Projective measure without projective Baire

D. Schrittesser
Universität Bonn
YST 2011

Outline

(1) Some context

- Some classical results on measure and category
- Seperating category and measure (two ways)
(2) Some ideas of the proof
- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

Outline

(1) Some context

- Some classical results on measure and category
- Seperating category and measure (two ways)
(2) Some ideas of the proof
- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

Two notions of regularity

This talk is about regularity of sets in the projective hierarchy.

Two ways in which a set of reals can be regular:

We're interested in the projective hierarchy:
projective sets are \sum_{n}^{1} or Π_{n}^{1} sets, i.e definable by a formula with quantifiers ranging over reals and real parameters.

Two notions of regularity

This talk is about regularity of sets in the projective hierarchy.
Two ways in which a set of reals can be regular:

- $X \subseteq \mathbb{R}$ is Lebesgue-measurable (LM) $\Longleftrightarrow X=B \Delta N$ (B Borel, N null).

B is Borel (or open), M meager.

We're interested in the projective hierarchy:

projective sets are Σ_{n}^{1} or Π_{n}^{1} sets, i.e. definable by a formula with quantifiers ranging over reals and real parameters.

Two notions of regularity

This talk is about regularity of sets in the projective hierarchy.
Two ways in which a set of reals can be regular:

- $X \subseteq \mathbb{R}$ is Lebesgue-measurable (LM) $\Longleftrightarrow X=B \Delta N$ (B Borel, N null).
- $X \subseteq \mathbb{R}$ has the Baire property $(B P) \Longleftrightarrow X=B \Delta M$, where B is Borel (or open), M meager.

Were interested in the projective hierarchy:
projective sets are Σ_{n}^{1} or Π_{n}^{1} sets, i.e. definable by a formula
with quantifiers ranging over reals and real parameters.

Two notions of regularity

This talk is about regularity of sets in the projective hierarchy.
Two ways in which a set of reals can be regular:

- $X \subseteq \mathbb{R}$ is Lebesgue-measurable $(\mathrm{LM}) \Longleftrightarrow X=B \Delta N(B$ Borel, N null).
- $X \subseteq \mathbb{R}$ has the Baire property $(\mathrm{BP}) \Longleftrightarrow X=B \Delta M$, where B is Borel (or open), M meager.

We're interested in the projective hierarchy:
projective sets are Σ_{n}^{1} or Π_{n}^{1} sets, i.e. definable by a formula with quantifiers ranging over reals and real parameters.

We don't know what's regular...

$V=L$
There is a Δ_{2}^{1} well-ordering of \mathbb{R} and thus irregular Δ_{2}^{1}-sets.

Solovay's model
 If there is an inaccessible, you can force all projective sets to be measurable and have the Baire property.

Woodin cardinals..

There are models where

- every Σ_{n}^{1} set is regular (LM, BP ...)
- irregular Δ_{n+1}^{1} sets (from a well-ordering).

We don't know what's regular...

$V=L$
There is a Δ_{2}^{1} well-ordering of \mathbb{R} and thus irregular Δ_{2}^{1}-sets.

Solovay's model

If there is an inaccessible, you can force all projective sets to be measurable and have the Baire property.

```
Woodin cardinals.
There are models where
- every }\mp@subsup{\Sigma}{n}{1}\mathrm{ set is regular (LM, BP ...)
- irregular }\mp@subsup{\Delta}{n+1}{1}\mathrm{ sets (from a well-ordering).
```


We don't know what's regular...

$V=L$
There is a Δ_{2}^{1} well-ordering of \mathbb{R} and thus irregular Δ_{2}^{1}-sets.

Solovay's model

If there is an inaccessible, you can force all projective sets to be measurable and have the Baire property.

Woodin cardinals...

There are models where

- every Σ_{n}^{1} set is regular (LM, BP ...)
- irregular Δ_{n+1}^{1} sets (from a well-ordering).

Do LM and BP always fail or hold at the same level of the projective hierarchy?

Outline

(1) Some context

- Some classical results on measure and category
- Seperating category and measure (two ways)
(2) Some ideas of the proof
- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

Seperating measure and category, one way

Do LM and BP always fail or hold at the same level of the projective hierarchy?
Answer: no.
Theorem (Shelan)
From just CON(ZFC) you can force:

- all projective sets have RP
- but there is a projective set without LM (in fact, it's Σ_{3}^{1}).

Seperating measure and category, one way

Do LM and BP always fail or hold at the same level of the projective hierarchy?
Answer: no.

Theorem (Shelah)

From just CON(ZFC) you can force:

- all projective sets have BP
- but there is a projective set without LM (in fact, it's Σ_{3}^{1}).

Main result and its precursor

What to do next: switch roles of category and measure.

Theorem (Shelah)

Assume there is an inaccessible. Then, consistently

- every set is measurable,
- there's a set without the Baire-property.

Theorem (joint work with S. Friedman)
Assume there is a Mahlo and $V=L$. In a forcing extension,

- every projective set is measurable,
- there's a \triangle_{3}^{1} set without the Baire-property.

By a theorem of Shelah, we need to assume at least an
inaccessible.

Main result and its precursor

What to do next: switch roles of category and measure.

Theorem (Shelah)

Assume there is an inaccessible. Then, consistently

- every set is measurable,
- there's a set without the Baire-property.

