous lemma, Pϕθβ =
⋃
{(fθα ⊗ f)[Pϕθα ] | α < β, f ∈ Fαβ}. By (5)

in the definition of a simplified gap-2 morass, ϕθβ =
⋃
{fθα [ϕθα ] | α < β, f ∈

Fαβ} and θβ =
⋃
{f [θα] | α < β, f ∈ Fαβ}. Hence by (4) in the definition of

a simplified gap-2 morass, we can pick α < β, f ∈ Fαβ, p̄ ∈ Pϕθα , γ̄ ∈ ϕθα
and δ̄ ∈ ωθα such that fθα ⊗ f [p̄] = p, fθα(γ̄) = γ and f̃(δ̄) = δ where
f̃(ωτ + n) = ωf(τ) + n for all n ∈ ω. By the induction hypothesis, there
exists q̄ ≤ p̄ such that 〈γ̄, δ̄〉 ∈ dom(q̄). Set q := fθα ⊗ f [q̄]. Then q is as
wanted. 2

At the beginning of the section, we proved that the Cohen forcing P adds a
Hausdorff space. Using the next lemma, the same proof works for P.

Lemma 6.8

Let p ∈ P and γ 6= δ ∈ ω3. Then there is q ≤ p in P and µ ∈ ω3 such that
q(γ, µ) 6= q(δ, µ).

Proof: We prove by induction over the levels of the gap-2 morass, which we
enumerate by β ≤ ω1, the following

Claim: Let p ∈ Pϕθβ and γ 6= δ ∈ ϕθβ . Then there is q ≤ p in Pϕθβ and

µ ∈ ωθβ such that q(γ, µ) 6= q(δ, µ).

Base Case: β = 0

Trivial.

Successor Case: β = α + 1

Let f be the right-branching embedding of Fαβ.
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η

η

fη

α

β = α + 1

θα

θβ

ωθα

ωθβ

ωη

ϕθβ

rng(fθα)

We consider four cases.

Case 1: γ, δ ∈ rng(fθα)

Let p ∈ Pϕθβ be given, fθα(γ̄) = γ and fθα(δ̄) = δ. Set p̄ = (fθα ⊗ f)−1[p] ∪
p∗(θα). By the induction hypothesis, there exists a q̄ ∈ Pϕθα and a µ̄ =
ωτ̄ + n ∈ ωθα (n ∈ ω) such that q̄ ≤ p̄ and q̄(γ̄, µ̄) 6= q̄(δ̄, µ̄). Set

q = p ∪ (fθα ⊗ f)[q̄]

and µ = ωf(τ̄) + n. Then q ∈ Pϕθβ by remark 3, q ≤ p and q(γ, µ) =

q̄(γ̄, µ̄) 6= q̄(δ̄, µ̄) = q(δ, µ).

Case 2: γ, δ /∈ rng(fθα)

We consider two subcases. Assume first that θβ /∈ Lim. Then choose some
µ ∈ [ω(θβ − 1), ωθβ[ such that µ /∈ {τ2 | ∃τ1 〈τ1, τ2〉 ∈ dom(p)}. Set

q = p ∪ {〈〈γ, µ〉, 0〉, 〈〈δ, µ〉, 1〉}.

By the choice of µ, q ∈ P (ϕθβ). According to the case which we are in,
q∗(θα) = p∗(θα) and (fθα⊗f)−1[q] = (fθα⊗f)−1[p]. Hence q∗ and (fθα⊗f)−1[q]
are compatible because q∗ and (fθα ⊗ f)−1[q] are compatible. So q ∈ Pϕθβ
and it is obviously as wanted.

Now, suppose that θβ ∈ Lim. Assume w.l.o.g. that γ < δ. Set t = 〈θβ, δ〉.
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Let s ≺ t be minimal such that γ ∈ rng(πst). Let s ∈ Tη. Pick µ ∈
[ω ·max(θα, η), ωθβ[ such that µ /∈ {τ2 | ∃τ1 〈τ1, τ2〉 ∈ dom(p)}. Set

q = p ∪ {〈〈γ, µ〉, 0〉, 〈〈δ, µ〉, 1〉}.

Like in the first subcase, q ∈ P (ϕθβ) by the choice of µ. Also like in the first
subcase, we can see that q ∈ Pϕθβ . Hence q is as wanted.

Case 3: γ ∈ rng(fθα), δ /∈ rng(fθα)

Again, we consider two subcases. Assume first that θβ /∈ Lim. Then choose
µ ∈ [ω(θβ−1), ωθβ[ such that µ /∈ {τ2 | ∃τ1〈τ1, τ2〉 ∈ dom(p)}. Let fθα(γ̄) = γ
and f̃(µ̄) = µ where f̃(ωτ + n)0ωf(τ) + n.

