Projective measure without projective Baire

D. Schrittesser

Universität Bonn

YST 2011

D. Schrittesser Projective (LM without BP)

ヘロト ヘアト ヘビト ヘビト

3

Outline

Some context

- Some classical results on measure and category
- Seperating category and measure (two ways)

2 Some ideas of the proof

- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

< 回 > < 回 > < 回 > .

Some classical results on measure and category Seperating category and measure (two ways)

くロト (過) (目) (日)

Outline

• Some classical results on measure and category

Seperating category and measure (two ways)

Some ideas of the proof

- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

Some classical results on measure and category Seperating category and measure (two ways)

イロン イロン イヨン イヨン

Two notions of regularity

This talk is about regularity of sets in the projective hierarchy.

Two ways in which a set of reals can be regular:

- X ⊆ ℝ is Lebesgue-measurable (LM) ⇔ X = B∆N (B Borel, N null).
- $X \subseteq \mathbb{R}$ has the Baire property (BP) $\iff X = B \Delta M$, where *B* is Borel (or open), *M* meager.

We're interested in the projective hierarchy:

Some classical results on measure and category Seperating category and measure (two ways)

・ロト ・ 同ト ・ ヨト ・ ヨト

Two notions of regularity

This talk is about regularity of sets in the projective hierarchy.

Two ways in which a set of reals can be regular:

- $X \subseteq \mathbb{R}$ is Lebesgue-measurable (LM) $\iff X = B \Delta N$ (B Borel, N null).
- $X \subseteq \mathbb{R}$ has the Baire property (BP) $\iff X = B \Delta M$, where *B* is Borel (or open), *M* meager.

We're interested in the projective hierarchy:

Some classical results on measure and category Seperating category and measure (two ways)

ヘロト ヘワト ヘビト ヘビト

Two notions of regularity

This talk is about regularity of sets in the projective hierarchy.

Two ways in which a set of reals can be regular:

- X ⊆ ℝ is Lebesgue-measurable (LM) ⇔ X = B∆N (B Borel, N null).
- $X \subseteq \mathbb{R}$ has the Baire property (BP) $\iff X = B\Delta M$, where *B* is Borel (or open), *M* meager.

We're interested in the projective hierarchy:

Some classical results on measure and category Seperating category and measure (two ways)

ヘロト ヘワト ヘビト ヘビト

Two notions of regularity

This talk is about regularity of sets in the projective hierarchy.

Two ways in which a set of reals can be regular:

- $X \subseteq \mathbb{R}$ is Lebesgue-measurable (LM) $\iff X = B \Delta N$ (B Borel, N null).
- $X \subseteq \mathbb{R}$ has the Baire property (BP) $\iff X = B\Delta M$, where *B* is Borel (or open), *M* meager.

We're interested in the projective hierarchy:

Some classical results on measure and category Seperating category and measure (two ways)

イロン イロン イヨン イヨン

э

We don't know what's regular...

V = L

There is a Δ_2^1 well-ordering of \mathbb{R} and thus irregular Δ_2^1 -sets.

Solovay's model

If there is an inaccessible, you can force all projective sets to be measurable and have the Baire property.

Woodin cardinals..

There are models where

- every Σ_n^1 set is regular (LM, BP ...)
- irregular Δ_{n+1}^1 sets (from a well-ordering).

Some classical results on measure and category Seperating category and measure (two ways)

ヘロト ヘワト ヘビト ヘビト

We don't know what's regular...

V = L

There is a Δ_2^1 well-ordering of \mathbb{R} and thus irregular Δ_2^1 -sets.

Solovay's model

If there is an inaccessible, you can force all projective sets to be measurable and have the Baire property.

Woodin cardinals..

There are models where

- every Σ_n^1 set is regular (LM, BP ...)
- irregular Δ_{n+1}^1 sets (from a well-ordering).

Some classical results on measure and category Seperating category and measure (two ways)

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

э

We don't know what's regular...

V = L

There is a Δ_2^1 well-ordering of \mathbb{R} and thus irregular Δ_2^1 -sets.

Solovay's model

If there is an inaccessible, you can force all projective sets to be measurable and have the Baire property.

Woodin cardinals...

There are models where

- every Σ_n^1 set is regular (LM, BP ...)
- irregular Δ_{n+1}^1 sets (from a well-ordering).