Theorem (joint work with S. Friedman)

Assume there is a Mahlo and $V=L$. In a forcing extension,

- every projective set is measurable,
- there's a Δ_{3}^{1} set without the Baire-property.

By a theorem of Shelah, we need to assume at least an

Main result and its precursor

What to do next: switch roles of category and measure.

Theorem (Shelah)

Assume there is an inaccessible. Then, consistently

- every set is measurable,
- there's a set without the Baire-property.

Theorem (joint work with S. Friedman)

Assume there is a Mahlo and $V=L$. In a forcing extension,

- every projective set is measurable,
- there's a Δ_{3}^{1} set without the Baire-property.

By a theorem of Shelah, we need to assume at least an inaccessible.

Outline

Some context

- Some classical results on measure and category
- Seperating category and measure (two ways)
(2) Some ideas of the proof
- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

Let κ be the least Mahlo in L.
We will force with an iteration P_{κ} of length κ.

- κ will be ω_{1} in the end but remain Mahlo after $<\kappa$ many steps.
- At limits ξ, we don't know if P_{ξ} collapses the continuum; so we force to collapse it, as Jensen coding requires GCH.
- We define a set Γ which does not have BP.
- We make Γ projective using Jensen coding.
- The coding makes use of indepent κ^{+}-Suslin trees, to which we add branches at the very beginning.
- We use amalgamation to ensure P_{κ} is sufficiently homogeneous.

A sketch of the iteration

(1) Force over L with $\prod_{\xi<\kappa}^{<\kappa} T(\xi)$, the κ^{+}-cc product of constructible κ-closed, κ^{+}-Suslin trees to add branches $B(\xi), \xi<\kappa$.
(2) In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1}=$

- $P_{\xi} \times \operatorname{Add}(\kappa)^{L}$
- $P_{\xi} * J\left(B(\xi)_{\xi \in I}\right.$) (to make " $r \in \Gamma$ " definable for a real r)
- $\left(D_{\xi}\right)_{f}^{\mathbb{Z}}-f$ an isomorphism of Random subalgebras of P_{ξ}, D_{ξ} dense in P_{ε}
- $\left(P_{\xi}\right)_{\phi}^{Z}-\Phi$ an automorphism added by a previous amalgamation
(3) 「 (the set w/o BP) = "every other Cohen real" added in the iteration (closed of under automorphisms)

A sketch of the iteration

(1) Force over L with $\prod_{\xi<\kappa}^{<\kappa} T(\xi)$, the κ^{+}-cc product of constructible κ-closed, κ^{+}-Suslin trees to add branches $B(\xi), \xi<\kappa$.
(2) In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1}=$

(3) 「 (the set w/o BP) = "every other Cohen real" added in the iteration (closed of under automorphisms)

A sketch of the iteration

(1) Force over L with $\prod_{\xi<\kappa}^{<\kappa} T(\xi)$, the κ^{+}-cc product of constructible κ-closed, κ^{+}-Suslin trees to add branches $B(\xi), \xi<\kappa$.
(2) In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1}=$

- $P_{\xi} * \operatorname{Col}\left(\omega, c^{L[\bar{B}]\left[G_{\xi}\right]}\right)$ (at some stages)
- $P_{\xi} \times \operatorname{Add}(k)^{L}$
- $P_{\xi} * J\left(B(\xi)_{\xi \in I}\right)$ (to make " $r \in \Gamma$ " definable for a real r)
- $\left(D_{\xi}\right)_{f}^{\mathbb{Z}}-f$ an isomorphism of Random subalgebras of P_{ξ}, D_{ξ} dense in P_{ξ}
- $\left(P_{\xi}\right)_{\phi}^{\pi}-\Phi$ an automorphism added' by a previous amalgamation
(3) $\Gamma($ the set $w / o B P)=$ "every other Cohen real" added in the iteration (closed of under automorphisms)

A sketch of the iteration

(1) Force over L with $\prod_{\xi<\kappa}^{<\kappa} T(\xi)$, the κ^{+}-cc product of constructible κ-closed, κ^{+}-Suslin trees to add branches $B(\xi), \xi<\kappa$.
(2) In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1}=$

- $P_{\xi} * \operatorname{Col}\left(\omega, c^{L[\bar{B}]\left[G_{\xi}\right]}\right)$ (at some stages)
- $P_{\xi} \times \operatorname{Add}(\kappa)^{L}$
- $P_{\xi} * J(B(\xi) \varepsilon \in I)$ (to make " $r \in \Gamma$ " definable for a real r)
- $\left(D_{\xi}\right)_{f}^{\mathbb{Z}}-f$ an isomorphism of Random subalgebras of P_{ξ}, D_{ε} dense in P_{ξ}
- $\left(P_{\xi}\right)_{\Phi}^{\mathbb{Z}}-\Phi$ an automorphism added by a previous amalgamation
(3) $\Gamma($ the set w/o BP) $=$ "every other Cohen real" added in the iteration (closed of under automorphisms)

A sketch of the iteration

(1) Force over L with $\prod_{\xi<\kappa}^{<\kappa} T(\xi)$, the κ^{+}-cc product of constructible κ-closed, κ^{+}-Suslin trees to add branches $B(\xi), \xi<\kappa$.
(2) In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1}=$