Let
p̄ = p∗(θα) ∪ (fθα ⊗ f)−1[p].

Then there exists by the previous lemma in Pϕθα a q̄ ≤ p̄ such that 〈γ̄, µ̄〉 ∈
dom(q̄). Set

r = p ∪ (fθα ⊗ f)[q̄]

and
q = r ∪ {〈〈δ, µ〉, ε〉}

where fθα ⊗ f [q](γ, η) 6= ε ∈ 2.

By the choice of µ, q ∈ P (ϕθβ). By remark 3, r ∈ Pϕθβ . Hence r∗(θα)

and (fθα ⊗ f)−1[r] are compatible. According to the case which we are in,
q∗(θα) = r∗(θα) and (fθα ⊗ f)−1[q] = (fθα ⊗ f)−1[r]. So also q ∈ Pϕθβ . It is

also as wanted.

Now, suppose that θβ ∈ Lim. Assume w.l.o.g. that γ < δ. Set t = 〈θβ, δ〉.
Let s ≺ t be minimal such that γ ∈ rng(πst). Let s ∈ Tη. Pick µ ∈
[ω·max(θα, η), ωθβ[ such that µ /∈ {τ2 | ∃τ1 〈τ1, τ2〉 ∈ dom(p)}. Let fθα(γ̄) = γ
and f̃(µ̄) = µ where f̃(ωτ + n) = ωf(τ) + n for all n ∈ ω. Let

p̄ = p∗(θα) ∪ (fθα ⊗ f)−1[p].

From now on, proceed exactly like in the first subcase.

Case 4: γ /∈ rng(fθα), δ ∈ rng(fθα)

Like case 4.

Limit Case: β ∈ Lim
By a previous lemma, Pϕθβ =

⋃
{(fθα ⊗ f)[Pϕθα ] | α < β, f ∈ Fαβ}. By (5)

in the definition of a simplified gap-2 morass, ϕθβ =
⋃
{fθα [ϕθα ] | α < β, f ∈
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Fαβ} and θβ =
⋃
{f [θα] | α < β, f ∈ Fαβ}. Hence by (4) in the definition of

a simplified gap-2 morass, we can pick α < β, f ∈ Fαβ, p̄ ∈ Pϕθα , γ̄ ∈ ϕθα
and δ̄ ∈ ωθα such that fθα ⊗ f [p̄] = p, fθα(γ̄) = γ and f̃(δ̄) = δ where
f̃(ωτ + n) = ωf(τ) + n for all n ∈ ω. By the induction hypothesis, there
exists q̄ ≤ p̄ such that q̄(γ̄, µ̄) 6= q̄(δ̄, µ̄). Set q := fθα ⊗ f [q̄]. Then q is as
wanted. 2

Finally, we prove the appropriate lemma for spread < ω2.

Lemma 6.9

Let 〈pi | i ∈ ω2〉 be a sequence of conditions pi ∈ P such that pi 6= pj if i 6= j.
Let 〈δi | i ∈ ω2〉 be a sequence of ordinals δi ∈ ω3 such that δi ∈ rng(xpi) for
all i ∈ ω2. Then there exist i 6= j and p ∈ P such that p ≤ pi, pj, 〈δi, µ〉 ∈ xp
and p(δi, µ) = p(δj, µ) for all µ ∈ rng(xpj).

Proof: We can assume by the ∆-system lemma that all xpi are isomorphic
relative to the order of the ordinals, that pi ∼= pj for all i, j ∈ ω2, that
π(δi) = δj if π : dom(xpi)

∼= dom(xpj), that {rng(xpi) | i ∈ ω2} forms a
∆-system with root ∆, and that π � ∆ = id � ∆ if π : rng(xpi)

∼= rng(xpj).
To prove the lemma, we consider two cases.

Case 1: rng(xpi) = ∆ for all i ∈ ω2

Then we set η = max(∆). Since there are ω2-many pi while Pϕη+1 has only ω1-
many elements, there exist pi and pj with i 6= j such that p∗i (η+1) = p∗j(η+1).
Hence by the usual arguments pi and pj are compatible. Set p = pi∪pj. Then
p is as wanted, because pi ∼= pj and π(δi) = δj if π : dom(xpi)

∼= dom(xpj).
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p∗i (η + 1) = p∗j(η + 1)

ω(η + 1)

δj

δi

pi

pj

ω1

η + 1
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Case 2: rng(xpi) 6= ∆ for all i ∈ ω2

Then {min(rng(xpi) − ∆) | i ∈ ω2} is unbounded in ω2. For every i ∈ ω2

choose αi < ω1, fi ∈ Fαiω1 , δ̄i ∈ ϕθαi and p̄i ∈ Pϕθαi such that

pi = (fi)θαi ⊗ fi[p̄i] and δi = (fi)θαi (δ̄i).