Some classical results on measure and category Seperating category and measure (two ways)

イロト 不得 とくほと くほとう

3

Do LM and BP always fail or hold at the *same level* of the projective hierarchy?

D. Schrittesser Projective (LM without BP)

Some classical results on measure and category Seperating category and measure (two ways)

くロト (過) (目) (日)

ъ

Outline

- Some classical results on measure and category
- Seperating category and measure (two ways)

2 Some ideas of the proof

- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

Some classical results on measure and category Seperating category and measure (two ways)

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Seperating measure and category, one way

Do LM and BP always fail or hold at the *same level* of the projective hierarchy? Answer: no.

Theorem (Shelah)

From just CON(ZFC) you can force:

- all projective sets have BP
- but there is a projective set without LM (in fact, it's Σ_3^1).

Some classical results on measure and category Seperating category and measure (two ways)

ヘロン 人間 とくほとく ほとう

Seperating measure and category, one way

Do LM and BP always fail or hold at the *same level* of the projective hierarchy? Answer: no.

Theorem (Shelah)

From just CON(ZFC) you can force:

- all projective sets have BP
- but there is a projective set without LM (in fact, it's Σ¹₃).

Some classical results on measure and category Seperating category and measure (two ways)

Main result and its precursor

What to do next: switch roles of category and measure.

Theorem (Shelah)

Assume there is an inaccessible. Then, consistently

- every set is measurable,
- there's a set without the Baire-property.

Theorem (joint work with S. Friedman)

Assume there is a Mahlo and V = L. In a forcing extension,

- every projective set is measurable,
- there's a Δ_3^1 set without the Baire-property.

By a theorem of Shelah, we need to assume at least an inaccessible.

Some classical results on measure and category Seperating category and measure (two ways)

Main result and its precursor

What to do next: switch roles of category and measure.

Theorem (Shelah)

Assume there is an inaccessible. Then, consistently

- every set is measurable,
- there's a set without the Baire-property.

Theorem (joint work with S. Friedman)

Assume there is a Mahlo and V = L. In a forcing extension,

- every projective set is measurable,
- there's a Δ_3^1 set without the Baire-property.

By a theorem of Shelah, we need to assume at least an inaccessible.

Some classical results on measure and category Seperating category and measure (two ways)

Main result and its precursor

What to do next: switch roles of category and measure.

Theorem (Shelah)

Assume there is an inaccessible. Then, consistently

- every set is measurable,
- there's a set without the Baire-property.

Theorem (joint work with S. Friedman)

Assume there is a Mahlo and V = L. In a forcing extension,

- every projective set is measurable,
- there's a Δ_3^1 set without the Baire-property.

By a theorem of Shelah, we need to assume at least an inaccessible.

Sketch of the iteration Coding Stratified forcing Amalgamation

Outline

Some context

- Some classical results on measure and category
- Seperating category and measure (two ways)

2 Some ideas of the proof

- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

くロト (過) (目) (日)

ъ

Let κ be the least Mahlo in *L*.

We will force with an iteration P_{κ} of length κ .

- κ will be ω₁ in the end but remain Mahlo after < κ many steps.
- At limits *ξ*, we don't know if *P_ξ* collapses the continuum; so we force to collapse it, as Jensen coding requires GCH.
- We define a set Γ which does not have BP.
- We make Γ projective using Jensen coding.
- The coding makes use of indepent κ⁺-Suslin trees, to which we add branches at the very beginning.
- We use amalgamation to ensure P_{κ} is sufficiently homogeneous.

イロト 不得 とくほと くほとう

э.

Sketch of the iteration Coding Stratified forcing Amalgamation

A sketch of the iteration

- Force over *L* with Π^{<κ}_{ξ<κ} *T*(ξ), the κ⁺-cc product of constructible κ-closed, κ⁺-Suslin trees to add branches *B*(ξ), ξ < κ.
- 2 In $L[\bar{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_{\xi} * \text{Col}(\omega, c^{L[\bar{B}][G_{\xi}]})$ (at some stages)
 - $P_{\xi} \times \operatorname{Add}(\kappa)^L$
 - $P_{\xi}^{*} * J(B(\xi)_{\xi \in I})$ (to make " $r \in \Gamma$ " definable for a real r)
 - $(\bar{D}_{\xi})_{f}^{\mathbb{Z}}$ f an isomorphism of Random subalgebras of P_{ξ} , D_{ξ} dense in P_{ξ}
 - (P_ξ)^ℤ_Φ Φ an automorphism added by a previous amalgamation
- If (the set w/o BP) = "every other Cohen real" added in the iteration (closed of under automorphisms)