- $P_{\xi} * \operatorname{Col}\left(\omega, c^{L[\bar{B}]\left[G_{\xi}\right]}\right)$ (at some stages)
- $P_{\xi} \times \operatorname{Add}(\kappa)^{L}$
- $P_{\xi} * J\left(B(\xi)_{\xi \in I}\right)$ (to make " $r \in \Gamma$ " definable for a real r)
dense in P_{ξ}
- $\left(P_{\xi}\right)_{\Phi}^{\mathbb{Z}}-\Phi$ an automorphism added by a previous
amalgamation
(3) $\Gamma($ the set w/o BP) $=$ "every other Cohen real" added in the iteration (closed of under automorphisms)

A sketch of the iteration

(1) Force over L with $\prod_{\xi<\kappa}^{<\kappa} T(\xi)$, the κ^{+}-cc product of constructible κ-closed, κ^{+}-Suslin trees to add branches $B(\xi), \xi<\kappa$.
(2) In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1}=$

- $P_{\xi} * \operatorname{Col}\left(\omega, c^{L[\bar{B}]\left[G_{\xi}\right]}\right)$ (at some stages)
- $P_{\xi} \times \operatorname{Add}(\kappa)^{L}$
- $P_{\xi} * J\left(B(\xi)_{\xi \in I}\right)$ (to make " $r \in \Gamma$ " definable for a real r)
- $\left(D_{\xi}\right)_{f}^{\mathbb{Z}}-f$ an isomorphism of Random subalgebras of P_{ξ}, D_{ξ} dense in P_{ξ}
- $\left(P_{\xi}\right)_{\phi}^{Z}-\Phi$ an automorphism added by a previous amalgamation
([(the set w/oRP) = "every other Cohen real" added in the iteration (closed of under automorphisms)

A sketch of the iteration

(1) Force over L with $\prod_{\xi<\kappa}^{<\kappa} T(\xi)$, the κ^{+}-cc product of constructible κ-closed, κ^{+}-Suslin trees to add branches $B(\xi), \xi<\kappa$.
(2) $\ln L[\bar{B}]$, iterate for κ steps: $P_{\xi+1}=$

- $P_{\xi} * \operatorname{Col}\left(\omega, c^{L[\bar{B}]\left[G_{\xi}\right]}\right)$ (at some stages)
- $P_{\xi} \times \operatorname{Add}(\kappa)^{L}$
- $P_{\xi} * J\left(B(\xi)_{\xi \in I}\right)$ (to make " $r \in \Gamma$ " definable for a real r)
- $\left(D_{\xi}\right)_{t}^{\mathbb{Z}}-f$ an isomorphism of Random subalgebras of P_{ξ}, D_{ξ} dense in P_{ξ}
- $\left(P_{\xi}\right)_{\Phi}^{\mathbb{Z}}-\Phi$ an automorphism added by a previous amalgamation
(3) $\Gamma($ the set w/o BP) $=$ "every other Cohen real" added in the iteration (closed of under automorphisms)

A sketch of the iteration

(1) Force over L with $\prod_{\xi<\kappa}^{<\kappa} T(\xi)$, the κ^{+}-cc product of constructible κ-closed, κ^{+}-Suslin trees to add branches $B(\xi), \xi<\kappa$.
(2) In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1}=$

- $P_{\xi} * \operatorname{Col}\left(\omega, c^{L[\bar{B}]\left[G_{\xi}\right]}\right)$ (at some stages)
- $P_{\xi} \times \operatorname{Add}(\kappa)^{L}$
- $P_{\xi} * J\left(B(\xi)_{\xi \in I}\right)$ (to make " $r \in \Gamma$ " definable for a real r)
- $\left(D_{\xi}\right)_{t}^{\mathbb{Z}}-f$ an isomorphism of Random subalgebras of P_{ξ}, D_{ξ} dense in P_{ξ}
- $\left(P_{\xi}\right)_{\phi}^{\mathbb{Z}}-\Phi$ an automorphism added by a previous amalgamation
(3) $\Gamma($ the set w/o BP) = "every other Cohen real" added in the iteration (closed of under automorphisms)

Outline

Some context

- Some classical results on measure and category
- Seperating category and measure (two ways)
(2) Some ideas of the proof
- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

Some context
Some ideas of the proof
Questions

Sketch of the iteration

Getting a projective set without BP

Question: how do we get a set without BP?
Shelah: A set containing every other Cohen real!
Let Γ be s.t. for any $\xi<\kappa$, there's a dense set of reals Cohen over $V^{P_{\xi}}$ both in Γ and $\neg \Gamma$. We collapse everthing below a Mahlo, so it's easy to find such

How do you make 「 projective?

(where ψ is Π_{2}^{1})
We force the above "real by real": for every real added in the iteration, we add s by forcing.

Some context

Getting a projective set without BP

Question: how do we get a set without BP? Shelah: A set containing every other Cohen real!
Let 「 be s.t. for any $\xi<\kappa$, there's a dense set of reals Cohen over $V^{P_{\xi}}$ both in Γ and $\neg \Gamma$. We collapse everthing below a Mahlo, so it's easy to find such

How do you make 「 projective?

(where ψ is Π_{2}^{1})
We force the above "real by real": for every real added in the iteration, we add s by forcing.

Getting a projective set without BP

Question: how do we get a set without BP?
Shelah: A set containing every other Cohen real!
Let Γ be s.t. for any $\xi<\kappa$, there's a dense set of reals Cohen over $V^{P_{\xi}}$ both in Γ and $\neg \Gamma$.
We collapse everthing below a Mahlo, so it's easy to find such Γ.