Since there are ω2-many δi and pi but only ω1-many possible δ̄i and p̄i, we
can assume that αi = αj, δ̄i = δ̄j and p̄i = p̄j for all i, j ∈ ω2. Set p̄ = p̄i,
α = αi and δ̄ = δ̄i.
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(fi)θα ⊗ fi

(fj)θα ⊗ fj

δj

δi

pj

pi

ω2

θα
α

ω1

δ̄

p̄

Let ν ∈ ω3 be such that pi ∈ Pν for all i ∈ ω3. Let t = 〈ω2, ν〉. Let s ≺ t
such that pi ∈ rng(σst) for ω1-many i ∈ ω2.
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Let s ∈ Tη. Pick pi such that min(rng(xpi)−∆) > ωη.
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t=̂ν

η

rng(xpi)−∆

ωη

ω1

pi

Let ηi = min(rng(xpi)−∆). Then by the choice of fi, ηi ∈ rng(fi � θα). Let
u ≺ t be such that u ∈ Tηi . Let fi(η̄i) = ηi.

ω1

α

θα

ω2

δj

t

u

s

ηi

η̄i

δ

Since there are ω1-many j ∈ ω2 such that pj ∈ rng(σst), there are also ω1-
many j ∈ ω2 such that pj ∈ rng(σut). On the other hand, rng((fi)η̄i) is
countable. So we can pick a j ∈ ω2 such that δ /∈ rng((fi)η̄i), πut(δ) = δj
and pj ∈ rng(σut). In the following we will show that there exists p ≤ pi, pj
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such that 〈δj, µ〉 ∈ xp and p(δi, µ) = p(δj, µ) for all µ ∈ rng(xpi).

For α < β ≤ ω1, let fi = gβi ◦ h
β
i where gβi ∈ Fαβ and hβi ∈ Fβω1 . Let

gβi (ηβi ) = ηi and γ be minimal such that δ ∈ rng((gγi )ηγi ).

δ

ηi

γ

ω1

ηγi
θγ

α
η̄i

θα

ω2

(gγi )ηγi

gγi

hγi

For γ ≤ β ≤ ω1, let (gβi )ηβi
(δβ) = δ, pβi = (hβi )θα ⊗ h

β
i [p̄], gβi [∆β] = ∆ and

δβi = (hβi )θα(δ̄). We prove by induction over γ ≤ β ≤ ω1 the following
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Claim 1: If 〈ηβi , δβ〉 ≺ 〈θβ, δ′〉, then there exists pβ ≤ pβi such that 〈δ′, µ〉 ∈
xpβ and pβ(δβi , µ) = pβ(δ′, µ) for all µ ∈ rng(xpβi

)−∆β.

δ′

δβi

δβ

ω2

θβ

θγ
γ

β

ω1

Base case: β = γ

By the definition of γ and (5) in the definition of a simplified gap-2 morass,
γ is a successor ordinal. Let γ = γ′ + 1. Moreover, θγ′ ≤ ηγi . Hence

pγi = fθγ′ ⊗ f [pγ
′

i ] where f is the right-branching embedding of Fγ′γ.
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γ = γ′ + 1 θγ

θγ′

γ′

α
θα

f
ηγ
′
i

ηγi

δβ

ηγ
′

i

We first notice, that δ′ /∈ rng(fθγ′ ). Assume that this was not the case. Then

pick a π ∈ Gηγi θγ
such that π(δβ) = δ′. By (6) in the definition of right-

branching, there is a π̄ ∈ G
ηγ
′
i θγ′

such that f
ηγ
′
i θγ′

(π̄) = π. Let fθγ′ (δ̄
′) = δ′.

Let 〈ηγ
′

i , ρ〉 ≺ 〈θγ′ , δ̄′〉.
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γ = γ′ + 1 θγ

θγ′

γ′

f
ηγ
′
i

ηγi

ηγ
′

i

f

ρ

δ̄′

δ′

δβ

By (6) in the definition of embedding,

f
ηγ
′
i

◦ π̄ = π ◦ fθγ′ .

Hence f
ηγ
′
i

(ρ) = δβ, which contradicts the definition of γ.