ヘロン ヘアン ヘビン ヘビン

Sketch of the iteration Coding Stratified forcing Amalgamation

A sketch of the iteration

- Force over *L* with Π^{<κ}_{ξ<κ} *T*(ξ), the κ⁺-cc product of constructible κ-closed, κ⁺-Suslin trees to add branches *B*(ξ), ξ < κ.
- 2 In $L[\overline{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_{\xi} * \text{Col}(\omega, c^{L[\bar{B}][G_{\xi}]})$ (at some stages)
 - $P_{\xi} \times \operatorname{Add}(\kappa)^L$
 - $P_{\xi}^{*} * J(B(\xi)_{\xi \in I})$ (to make " $r \in \Gamma$ " definable for a real r)
 - $(\bar{D}_{\xi})_{f}^{\mathbb{Z}}$ f an isomorphism of Random subalgebras of P_{ξ} , D_{ξ} dense in P_{ξ}
 - (P_ξ)^ℤ_Φ Φ an automorphism added by a previous amalgamation
- If (the set w/o BP) = "every other Cohen real" added in the iteration (closed of under automorphisms)

・ロト ・ 理 ト ・ ヨ ト ・

Sketch of the iteration Coding Stratified forcing Amalgamation

A sketch of the iteration

- Force over *L* with Π^{<κ}_{ξ<κ} *T*(ξ), the κ⁺-cc product of constructible κ-closed, κ⁺-Suslin trees to add branches *B*(ξ), ξ < κ.
- 2 In $L[\overline{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_{\xi} * \text{Col}(\omega, c^{L[\bar{B}][G_{\xi}]})$ (at some stages)
 - $P_{\xi} \times \operatorname{Add}(\kappa)^L$
 - $P_{\xi}^{*} * J(B(\xi)_{\xi \in I})$ (to make " $r \in \Gamma$ " definable for a real r)
 - $(\bar{D}_{\xi})_f^{\mathbb{Z}}$ *f* an isomorphism of Random subalgebras of P_{ξ} , D_{ξ} dense in P_{ξ}
 - (P_ξ)^ℤ_Φ Φ an automorphism added by a previous amalgamation
- If (the set w/o BP) = "every other Cohen real" added in the iteration (closed of under automorphisms)

ヘロト 人間 とくほとくほとう

Sketch of the iteration Coding Stratified forcing Amalgamation

A sketch of the iteration

- Force over *L* with Π^{<κ}_{ξ<κ} *T*(ξ), the κ⁺-cc product of constructible κ-closed, κ⁺-Suslin trees to add branches *B*(ξ), ξ < κ.
- 2 In $L[\overline{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_{\xi} * \text{Col}(\omega, c^{L[\bar{B}][G_{\xi}]})$ (at some stages)
 - $P_{\xi} \times \operatorname{Add}(\kappa)^L$
 - $P_{\xi}^* * J(B(\xi)_{\xi \in I})$ (to make " $r \in \Gamma$ " definable for a real r)
 - $(D_{\xi})_{f}^{\mathbb{Z}}$ *f* an isomorphism of Random subalgebras of P_{ξ} , D_{ξ} dense in P_{ξ}
 - (P_ε)^ℤ_Φ Φ an automorphism added by a previous amalgamation
- If (the set w/o BP) = "every other Cohen real" added in the iteration (closed of under automorphisms)