How do you make Γ projective?
(where ψ is Π_{2}^{1})
We force the above "real by real": for every real added in the iteration, we add s by forcing.

Getting a projective set without BP

Question: how do we get a set without BP?
Shelah: A set containing every other Cohen real!
Let Γ be s.t. for any $\xi<\kappa$, there's a dense set of reals Cohen over $V^{P_{\xi}}$ both in Γ and $\neg \Gamma$.
We collapse everthing below a Mahlo, so it's easy to find such Γ.

How do you make 「 projective?

$$
r \in \Gamma \Longleftrightarrow \exists s \Psi(s, r)
$$

(where ψ is Π_{2}^{1})
We force the above "real by real": for every real added in the iteration, we add s by forcing.

What's the Σ_{3}^{1} definition of Γ ?

At some stage ξ we are given r by book-keeping, and we pick \dot{Q}_{ξ} so that the following holds in $L[\bar{B}]\left[G_{\xi+1}\right]$:
$r \in \Gamma \Longleftrightarrow \exists s$ s.t. all $T(\xi)$ with $\xi \in I(r)$ have a branch in $L[s]$,
where $I(r) \subset \kappa$ and r can be obtained from $I(r)$.
I.e. let Q_{ξ} be Jensen coding to add s coding the right branches.

In fact, we use a variant (David's trick), which makes a stronger statement true:
$r \in \Gamma \Longleftrightarrow \exists s \forall^{*} \alpha<\kappa L_{\alpha}[s] \vDash$ just the right $T(\xi)$ have branches
This second, stronger statement is Σ_{3}^{1}.
That \Leftarrow holds (in $L[\bar{B}]\left[G_{\kappa}\right]$) requires a careful choice of $/(r)$.

What's the Σ_{3}^{1} definition of Γ ?

At some stage ξ we are given r by book-keeping, and we pick \dot{Q}_{ξ} so that the following holds in $L[\bar{B}]\left[G_{\xi+1}\right]$:
$r \in \Gamma \Longleftrightarrow \exists s$ s.t. all $T(\xi)$ with $\xi \in I(r)$ have a branch in $L[s]$,
where $I(r) \subset \kappa$ and r can be obtained from $I(r)$.
I.e. let Q_{ξ} be Jensen coding to add s coding the right branches.

In fact, we use a variant (David's trick), which makes a stronger
statement true:
$r \in \Gamma \Longleftrightarrow \exists s \forall^{*} \alpha<\kappa L_{\alpha}[s] \vDash$ just the right $T(\xi)$ have branches
This second, stronger statement is Σ_{3}^{1}.
That \Leftarrow holds (in $L[\bar{B}]\left[G_{\kappa}\right]$) requires a careful choice of $I(r)$.

What's the Σ_{3}^{1} definition of Γ ?

At some stage ξ we are given r by book-keeping, and we pick \dot{Q}_{ξ} so that the following holds in $L[\bar{B}]\left[G_{\xi+1}\right]$:
$r \in \Gamma \Longleftrightarrow \exists s$ s.t. all $T(\xi)$ with $\xi \in I(r)$ have a branch in $L[s]$,
where $I(r) \subset \kappa$ and r can be obtained from $I(r)$.
I.e. let Q_{ξ} be Jensen coding to add s coding the right branches. In fact, we use a variant (David's trick), which makes a stronger statement true:
$r \in \Gamma \Longleftrightarrow \exists s \forall^{*} \alpha<\kappa L_{\alpha}[s] \vDash$ just the right $T(\xi)$ have branches
This second, stronger statement is Σ_{3}^{1}.
That \Leftarrow holds (in $L[B]\left[G_{k}\right]$) requires a careful choice of $I(r)$.

What's the Σ_{3}^{1} definition of Γ ?

At some stage ξ we are given r by book-keeping, and we pick \dot{Q}_{ξ} so that the following holds in $L[\bar{B}]\left[G_{\xi+1}\right]$:
$r \in \Gamma \Longleftrightarrow \exists s$ s.t. all $T(\xi)$ with $\xi \in I(r)$ have a branch in $L[s]$,
where $I(r) \subset \kappa$ and r can be obtained from $I(r)$.
I.e. let Q_{ξ} be Jensen coding to add s coding the right branches. In fact, we use a variant (David's trick), which makes a stronger statement true:
$r \in \Gamma \Longleftrightarrow \exists s \forall^{*} \alpha<\kappa L_{\alpha}[s] \vDash$ just the right $T(\xi)$ have branches
This second, stronger statement is Σ_{3}^{1}.
That \Leftarrow holds (in $L[\bar{B}]\left[G_{\kappa}\right]$) requires a careful choice of $I(r)$.

What's I(r)? The Problem

The most obvious choice

$$
I(r)=\{\xi \cdot \omega+n \mid n \in r\}
$$

must fail: this would force a well-ordering of reals of length ω_{1} in $L[\bar{B}]\left[G_{\kappa}\right]$.

$$
1 \Vdash_{\bar{T}_{* P_{\kappa}}} \exists s L_{\alpha}[s] \vDash \xi \in I(\dot{r}) \Rightarrow T(\xi) \text { has a branch. }
$$

and Φ is an automorphism of $\bar{T} * P_{\kappa}$, then also

I.e. we should expect Γ to be closed under such Φ. This makes it harder to show $r \in \Gamma \Leftarrow \exists s \Psi(s, r)$.

