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It will be shown in Lecture III that if the natural action of G on N
has a unique invariant mean µ then this mean is defined by
µ(A) < r for any rational r if and only if

(∃Z ∈ [G ]<ℵ0)(∀k ∈ N)
| {z ∈ Z | zk ∈ A} |

|Z |
< r

In the case of a {0, 1}-valued invariant mean µ this yields that
{A ⊆ N | µ(A) = 1} is an ultrafilter. The preceding definition
shows that if the definition of G is simple, then so is the quantifier
”∃Z ∈ [G ]<ℵ0”. This ultrafilter would then have to be analytic.
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Recall from Lecture I that the argument establishing there are no
analytic subgroups of S(ω) that act with a unique mean relied on
the fact that a unique mean, if it exists, has a nice definition. This
will now be proved.

Definition

Let G be subgroup of S(ω). A set X ⊆ ω is said to be r-thick
(with respect to G ) if and only if for every finite subset H ⊆ G
there is n ∈ ω such that

| {h ∈ H | hn ∈ X } |
|H|

≥ r
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Lemma (Wang)

If G is an amenable subgroup of S(ω) then X ⊆ ω is r -thick if and
only if there is a G-invariant mean µ on ω such that µ(X ) ≥ r .

To see this first assume that X ⊆ ω is r -thick. Using that G is
amenable — and hence satisfies the Følner condition — let
{Fε,H}ε>0,H∈[G ]<ℵ0 be such that

H ⊆ Fε,H ∈ [G ]<ℵ0

if ε < δ and H ⊇ D then Fε,H ⊇ Fδ,D
|hFε,H∆Fε,H |
|Fε,H | < ε for all h ∈ H.

Using the fact that X is r -thick choose for each H ∈ [G ]<ℵ0 and
ε > 0 there is an integer Nε,H such that

| {h ∈ Fε,H | hNε,H ∈ X |}
|Fε,H |

≥ r
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Now define a measure µε,H by defining

µε,H(Y ) =
| {h ∈ Fε,H | hNε,H ∈ Y } |

|Fε,H |

and note that µε,H(X ) ≥ r for all H and ε.

Moreover, by the Følner property it follows that
µε,H(gY )
µε,H(Y ) =

| {h ∈ Fε,H | hNε,H ∈ gY } |
| {h ∈ Fε,H | hNε,H ∈ Y } |

=
|
{

h ∈ g−1Fε,H | hNε,H ∈ Y
}
|

| {h ∈ Fε,H | hNε,H ∈ Y } |

for each g ∈ H and since
|g−1Fε,H∆Fε,H |

|Fε,H | < ε it follows that

lim
ε→0

µε,H(gY )

µε,H(Y )
= 1
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Let µ be a weak∗ limit of the µε,H along the net of (ε,H) in
(0,∞)× [G ]<ℵ0 . This yields a G invariant measure such that
µ(X ) ≥ r .

To check the other direction suppose that X ⊆ ω and that µ is a
mean such that µ(X ) ≥ r . Then let ψ : `∞ → R be the linear
function defined by Lebesgue integration with respect to µ. Then
for any finite H ⊆ G by linearity and G -invariance of ψ it follows
that

ψ

(∑
h∈H

χh−1X

)
=
∑
h∈H

ψ(χh−1X )) = |H|µ(X ) ≥ |H|r

By the positivity of ψ this means that there must be at least one
n ∈ ω such that

∑
h∈H χh−1X (n) ≥ |H|r . In other words,

| {h ∈ H | hn ∈ X } | ≥ |H|r as required.
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Definition

For any group G acting on ω define a function mG on the power
set of ω by mG (X ) = sup({r ∈ R | X is r -thick}).

Corollary

If G is an amenable group acting on ω then mG is a finitely
additive probability measure if and only the action of G on ω has a
unique invariant mean.