ヘロト 人間 とくほとくほとう

Sketch of the iteration Coding Stratified forcing Amalgamation

A sketch of the iteration

- Force over *L* with Π^{<κ}_{ξ<κ} *T*(ξ), the κ⁺-cc product of constructible κ-closed, κ⁺-Suslin trees to add branches *B*(ξ), ξ < κ.
- 2 In $L[\overline{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_{\xi} * \text{Col}(\omega, c^{L[\bar{B}][G_{\xi}]})$ (at some stages)
 - $P_{\xi} \times \operatorname{Add}(\kappa)^{L}$
 - $P_{\xi}^{\check{}} * J(B(\xi)_{\xi \in I})$ (to make " $r \in \Gamma$ " definable for a real r)
 - $(D_{\xi})_{f}^{\mathbb{Z}}$ *f* an isomorphism of Random subalgebras of P_{ξ} , D_{ξ} dense in P_{ξ}
 - (P_ξ)^ℤ_Φ Φ an automorphism added by a previous amalgamation
- If (the set w/o BP) = "every other Cohen real" added in the iteration (closed of under automorphisms)

ヘロト 人間 とくほとく ほとう

ъ

Sketch of the iteration Coding Stratified forcing Amalgamation

A sketch of the iteration

- Force over *L* with Π^{<κ}_{ξ<κ} *T*(ξ), the κ⁺-cc product of constructible κ-closed, κ⁺-Suslin trees to add branches *B*(ξ), ξ < κ.
- 2 In $L[\overline{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_{\xi} * \text{Col}(\omega, c^{L[\bar{B}][G_{\xi}]})$ (at some stages)
 - $P_{\xi} \times \operatorname{Add}(\kappa)^{L}$
 - $P_{\xi}^{*} * J(B(\xi)_{\xi \in I})$ (to make " $r \in \Gamma$ " definable for a real r)
 - $(D_{\xi})_{f}^{\mathbb{Z}}$ *f* an isomorphism of Random subalgebras of P_{ξ} , D_{ξ} dense in P_{ξ}
 - (P_ξ)^ℤ_Φ Φ an automorphism added by a previous amalgamation
- I (the set w/o BP) = "every other Cohen real" added in the iteration (closed of under automorphisms)

ヘロト 人間 とくほとくほとう

ъ

Sketch of the iteration Coding Stratified forcing Amalgamation

A sketch of the iteration

- Force over *L* with Π^{<κ}_{ξ<κ} *T*(ξ), the κ⁺-cc product of constructible κ-closed, κ⁺-Suslin trees to add branches *B*(ξ), ξ < κ.
- 2 In $L[\overline{B}]$, iterate for κ steps: $P_{\xi+1} =$
 - $P_{\xi} * \text{Col}(\omega, c^{L[\bar{B}][G_{\xi}]})$ (at some stages)
 - $P_{\xi} \times \operatorname{Add}(\kappa)^{L}$
 - $P_{\xi}^{\circ} * J(B(\xi)_{\xi \in I})$ (to make " $r \in \Gamma$ " definable for a real r)
 - $(D_{\xi})_{f}^{\mathbb{Z}}$ *f* an isomorphism of Random subalgebras of P_{ξ} , D_{ξ} dense in P_{ξ}
 - (P_ξ)^ℤ_Φ Φ an automorphism added by a previous amalgamation
- I (the set w/o BP) = "every other Cohen real" added in the iteration (closed of under automorphisms)

ヘロン 人間 とくほ とくほ とう

э

Sketch of the iteration Coding Stratified forcing Amalgamation

A sketch of the iteration

Force over *L* with Π^{<κ}_{ξ<κ} *T*(ξ), the κ⁺-cc product of constructible κ-closed, κ⁺-Suslin trees to add branches *B*(ξ), ξ < κ.

2 In $L[\overline{B}]$, iterate for κ steps: $P_{\xi+1} =$

- $P_{\xi} * \text{Col}(\omega, c^{L[\bar{B}][G_{\xi}]})$ (at some stages)
- $P_{\xi} \times \operatorname{Add}(\kappa)^{L}$
- $P_{\xi}^{*} * J(B(\xi)_{\xi \in I})$ (to make " $r \in \Gamma$ " definable for a real r)
- $(D_{\xi})_{f}^{\mathbb{Z}}$ *f* an isomorphism of Random subalgebras of P_{ξ} , D_{ξ} dense in P_{ξ}
- (P_ξ)^ℤ_Φ Φ an automorphism added by a previous amalgamation
- C (the set w/o BP) = "every other Cohen real" added in the iteration (closed of under automorphisms)

ヘロン ヘアン ヘビン ヘビン

э

Sketch of the iteration Coding Stratified forcing Amalgamation

Outline

Some context

- Some classical results on measure and category
- Seperating category and measure (two ways)

2 Some ideas of the proof

Sketch of the iteration

Coding

- Stratified forcing
- Amalgamation

くロト (過) (目) (日)

э

Sketch of the iteration Coding Stratified forcing Amalgamation

Getting a projective set without BP

Question: how do we get a set without BP?