What's I(r)? The Problem

The most obvious choice

$$
I(r)=\{\xi \cdot \omega+n \mid n \in r\}
$$

must fail: this would force a well-ordering of reals of length ω_{1} in $L[\bar{B}]\left[G_{k}\right]$. Observe: if

$$
1 \Vdash_{\bar{T}_{* P P_{\kappa}}} \exists s L_{\alpha}[s] \vDash \xi \in I(\dot{r}) \Rightarrow T(\xi) \text { has a branch. }
$$

and Φ is an automorphism of $\bar{T} * P_{\kappa}$, then also
$1 \Vdash_{\bar{T}_{*} P_{\kappa}} \exists s L_{\alpha}[s] \vDash \xi \in \Phi(l(\dot{r})) \Rightarrow T(\xi)$ has a branch.
I.e. we should expect Γ to be closed under such Φ. This makes it harder to show $r \in \Gamma \Leftarrow \exists s \Psi(s, r)$.

What's I(r)? The Problem

The most obvious choice

$$
I(r)=\{\xi \cdot \omega+n \mid n \in r\}
$$

must fail: this would force a well-ordering of reals of length ω_{1} in $L[\bar{B}]\left[G_{\kappa}\right]$. Observe: if

$$
1 \Vdash_{\bar{T}_{* P_{\kappa}}} \exists s L_{\alpha}[s] \vDash \xi \in I(\dot{r}) \Rightarrow T(\xi) \text { has a branch. }
$$

and Φ is an automorphism of $\bar{T} * P_{\kappa}$, then also

$$
1 \Vdash_{\bar{T}_{*} P_{\kappa}} \exists s L_{\alpha}[s] \vDash \xi \in \Phi(I(\dot{r})) \Rightarrow T(\xi) \text { has a branch. }
$$

I.e. we should expect Γ to be closed under such Φ. This makes it harder to show $r \in \Gamma \Leftarrow \exists s \Psi(s, r)$.

What's I(r)? The Solution

Let C be an $\operatorname{Add}(\kappa)^{L}$ generic added at stage $\xi-1$. Set

$$
I(r)=\{(\sigma, n, i) \mid \sigma \triangleleft C, r(n)=i\}
$$

where \triangleleft denotes "initial segment".
One can show $\Phi(\dot{C}) \neq \dot{C}$ whenever $\dot{r} \neq \Phi(\dot{r})$, for any automorphism coming from amalgamation. This uses that C is κ-closed. Thus $I(r)$ and $\Phi(I(r))$ are almost disjoint.

Finally, Ψ

$$
\begin{aligned}
& \forall^{*} \alpha<\kappa \quad L_{\alpha}[s] \vDash \exists \text { a large set } C \text { s.t. } \\
& \quad(r(n)=i \text { and } \sigma \triangleleft C) \Rightarrow T^{\alpha}(\sigma, n, i, 0) \text { has a branch. }
\end{aligned}
$$

Excuse the change of notation in the indexing of the trees.

Outline

Some context

- Some classical results on measure and category
- Seperating category and measure (two ways)
(2) Some ideas of the proof
- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

To show we preserve cardinals:

We need a property that is

- iterable with the right support
- Jensen coding has it
- it is preserved by amalgamation.
- Jensen coding is nice because for every regular λ, you can write it as $P^{\lambda} * \dot{P}_{\lambda}$, where P^{λ} is (almost) λ^{+}-closed and $P^{\lambda} \Vdash P_{\lambda}$ is λ-centered.
- Does this iterate? We formulate an abstraction, called "stratified", satisfying above requirements.

Careful!

We do collapse everything below κ. Stratification does not help much at the final stage κ. The Mahlo-ness of κ is used to show:

- κ remains a cardinal in $L[\bar{B}]^{P_{\kappa}}$
- No reals are added at stage κ, every real is contained in some $L[\bar{B}]^{P_{\xi}}, \xi<\kappa$.
We need to use Easton-like Jensen coding!
P is stratified above λ_{0} means we have relations for each regular $\lambda \geq \lambda_{0}$ such that:

P is stratified above λ_{0} means we have relations for each regular $\lambda \geq \lambda_{0}$ such that:

P is stratified above λ_{0} means we have relations for each regular $\lambda \geq \lambda_{0}$ such that:
(1) \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension

P is stratified above λ_{0} means we have relations for each regular $\lambda \geq \lambda_{0}$ such that:
(1) \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
(2 $\left\langle P, \preccurlyeq^{\lambda}\right\rangle$ is closed under definable, strategic sequences
(0) $\mathrm{C}^{\lambda} \subseteq P \times \lambda$ is similar to a centering function
(1) $₹^{\lambda}$ is a binary relation on P weaker than
(0) If $\mathbf{C}^{\lambda}(r) \cap \mathbf{C}^{\lambda}(q) \neq \emptyset$ and $r \gtrless^{\lambda} q$ then $r \cdot q \neq 0$
(0) If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
($\operatorname{dom}\left(\mathbf{C}^{\lambda}\right)$ is dense (in the sense of $\preccurlyeq^{\lambda^{\prime}}$ for any $\lambda^{\prime}<\lambda$)
(C^{λ} is "continuous".
P is stratified above λ_{0} means we have relations for each regular $\lambda \geq \lambda_{0}$ such that:
(1) \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
(2) $\left\langle P, \preccurlyeq^{\lambda}\right\rangle$ is closed under definable, strategic sequences
(3) $\mathbf{C}^{\lambda} \subseteq P \times \lambda$ is similar to a centering function
(1) \approx^{λ} is a binary relation on P weaker than
(0. If $\mathbf{C}^{\lambda}(r) \cap \mathbf{C}^{\lambda}(q) \neq \emptyset$ and $r ₹^{\lambda} q$ then $r \cdot q \neq 0$
(6) If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
(1 dom $\left(\mathbf{C}^{\lambda}\right)$ is dense (in the sense of $\preccurlyeq \lambda^{\prime}$ for any $\lambda^{\prime}<\lambda$)
(8) C^{λ} is "continuous".
P is stratified above λ_{0} means we have relations for each regular $\lambda \geq \lambda_{0}$ such that:
(1) \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
(2) $\left\langle P, \preccurlyeq^{\lambda}\right\rangle$ is closed under definable, strategic sequences
(3) $\mathbf{C}^{\lambda} \subseteq P \times \lambda$ is similar to a centering function
(1) $₹^{\lambda}$ is a binary relation on P weaker than \leq