Summarizing what we know so far the picture looks as follows:
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′
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i

δ′

δ′

δβi
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Hence we can define a condition pβ ≤ pβi , pβ ∈ P by setting

pβ = pβi ∪ {〈〈δ′, µ〉, p
β
i (δβi , µ)〉 | µ ∈ rng(xpβi

)− θγ′}.

This pβ is as wanted.

Successor step: β = ρ+ 1

We consider two cases:

Case 1: pβi = g[pρi ] for some g ∈ Gθρθβ

In this case ηρi = ηβi < θρ. Let 〈ηβi , δβ〉 ≺ 〈θρ, δ′′〉 ≺ 〈θβ, δ′〉. Let π ∈ Gθρθβ

such that π(δ′′) = δ′. Then by the induction hypothesis, there exists p′ ≤ pρi
such that

p′(δ′′, µ) = p′(δρi , µ)

for all µ ∈ rng(xpρi )−∆ρ. Set

pβ = π[p′] ∪ g[p′].

Then by remark 3, pβ ∈ P and

pβ(δ′, µ) = p′(δ′′, µ) = p′(δρi , µ) = pβi (δβi , µ)

for all µ ∈ rng(xpρi )−∆ρ = rng(xpβi
)−∆β. Hence pβ is as wanted.

�
�
�

�
�
�

�
�
�

�
�
� �

�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

g

π

δβ

pρi

δ′′

δ′

δβi

δρi

ρ

β = ρ+ 1

ηρi

ηβi



129

Case 2: pβi = fθρ [p
ρ
i ] where f is the right-branching embedding of Fρβ

We consider three subcases.

Subcase 1: δ′ ∈ rng(fθρ)

Let fθρ(δ̄
′) = δ′. Then by (6) in the definition of embedding, δρ ≺ δ̄′.
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f δ̄′

δ′

δβ

ρ
δρ

θρηρi

fηρi

β = ρ+ 1 θβ
ηβi

Hence by the induction hypothesis, there exists pρ ≤ pρi such that 〈δ̄′, µ〉 ∈ xpρ
and pρ(δρi , µ) = pρ(δ̄′, µ) for all µ ∈ rng(xpρi )−∆ρ. Set

pβ = fθρ ⊗ f [pρ].

Then pβ is as wanted.

Subcase 2: δ′ /∈ rng(fθρ) and θρ ≤ ηβi

Exactly like the base case of the induction.

Subcase 3: δ′ /∈ rng(fθρ) and ηβi < θρ.

This case is a combination of the base case of the induction and of case 1.
Let 〈ηβi , δβ〉 ≺ 〈θρ, δ′′〉 ≺ 〈θβ, δ′〉. Let π ∈ Gθρθβ such that π(δ′′) = δ′. Then
by the induction hypothesis, there exists pρ ≤ pρi such that 〈δ̄′, µ〉 ∈ xpρ and

pρ(δρi , µ) = pρ(δ′′, µ)

for all µ ∈ rng(xpρi )−∆ρ.
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ωθβ

ωθρ

δβi

δ′

δ′′

δβ

δρ

θρ

θρ
ρ

β = ρ+ 1

Set

pβ = π[pρ] ∪ (fθρ ⊗ f)[pρ] ∪ {〈〈δ′, µ〉, pβi (δβi , µ)〉 | µ ∈ rng(xpβi
)− θρ}.

By remark 3, pβ ∈ P. We claim that pβ is as wanted. For µ ∈ rng(xpβi
)− θρ,

pβ(δβi , µ) = pβ(δ′, µ)

holds by definition. For µ ∈ rng(xpβi
) ∩ θρ = rng(xpρi ) ∩ θρ, we have

pβ(δ′, µ) = pρ(δ′′, µ) = pρ(δρi , µ) = pβi (δβi , µ).

This finishes the proof of the successor step.

Limit case: β ∈ Lim

By lemma 6.5 and by (4) and (5) in the definition of a simplified gap-2
morass, we can pick a ρ < β and a f ∈ Fρβ such that δ′ ∈ rng(fθρ) and

fθρ⊗f [pρi ] = pβi . Let fθρ(δ̄
′) = δ′. Then by (6) in the definition of embedding,

〈ηρi , δρ〉 ≺ 〈θρ, δ̄′〉.
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δβ

δ′

θβ

θρ

δ̄′

f

ρ

β

δρ

ηβi

Hence we can pick by the induction hypothesis a pρ ≤ pρi such that 〈δ̄′, µ〉 ∈
xpρ and

pρ(δρi , µ) = pρ(δ̄′, µ)

for all µ ∈ rng(xpρi )−∆ρ. Set

pβ = fθρ ⊗ f [pρ].