Note that the preceding lemma yields the following alternate
definition of mG :

mG (X ) = sup({r ∈ R | (∃µ) µ is an invariant mean and µ(X ) = r })

and if there is a unique invariant mean µ this yields that
mG (X ) = µ(X ). Hence mG is an invariant probability measure.
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For the other direction, suppose that mG is an invariant mean.
From the definition of mG it follows that if µ is an other invariant
mean then

µ(X ) ≤ sup({µ(X ) | µ is an invariant mean}) = mG (X )

for every X . But if µ(X ) � mG (X ) for some X then
µ(ω \ X ) ≤ mG (ω \ X ) and hence
µ(ω) = µ(X ) + µ(ω \ X ) � mG (X ) + mG (ω \ X ) = 1.
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Foreman showed that in the model obtained by adding ℵ2 Cohen
reals to a model of CH that there is no locally finite subgroup of
S(ω) that acts on ω with a unique invariant mean. An analysis of
his argument will show that he actually proved the following.

Theorem

Let P =
∏
ξ∈ω2

Pξ be a finite support product of ccc partial orders.
If G ⊆

∏
ξ∈ω2

Pξ is generic over V then in V [G ] the following
holds: There is no subgroup G ⊆ S(ω) acting with a unique
invariant mean on ω such that for any finite set H ⊆ G there is a
recursive function FH : ω → ω such that the orbit of each n under
the subgroup generated by H has cardinality bounded by FH(n).

Note that if G is locally finite then FH is a constant function for
each H. ”Recursive” is actually weaker than needed since it will be
shown that FH can not be chosen from V .
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The support of P adds ℵ2 Cohen reals; but, for notational
convenience, assume that each Pξ has exactly two maximal
elements, 0ξ and 1ξ, and let cξ ⊆ ω be defined by n ∈ cξ if and
only if 1ξ+n ∈ G .

Now assume that G is a P name for a subgroup G ⊆ S(ω) acting
with a unique mean on ω such that for any finite set H ⊆ G there
is a recursive function FH : ω → ω such that for each n the orbit of
n under the subgroup generated by H has cardinality bounded by
FH(n). It must be that the unique mean is

mG = sup({r ∈ R | X is r -thick})
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By symmetry, there is no harm in assuming that mG(cξ) < 1 for ℵ2

of the ξ. In other words, ℵ2 of the cξ are not 1-thick and hence
there are finite Hξ ⊆ G such that for all n ∈ ω

Hξn 6⊆ cξ

Now let Sξ be a countable subset of ω2 such that cξ and Hξ have∏
η∈Sξ Pη names. Let R be a countable set and ξ 6= η be such that

{ξ + j}j∈ω ⊆ Sξ \ R and {η + j}j∈ω ⊆ Sη \ R. Let GR ⊆
∏
ρ∈R Pρ

be generic over V . Let Hξ/GR = H ′ξ and Hη/GR = H ′η be names
in V [GR ].

Let Qξ =
∏
α∈Sξ\R Pα and Qη =

∏
α∈Sη\R Pα and

Q =
∏
ρ∈ω2\R Pρ
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In V [GR ] choose a condition q ∈ Q such that

q Q “FH′ξ∪H′η = F̌ ”

Claim

For p ≤ q the set of n ∈ ω such that

|
{

m ∈ ω
∣∣ p � Sξ 6Qξ “m /∈ 〈H ′ξ〉n”

}
| < ℵ0

is finite where 〈H ′ξ〉 is the subgroup generated by H ′ξ. Same for η.

To see this let S be the support of p and S∗ = {j | ξ + j ∈ S }
and suppose, heading towards a contradiction, that

Z ⊆
{

n ∈ ω
∣∣ |{m ∈ ω

∣∣ p 6Q “m /∈ 〈H ′ξ〉n”
}
| < ℵ0

}
is such that |Z | >

∑
j∈S∗ F (j).
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Let Y =
{

m ∈ ω
∣∣∣ (∃n ∈ Z )p 6Qξ “m /∈ 〈H ′ξ〉n”

}
and note that

Y is finite. Let p′ ≥ p be such that p′(ξ + k) = 1ξ+k for each
k ∈ Y \ S∗. Note that p′ and q are compatible.

