
Amenable actions of the infinite
permutation group — Lecture II

Juris Steprāns
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Definition

The least cardinal of a generating set for a free ultrafilter on ω is
denoted by u.

Definition

The least cardinal of a filter F on ω such that there is no infinite
X ⊆ ω such that X ⊆∗ A — in other words, X \ A is finite — for
all A ∈ F is denoted by p.

Theorem (Bell)

The least cardinal κ for which MAκ(σ-centred) fails is equal to p.
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The Key Hypothesis is the following: There is a generating set
{Gξ}ξ∈κ for an ultrafilter on ω such that there exist infinite
Aξ ⊆ ω satisfying:

Aξ ⊆∗ Gη for each η ≤ ξ
Aξ ∩ Aη is finite if ξ 6= η.

Lemma

If p = u then the Key Hypothesis is satisfied.
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To see this, let {Gξ}ξ∈u generate an ultrafilter F . Choose
inductively for each ξ ∈ u an infinite set Aξ /∈ F such that

Aξ ⊆∗ Gη for each η ≤ ξ
Aξ ∩ Aη is finite if ξ > η.

This can be done because {Gξ} ∪ {Gη, ω \Aη}η∈ξ generates a filter
and ξ < p.

Corollary

If p = c or u = ℵ1 then the Key Hypothesis holds.

It will follow from the results of Lecture III that the Key
Hypothesis fails in the model obtained by adding ℵ2 Cohen reals to
a model of CH.
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Given the Key Hypothesis, it can be assumed that Aξ ⊆ Gξ rather
than just Aξ ⊆∗ Gξ for each ξ ∈ κ. Let Aξ be enumerated by
ω × ω — in other words, Aξ = {aξ(i , j)}(i ,j)∈ω×ω. Let ω \ Gξ be
enumerated by {aξ(−1, j)}j∈ω. Now define permutations θξ,i , for
i ≥ −1, as follows:

θξ,i (x) =


aξ(i + 1, j) if x = aξ(i , j)

aξ(i , j) if x = aξ(i + 1, j)

x otherwise

Note that each θξ,i is an involution sending Aξ,i to Aξ,i+1 and the
Aξ,i are pairwise disjoint where Aξ,i = {aξ(i , j)}j∈ω. Let G be the
subgroup of S(ω) generated by {θξ,i}ξ∈κ,i≥−1.
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The first thing to notice is that each element of G preserves the
ultrafilter F generated by {Gξ}ξ∈κ — in other words, if
µF (X ) = 1 if and only if X ∈ F then µF is an invariant mean for
the natural action of G on ω.

Moreover, µF is unique. To see this, suppose that ν is another
invariant mean on ω. There must be some ξ such that
ν(ω \ Gξ) > 0 and let k > ν(ω \ Gξ). Recall that Aξ,−1 = ω \ Gξ
and Aξ,i = {aξ(i , j)}j∈ω for i ≥ 0 and, hence, θξ,i (Aξ, i) = Aξ,i+1

when −1 ≤ i < k . Moreover Aξ,i ∩ Aξ,i ′ = ∅ if i 6= i ′.

The invariance of ν under G then implies that
ν(
⋃k

i=−1 Aξ,i ) = (k + 2)ν(ω \ Gξ) > 1 contradicting that ν is a
probability measure.
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The fact that G is amenable will be established by showing that it
satisfies the much stronger property of being locally finite. The
Key Hypothesis will be crucial for the argument.

Definition

If σ ∈ S(ω) then the support of σ is defined to be
{n ∈ ω | σ(n) 6= n}. If H ⊆ S(ω) then the support of H is defined
to be the union of the supports of its elements.

Lemma

A finite subset H ⊆ S(ω) generates a finite group H ′ if and only if
there is a uniform bound for the size of the orbits OH′({n}) of n
under H ′.

Juris Steprāns Amenable actions



To see this, note first that |H ′| ≥ |OH′({n})| for each n ∈ ω.