Shelah: A set containing every other Cohen real! Let Γ be s.t. for any $\xi < \kappa$, there's a dense set of reals Cohen over $V^{P_{\xi}}$ both in Γ and $\neg \Gamma$. We collapse everthing below a Mahlo, so it's easy to find such

Г.

How do you make Γ projective?

$$r \in \Gamma \iff \exists s \Psi(s, r)$$

(where Ψ is Π_2^1)

We force the above "real by real": for every real added in the iteration, we add *s* by forcing.

イロト イヨト イヨト イ

Sketch of the iteration Coding Stratified forcing Amalgamation

Getting a projective set without BP

Question: how do we get a set without BP? Shelah: A set containing every other Cohen real!

Let Γ be s.t. for any $\xi < \kappa$, there's a dense set of reals Cohen over $V^{P_{\xi}}$ both in Γ and $\neg \Gamma$. We collapse everthing below a Mahlo, so it's easy to find such Γ .

How do you make Γ projective?

$$r \in \Gamma \iff \exists s \Psi(s, r)$$

(where Ψ is Π_2^1)

We force the above "real by real": for every real added in the iteration, we add s by forcing.

イロト イヨト イヨト イ

Sketch of the iteratior Coding Stratified forcing Amalgamation

Getting a projective set without BP

Question: how do we get a set without BP?

Shelah: A set containing every other Cohen real!

Let Γ be s.t. for any $\xi < \kappa$, there's a dense set of reals Cohen over $V^{P_{\xi}}$ both in Γ and $\neg \Gamma$.

We collapse everthing below a Mahlo, so it's easy to find such $\boldsymbol{\Gamma}.$

How do you make Γ projective?

$$r \in \Gamma \iff \exists s \Psi(s, r)$$

(where Ψ is Π_2^1)

We force the above "real by real": for every real added in the iteration, we add *s* by forcing.

ヘロト ヘアト ヘヨト ヘ

Sketch of the iteratior Coding Stratified forcing Amalgamation

Getting a projective set without BP

Question: how do we get a set without BP?

Shelah: A set containing every other Cohen real!

Let Γ be s.t. for any $\xi < \kappa$, there's a dense set of reals Cohen over $V^{P_{\xi}}$ both in Γ and $\neg \Gamma$.

We collapse everthing below a Mahlo, so it's easy to find such Γ .

How do you make Γ projective?

$$r \in \Gamma \iff \exists s \Psi(s, r)$$

(where Ψ is Π_2^1)

We force the above "real by real": for every real added in the iteration, we add *s* by forcing.

イロト イポト イヨト イヨト

Sketch of the iteratio Coding Stratified forcing Amalgamation

What's the Σ_3^1 definition of Γ ?

At some stage ξ we are given *r* by book-keeping, and we pick \dot{Q}_{ξ} so that the following holds in $L[\bar{B}][G_{\xi+1}]$:

 $r \in \Gamma \iff \exists s \text{ s.t. all } T(\xi) \text{ with } \xi \in I(r) \text{ have a branch in } L[s],$

where $I(r) \subset \kappa$ and *r* can be obtained from I(r).

I.e. let Q_{ξ} be Jensen coding to add *s* coding the right branches. In fact, we use a variant (David's trick), which makes a stronger statement true:

 $r \in \Gamma \iff \exists s \forall^* \alpha < \kappa L_{\alpha}[s] \vDash$ just the right $T(\xi)$ have branches

This second, stronger statement is Σ_3^1 . That \leftarrow holds (in $L[\overline{B}][G_{\kappa}]$) requires a careful choice of I(r).

ヘロア 人間 アメヨア 人口 ア

Sketch of the iteratio Coding Stratified forcing Amalgamation

What's the Σ_3^1 definition of Γ ?