(6) If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
($0 \operatorname{dom}\left(\mathbf{C}^{\lambda}\right)$ is dense (in the sense of $\preccurlyeq^{\lambda^{\prime}}$ for any $\lambda^{\prime}<\lambda$)
(8) C^{λ} is "continuous".
P is stratified above λ_{0} means we have relations for each regular $\lambda \geq \lambda_{0}$ such that:
(1) \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
(2) $\left\langle P, \preccurlyeq^{\lambda}\right\rangle$ is closed under definable, strategic sequences
(3) $\mathbf{C}^{\lambda} \subseteq P \times \lambda$ is similar to a centering function
(1) $₹^{\lambda}$ is a binary relation on P weaker than \leq
(6) If $\mathbf{C}^{\lambda}(r) \cap \mathbf{C}^{\lambda}(q) \neq \emptyset$ and $r \gtrless^{\lambda} q$ then $r \cdot q \neq 0$
(0) If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \gtrless^{\lambda} r$
($\operatorname{dom}\left(\mathbf{C}^{\lambda}\right)$ is dense (in the sense of $\preccurlyeq^{\lambda^{\prime}}$ for any $\lambda^{\prime}<\lambda$)
(8) C^{λ} is "continuous".
P is stratified above λ_{0} means we have relations for each regular $\lambda \geq \lambda_{0}$ such that:
(1) \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
(2) $\left\langle P, \preccurlyeq^{\lambda}\right\rangle$ is closed under definable, strategic sequences
(3) $\mathbf{C}^{\lambda} \subseteq P \times \lambda$ is similar to a centering function
(9) $₹^{\lambda}$ is a binary relation on P weaker than \leq
(3) If $\mathbf{C}^{\lambda}(r) \cap \mathbf{C}^{\lambda}(q) \neq \emptyset$ and $r ₹^{\lambda} q$ then $r \cdot q \neq 0$
(0) If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
© $\operatorname{dom}\left(\mathbf{C}^{\lambda}\right)$ is dense (in the sense of $\gtrless^{\lambda^{\prime}}$
for any $\lambda^{\prime}<\lambda$)
(8) C^{λ} is "continuous".
P is stratified above λ_{0} means we have relations for each regular $\lambda \geq \lambda_{0}$ such that:
(1) \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
(2) $\left\langle P, \preccurlyeq^{\lambda}\right\rangle$ is closed under definable, strategic sequences
(3) $\mathbf{C}^{\lambda} \subseteq P \times \lambda$ is similar to a centering function
(1) $₹^{\lambda}$ is a binary relation on P weaker than \leq
(0. If $\mathbf{C}^{\lambda}(r) \cap \mathbf{C}^{\lambda}(q) \neq \emptyset$ and $r \gtrless^{\lambda} q$ then $r \cdot q \neq 0$
(0) If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
(0) $\operatorname{dom}\left(\mathbf{C}^{\lambda}\right)$ is dense (in the sense of $\preccurlyeq^{\lambda^{\prime}}$ for any $\lambda^{\prime}<\lambda$)
(8) C^{λ} is "continuous".
P is stratified above λ_{0} means we have relations for each regular $\lambda \geq \lambda_{0}$ such that:
(1) \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
(2) $\left\langle P, \preccurlyeq^{\lambda}\right\rangle$ is closed under definable, strategic sequences
(3) $\mathbf{C}^{\lambda} \subseteq P \times \lambda$ is similar to a centering function
(1) $₹^{\lambda}$ is a binary relation on P weaker than \leq
(0. If $\mathbf{C}^{\lambda}(r) \cap \mathbf{C}^{\lambda}(q) \neq \emptyset$ and $r ₹^{\lambda} q$ then $r \cdot q \neq 0$
(0) If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
(0) $\operatorname{dom}\left(\mathbf{C}^{\lambda}\right)$ is dense (in the sense of $\preccurlyeq^{\lambda^{\prime}}$ for any $\lambda^{\prime}<\lambda$)
(3) \mathbf{C}^{λ} is "continuous".