Then pβ is obviously as wanted. This finishes the proof of claim 1.

Finally, we can prove by induction over α < β ≤ ω1

Claim 2: For α ≤ β < γ, set pβ := pβi . For γ ≤ β < ω1, let pβ be like in
claim 1. Then there exists for all α ≤ β < ω1 a p ∈ P such that p ≤ pβ, pβj .

Base case: β = α

Trivial.

Successor case: β = ρ+ 1

We consider four cases.

Case 1: pβi = g[pρi ] and pβj = h[pρj ] for some g, h ∈ Gθρθβ

By the induction hypothesis, there exists a p̄ ≤ pρ, pρj . Set

p = g[p̄] ∪ h[p̄] ∪ pβ.

It is not difficult to see that p ∈ P in all the different cases which occur in
the definition of pβ.
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Case 2: pβi = fθρ ⊗ f [pρi ] and pβj = g[pρj ] where g ∈ Gθρθβ and f is the right-
branching embedding of Fρβ

By the induction hypothesis, there exists a p̄ ≤ pρ, pρj . Set

p = g[p̄] ∪ (fθρ ⊗ f)[p̄] ∪ pβ.

It is not difficult to see that p ∈ P in all the different cases which occur in
the definition of pβ.

Case 3: pβj = fθρ ⊗ f [pρj ] and pβi = g[pρi ] where g ∈ Gθρθβ and f is the right-
branching embedding of Fρβ

Like case 2.

Case 4: pβi = fθρ⊗ f [pρi ] and pβj = fθρ⊗ f [pρj ] where f is the right-branching
embedding of Fρβ

By the induction hypothesis, there exists a p̄ ≤ pρ, pρj . Set

p = (fθρ ⊗ f)[p̄] ∪ pβ.

It is not difficult to see that p ∈ P in all the different cases which occur in
the definition of pβ.

Limit case: β ∈ Lim
This is proved very similar to the limit step in claim 1.

This finishes claim 2 and proves the lemma, if we set β = ω1 and δ′ = δj. 2

Lemma 6.10

(a) i : Pω3 → Qω2 , p 7→ p∗ � supp(p) is a dense embedding.

(b) There is a ccc-forcing P̄ of size ω1 such that Qω2 embedds densely into P̄.

Proof: (a) By results from section 3.

(b) Note, that 〈〈Qη | η ≤ ω3〉, 〈σ′st | s ≺′ t〉, 〈e′α | α < ω1〉〉 is a FS iteration
along 〈〈θα | α ≤ ω1〉, 〈F′αβ | α < β ≤ ω1〉〉. Hence we can define P̄ from Qω2

like we defined Qω2 from Pω3 . That Qω2 embedds densely into P̄ is proved
like before. 2

Theorem 6.11

If there is a simplified (ω1, 2)-morass, then there is a ccc-forcing P̄ of size ω1

that adds a 0-dimensional Hausdorff topology on ω3 which has spread ω1.
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Proof: By the previous lemmas, most of the claim is clear. We only prove
that τ has spread ω1. Assume not. Let Ẋ, ḣ and Ḃ be names and p ∈ P a
condition such that

p  (Ẋ ⊆ ω3, ḣ : ω2 → Ẋ is bijective, Ḃ : ω2 → V , ∀i ∈ ω2 Ḃ(i) is a basic
open set, ∀i 6= j ∈ ω2 ḣ(i) ∈ Ḃ(i) ∧ ḣ(j) /∈ Ḃ(i)).

For every i ∈ ω2 let pi ≤ p and δi, εi be such that pi  ḣ(̌i) = δ̌i∧ Ḃ(i) = Bε̌i .
By the previous lemma, there are i 6= j and r ∈ P such that r ≤ pi, pj,
〈δi, µ〉 ∈ xr and r(δi, µ) = r(δj, µ) for all µ ∈ rng(xpj). Hence r  ḣ(j) =

δ̌j ∈ Ḃ(i) which contradicts the definition of p. 2

Historical remarks and references

Theorem 6.1 was first proved for regular spaces by J. de Groot [4]. Then this
was generalized to arbitrary Hausdorff spaces by A. Hajnal and I. Juhasz [14].
The proof given here is from Juhasz’s book [25]. Fedorcuk’s construction of
a 0-dimensional Hausdorff space with spread ω and size 22ω in L is given in
[11].

The construction which we presented in this chapter was first described in
Irrgang [17].
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