Let q′ extend both q and p′ such that q′ Q “〈H ′ξ〉S∗ = W̌ ” and
note that |W | ≤

∑
j∈S∗ F (j) < |Z |. Let z ∈ Z \W and note that,

since q Q “〈H ′ξ〉 is a group”, it follows that
q Q “〈H ′ξ〉z ∩ S∗ = ∅”.

But since z ∈ Z it follows that if q′ Q “m ∈ H ′ξz” then
p 6Qξ “m /∈ 〈H ′ξ〉z” and hence m ∈ Y ⊆ cξ. In other words,
q′ Q “H ′ξz ⊆ cξ” and this contradicts the choice of Hξ using the
fact that mG(cξ) < 1.
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To arrive at a contradiction construct, using the claim, a sequence,
{(pi , p

′
i ,mi ,m

′
i )}i∈ω such that

pi ∈ Qξ and p′i ∈ Qη
pi+1 ≤ pi ≤ q � Sξ and p′i+1 ≤ p′i ≤ q � Sη

pi Qξ “m′i ∈ 〈H ′ξ〉mi”

p′i Qη “mi+1 ∈ 〈H ′η〉m′i”
all the mi and m′i are distinct.

To carry out the induction it will be assumed as an additional
induction hypothesis that

Xi =
{

m ∈ ω
∣∣∣ pi−1 6Qξ “m /∈ 〈H ′ξ〉mi”

}
is infinite

X ′i =
{

m ∈ ω
∣∣ p′i−1 6Qη “m /∈ 〈H ′η〉m′i”

}
is infinite.
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To begin the induction choose m0 using the claim such that

X0 =
{

m ∈ ω
∣∣∣ q � Sξ 6Qξ “m /∈ 〈H ′ξ〉m0”

}
is infinite and let

p−1 = q � Sξ and p′−1 = q � Sη.

Given that Xi is infinite, it is possible to use the claim to choose
m′i ∈ Xi such that

X ′i =
{

m ∈ ω
∣∣ p′i−1 6Qη “m /∈ 〈H ′ξ〉mi”

}
is infinite. It is then possible to find pi ≤ pi−1 ∈ Qξ such that
pi Qξ “m′i ∈ 〈H ′ξ〉mi”.

Next, choose mi+1 ∈ X ′i such that

Xi+1 =
{

m ∈ ω
∣∣∣ pi 6Qξ “m /∈ 〈H ′ξ〉mi+1”

}
is infinite. Then

choose p′i ≤ p′i−1 such that p′i Qη “mi+1 ∈ 〈H ′ξ〉m′i” as required.
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Let k > F (m0)/2 and note that

q ∪ pk ∪ p′k Q “
⋃
i∈k
{mi ,m

′
i} ⊆ 〈H ′ξ ∪ Hη〉m0”

But
q ∪ pk ∪ p′k Q “|〈H ′ξ ∪ Hη〉m0| < F (m0) < 2k”

while |
⋃

i∈k{mi ,m
′
i}| = 2k .
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Corollary

Adding ℵ2 Cohen reals to any model of set theory yields a model
where no locally finite subgroup of S(ω) acts with a unique mean.

Corollary

Let P be a ccc poset for getting a model of Martin’s Axiom. Then
the finite support product of ℵ2 copies of P forces that no locally
finite subgroup of S(ω) acts with a unique mean.
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An example of a non-locally finite subgroup G ⊆ S(ω) which,
nevertheless, satisfies the property that for any finite set H ⊆ G
there is a recursive function FH : ω → ω such that for each n the
orbit of n under the subgroup generated by H has cardinality
bounded by FH(n) is easy to construct. Let {An}n∈ω partition ω
into finite sets such that limn→∞ |An| =∞. Let G consist of all
permutations θ such that θ � An ∈ S(An) for all n.
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