A closer look at "quasi-closure"

We work in a model of the form $L[A]$. There is a function
$F: \lambda \times V \times P \rightarrow P$ definable by a ${ }_{1}^{\prime A}$ formula such that for any
$\lambda \leq \bar{\lambda}$, both regular

- $F(\lambda, x, p) \preccurlyeq^{\lambda} p$
- if $p \preccurlyeq^{\bar{\lambda}} 1$ then $F(\lambda, x, p) \preccurlyeq^{\bar{\lambda}} 1$
- every λ-adequate sequence $\bar{p}=\left(p_{\xi}\right)_{\xi<\rho}$ has a greatest lower bound
where \bar{p} is adequate iff $\rho \leq \lambda, \bar{p}$ is \preccurlyeq^{λ}-descending and there is x such that
- $p_{\xi+1} \preccurlyeq^{\lambda^{\prime}} F\left(\lambda, x, p_{\xi}\right)$ for some regular λ^{\prime}
- \bar{p} is $\Delta_{1}^{A}(\lambda, x)$
- for limits $\bar{\xi}<\rho, p_{\bar{\xi}}$ is a greatest lower bound of $\left(p_{\xi}\right)_{\xi<\bar{\xi}}$. We also need that $p \preccurlyeq^{\lambda} p_{\xi}$ for each $\xi<\rho$ and if all $p_{\xi} \preccurlyeq^{\bar{\lambda}} 1$, then $p \preccurlyeq^{\bar{\lambda}} 1$.

Diagonal support

The right support to iterate stratified forcing is diagonal support: Let λ be regular. Let $\bar{P}=\left(P_{\xi}, \dot{Q}_{\xi}\right)_{\xi<\theta}$ be an iteration of stratified forcings, and let π_{ξ} be the projection to P_{ξ}.

Definition

$$
\operatorname{supp}^{\lambda}(p)=\left\{\xi \mid \pi_{\xi+1}(p) \AA^{\lambda} \pi_{\xi}(p)\right\}
$$

For diagonal support on P_{θ} we demand that $\operatorname{supp}(p)$ be of size $<\lambda$.
We also need to demand of \bar{P} that for each regular λ there is $\iota<\lambda^{+}$such that

$$
\forall p \in P_{\theta} \quad p \preccurlyeq^{\lambda} \pi_{\iota}(p) .
$$

Stratified extension

When $P_{\xi+1}$ results from an amalgamation of $P_{\xi}, P_{\xi+1}: P_{\xi}$ is not forced to be stratified by P_{ξ}.
Therefore we introduce the notion of (Q, P) being a stratified extension above λ_{0}.

- $(P, P * \dot{Q})$ is a stratified extension, if $\Vdash_{P} Q$ is stratified
- So is ($P, P \times Q$) if P and Q are stratified
- Same for $(P, A(P))$, where $A(P)$ denotes an amalgamation of P
- P is stratified $\Longleftrightarrow\left(\left\{1_{P}\right\}, P\right)$ is a stratified extension
- If (Q, P) is a stratified extension, P is stratified

Stratified extension and iteration

Most importantly:

Theorem

If $\left(P_{\xi}\right)_{\xi \leq \theta}$ has diagonal supports and for all $\xi<\theta,\left(P_{\xi}, P_{\xi+1}\right)$ is a stratified extension, then P_{θ} is stratified.

Outline

Some context

- Some classical results on measure and category
- Seperating category and measure (two ways)
(2) Some ideas of the proof
- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

How to get all sets LM.

Why do all projective sets have a measure in Solovays model?
If we force with an iteration $\left(P_{\xi}, \dot{Q}_{\xi}\right)_{\xi<\kappa}$ of length κ and the following holds in $V^{P_{k}}$:

- $\mathbb{R} \cap V^{P_{\xi}}$ is null (meager) for any $\xi<\kappa$
- every real is small generic, i.e. every $r \in \mathbb{R}$ is in some $V^{P_{\xi}}$, for $\xi<\kappa$.
- P_{κ} has many automorphisms.

Then every projective set is is measurable (has BP).
Solovays model, projective sets are both BP and LM because
$\operatorname{Col}(\omega,<\kappa)$ is very homogeneous.
Shelah: only just enough automorphism to get one kind of
regularity.

How to get all sets LM.

Why do all projective sets have a measure in Solovays model?
If we force with an iteration $\left(P_{\xi}, \dot{Q}_{\xi}\right)_{\xi<\kappa}$ of length κ and the following holds in $V^{P_{k}}$:

- $\mathbb{R} \cap V^{P_{\xi}}$ is null (meager) for any $\xi<\kappa$
- every real is small generic, i.e. every $r \in \mathbb{R}$ is in some $V^{P_{\xi}}$, for $\xi<\kappa$.
- P_{κ} has many automorphisms.

Then every projective set is is measurable (has BP). In Solovays model, projective sets are both BP and LM because $\operatorname{Col}(\omega,<\kappa)$ is very homogeneous.
Shelah: only just enough automorphism to get one kind of
regularity.

How to get all sets LM.

Why do all projective sets have a measure in Solovays model?
If we force with an iteration $\left(P_{\xi}, \dot{Q}_{\xi}\right)_{\xi<\kappa}$ of length κ and the following holds in $V^{P_{k}}$:

- $\mathbb{R} \cap V^{P_{\xi}}$ is null (meager) for any $\xi<\kappa$
- every real is small generic, i.e. every $r \in \mathbb{R}$ is in some $V^{P_{\xi}}$, for $\xi<\kappa$.
- P_{κ} has many automorphisms.

Then every projective set is is measurable (has BP). In Solovays model, projective sets are both BP and LM because $\operatorname{Col}(\omega,<\kappa)$ is very homogeneous.
Shelah: only just enough automorphism to get one kind of regularity.