For the other direction suppose that M ≥ |OH′({n})| for each
n ∈ ω and let {Wn}n∈ω list all the distinct orbits of H ′. Let
Dm = {i ∈ ω | |Wi | = m} and for each i ∈ Dm let
Wi = {wi ,j}j∈m. For h ∈ H let

Φh : Dm → S(m)

be defined by Φh(i)(j) = k if and only if h(wi ,j) = wi ,k . Note that
there is a partition

Dm =
⋃{

Dφ
m | φ : H → S(m)

}
such that Φh(j) = φ(h) for each h and j ∈ Dφ

m.
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Let Hφ
m be the subgroup of S(m) generated by {φ(h) | h ∈ H }. It

suffices to observe that H ′ is isomorphic to∏
m≤J

∏
φ:H→S(m)

Hφ
m

and that this is a finite group.
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Lemma

Let θ be an involution that sends A to B and B to A and fixes all
else. If H ⊆ S(ω) is a subgroup whose support is almost disjoint
from A then H ∪ {θ} generates a finite group.

To begin note that there is no loss of generality in assuming that
the support of H is actually disjoint from A. To see this let Z be
the orbit under H of the intersection of A with the support of H.
This is finite and H = HZ × Hω\Z where HX = {h � X | h ∈ H }.
The support of Hω\Z is actually disjoint from A. Since HZ consists
only of permutations with finite support it follows that the group
generated by H ∪ {θ} is finite if and only if the group generated by
Hω\Z ∪ {θ} is finite.
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The argument will rely on showing that there is a uniform bound
for |OH∪{θ}({n})|. To see that this is the case, it suffices to show
that for any such n, if f is in the group generated by H ∪ {θ} then
f (n) is equal to one of:

θhθ(n)

hθ(n)

θh(n)

or h(n)

where h ∈ H. The reason this suffices is that there is a uniform
bound for OH({n}) and adding θ will, at most, increase the size by
a factor of 4.
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An arbitrary element f of the group generated by H ∪{θ} looks like

f = θn0h0θ
n1h1 . . . θ

nk hkθ
nk+1

and, keeping in mind that θ is an involution, one of the following
alternatives holds

f = θh0θh1 . . . θhkθ

f = θh0θh1 . . . θhk

f = h0θh1 . . . θhkθ

f = h0θh1 . . . θhk

All that needs to be checked now is that if h0 and h1 belong to H
then. . .
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. . . h0θh1(n) is equal to one of the following:

h0θ(n)

h0h1(n)

θh1(n).

To see this, first suppose that h1(n) = n. Then h0θh1(n) = h0θ(n).

Otherwise, it must be that h1(n) is in the support of H and there
are two possibilities The first is that h1(n) is not in the support of
θ. In this case h0θh1(n) = h0h1(n). Otherwise, because the
support of θ is A ∪ B and A is disjoint from the support of H it
must be that. h1(n) ∈ B. Since θ sends B to A it follows that
θ(h1(n)) ∈ A and hence is not in the support of h0. Therefore
h0θh1(n) = θh1(n).
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To finish the proof that G is locally finite it suffices to show that
any finite set of generators of G generates a finite group. Recall
that the Key Hypothesis provided a generating set {Gξ}ξ∈κ for an
ultrafilter on ω and infinite Aξ ⊆ ω satisfying:

Aξ ⊆∗ Gη for each η ≤ ξ
Aξ ∩ Aη is finite if ξ 6= η.

and that this yields involutions θξ,−1 from ω \ Gξ to a subset of Aξ
and θξ,i : Aξ,i → Aξ,i+1 such that the Aξ,i are pairwise disjoint.
Proceed by induction on the size of H ⊆ G to show that H
generates a finite set. When |H| = 1 use that the generators are
involutions.
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Supposing the result is true for H of size n let |H| = n + 1 and let ξ
be the largest ordinal such that there is some j such that θξ,j ∈ H.
Let J be the largest integer such that θξ,J ∈ H. It follows that
Aξ,J+1 is almost disjoint from the support of the group generated
by H \ {θξ,J}. Since θξ,J is an involution the preceding lemma
implies that the group generated by θξ,J and H \ {θξ,J} is finite.
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Question

Is it possible to strengthen locally finite to some other condition?

Abelian is not possible. Rosenblatt and Talagrand showed that no
nilpotent subgroup of S(ω) acts with a unique mean and this was
improved by Krasa to show that there is no solvable subgroup of
S(ω) acts with a unique mean.

No countable subgroup of S(ω) acts with a unique mean and
assuming MA there is no such group of cardinality less than 2ℵ0 .
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