To get all projective sets LM, P_{κ} has enough automorphisms means:

Extend isomorphisms of Random subalgebras

Say r_{0}, r_{1} are Random reals over $V^{P_{\iota}}$.
Let \dot{B}_{i} be the complete sub-abgebra of $\mathrm{ro}\left(P_{\xi}: P_{\iota}\right)$ generated by r_{i} in $V^{P_{\iota}}$, let $B_{i}=P_{\iota} * \dot{B}_{i}$ and let f be the isomorphism:

$$
f: B_{0} \rightarrow B_{1}
$$

Then there is an automorphism

$$
\Phi: P_{\kappa} \rightarrow P_{\kappa}
$$

which extends f.

Here's an adaptation of Shelah's amalgamation more apt to preserve closure:
Let $f: B_{0} \rightarrow B_{1}$ be an isomorphism of two sub-algebras of ro (P). Let $\pi_{i}: P_{\xi} \rightarrow B_{i}$ denote the canonical projection.

Amalgamation

$P_{f}^{\mathbb{Z}}$ consists of all $\bar{p}: \mathbb{Z} \rightarrow P \cdot B_{0} \cdot B_{1}$ such that

$$
\forall i \in \mathbb{Z} \quad f\left(\pi_{0}(\bar{p}(i))=\pi_{1}(\bar{p}(i+1))\right.
$$

- The map $p \mapsto\left(\ldots, f^{-1}\left(\pi_{1}(p)\right), p, f\left(\pi_{0}(p)\right), \ldots\right)$ is a complete embedding
- The left shift is an automorphism extending f.

How amalgamation is used

- For any $\iota<\kappa$ and any two reals r_{0}, r_{1} random over $L[\bar{B}]^{P_{\iota}}$ there should be $\xi<\kappa$ such that

$$
P_{\xi+1}=\left(P_{\xi}\right)_{f}^{\mathbb{Z}}
$$

where $B_{i}=P_{\iota} * \dot{B}\left(r_{i}\right)$ and f is the isomorphism of B_{0} and B_{1}.

- Then $P_{\xi+1}$ has an automorphism Φ
- Of course you have to extend this Φ to $\Phi^{\prime}: P_{\xi^{\prime}} \rightarrow P_{\xi^{\prime}}$, for cofinally many $\xi^{\prime}<\kappa$.
- Amalgamation may collapse the current ω_{1}.

Amalgamation and stratification

Problem: preserve some closure

- P carries an auxillary ordering \preccurlyeq
- Certain "adequate" \preccurlyeq-descending sequences have lower bounds in P
- π_{i} not continuous, why should

$$
f\left(\pi_{0}(\bar{p}(i))=\pi_{1}(\bar{p}(i+1))\right.
$$

hold for the coordinatewise limit of a sequence $\bar{p}_{\xi} \in P_{f}^{\mathbb{Z}}$?

Amalgamation and stratification

Problem: preserve some closure

Why should $f\left(\pi_{0}(\bar{p}(i))=\pi_{1}(\bar{p}(i+1))\right.$ hold for the coordinatewise limit of a sequence $\bar{p}_{\xi} \in P_{f}^{\mathbb{Z}}$?

Solution:

Replace P by a dense subset D, where $p \in D$ \qquad

$$
\forall q \preccurlyeq p \quad \forall b \in B_{0} \quad \pi_{1}(q \cdot b)=\pi_{1}(p \cdot b)
$$

Fine point:
To show D completely embedds into $D_{f}^{\mathbb{Z}}$, we need

Amalgamation and stratification

Problem: preserve some closure

Why should $f\left(\pi_{0}(\bar{p}(i))=\pi_{1}(\bar{p}(i+1))\right.$ hold for the coordinatewise limit of a sequence $\bar{p}_{\xi} \in P_{f}^{\mathbb{Z}}$?

Solution:

Replace P by a dense subset D, where $p \in D$ \qquad

$$
\forall q \preccurlyeq p \quad \forall b \in B_{0} \quad \pi_{1}(q \cdot b)=\pi_{1}(p \cdot b)
$$

Fine point:
To show D completely embedds into D_{f}^{Z}, we need

- $Q \subseteq D$
- $Q \cdot D \subseteq D$.

A few questions

So projective measure does not imply projective Baire.

Questions:

- Can we make $\Gamma \Delta_{k+1}^{1}$, keeping the Baire-property for all Σ_{k}^{1} sets, $k \geq 3$?
- For which σ-ideals can we substitute "Borel modulo l" for either of them?
- Force $\neg \mathrm{CH}$ at the same time?
- Prove the Mahlo is necessary or get rid of it?

A few questions

So projective measure does not imply projective Baire.

Questions:

- Can we make $\Gamma \Delta_{k+1}^{1}$, keeping the Baire-property for all Σ_{k}^{1} sets, $k \geq 3$?
- For which σ-ideals can we substitute "Borel modulo l " for either of them?
- Force $\neg \mathrm{CH}$ at the same time?
- Prove the Mahlo is necessary or get rid of it?

Another question

Again, the question:
How do you separate regularity properties in the projective hierarchy?

Theorem (A blueprint for a theorem)

The following is consistent, assuming small large cardinals (for any k, n):
(0) Every Σ_{n}^{1} set is regular, but there is a non-regular Δ_{n+1}^{1} set.
(2) Every Σ_{k}^{1} set is , but there is a non- Δ_{k+1}^{1} set.