At some stage ξ we are given *r* by book-keeping, and we pick \dot{Q}_{ξ} so that the following holds in $L[\bar{B}][G_{\xi+1}]$:

 $r \in \Gamma \iff \exists s \text{ s.t. all } T(\xi) \text{ with } \xi \in I(r) \text{ have a branch in } L[s],$

where $l(r) \subset \kappa$ and r can be obtained from l(r). I.e. let Q_{ξ} be Jensen coding to add s coding the right branches. In fact, we use a variant (David's trick), which makes a stronger statement true:

 $r \in \Gamma \iff \exists s \forall^* \alpha < \kappa L_{\alpha}[s] \vDash$ just the right $T(\xi)$ have branches

This second, stronger statement is Σ_3^1 . That \leftarrow holds (in $L[\overline{B}][G_{\kappa}]$) requires a careful choice of I(r).

・ロト ・ 理 ト ・ ヨ ト ・

Sketch of the iteratio Coding Stratified forcing Amalgamation

What's the Σ_3^1 definition of Γ ?

At some stage ξ we are given *r* by book-keeping, and we pick \dot{Q}_{ξ} so that the following holds in $L[\bar{B}][G_{\xi+1}]$:

 $r \in \Gamma \iff \exists s \text{ s.t. all } T(\xi) \text{ with } \xi \in I(r) \text{ have a branch in } L[s],$

where $I(r) \subset \kappa$ and r can be obtained from I(r).

I.e. let Q_{ξ} be Jensen coding to add *s* coding the right branches. In fact, we use a variant (David's trick), which makes a stronger statement true:

 $r \in \Gamma \iff \exists s \forall^* \alpha < \kappa L_{\alpha}[s] \vDash$ just the right $T(\xi)$ have branches

This second, stronger statement is Σ_3^1 . That \Leftarrow holds (in $L[\bar{B}][G_{\kappa}]$) requires a careful choice of l(r).

ヘロン 人間 とくほとく ほとう

Sketch of the iteratio Coding Stratified forcing Amalgamation

What's the Σ_3^1 definition of Γ ?

At some stage ξ we are given *r* by book-keeping, and we pick \dot{Q}_{ξ} so that the following holds in $L[\bar{B}][G_{\xi+1}]$:

 $r \in \Gamma \iff \exists s \text{ s.t. all } T(\xi) \text{ with } \xi \in I(r) \text{ have a branch in } L[s],$

where $I(r) \subset \kappa$ and r can be obtained from I(r).

I.e. let Q_{ξ} be Jensen coding to add *s* coding the right branches. In fact, we use a variant (David's trick), which makes a stronger statement true:

 $r \in \Gamma \iff \exists s \forall^* \alpha < \kappa L_{\alpha}[s] \vDash$ just the right $T(\xi)$ have branches

This second, stronger statement is Σ_3^1 . That \leftarrow holds (in $L[\overline{B}][G_{\kappa}]$) requires a careful choice of I(r).

・ロト ・ 理 ト ・ ヨ ト ・

Sketch of the iteratior Coding Stratified forcing Amalgamation

What's I(r)? The Problem

The most obvious choice

$$I(r) = \{\xi \cdot \omega + n \mid n \in r\}$$

must fail: this would force a well-ordering of reals of length ω_1 in $L[\bar{B}][G_{\kappa}]$. Observe: if

1 $\Vdash_{\overline{T}*P_{\kappa}} \exists sL_{\alpha}[s] \vDash \xi \in I(\dot{r}) \Rightarrow T(\xi)$ has a branch.

and Φ is an automorphism of $\overline{T} * P_{\kappa}$, then also

1 $\Vdash_{\overline{T}*P_{\kappa}}$ ∃*sL*_α[*s*] ⊨ ξ ∈ Φ(*I*(*r*)) ⇒ *T*(ξ) has a branch.

I.e. we should expect Γ to be closed under such Φ . This makes it harder to show $r \in \Gamma \Leftarrow \exists s \Psi(s, r)$.

Sketch of the iteratior Coding Stratified forcing Amalgamation

What's I(r)? The Problem

The most obvious choice

$$I(r) = \{\xi \cdot \omega + n \mid n \in r\}$$

must fail: this would force a well-ordering of reals of length ω_1 in $L[\bar{B}][G_{\kappa}]$. Observe: if

1
$$\Vdash_{\overline{T}*P_{\kappa}} \exists sL_{\alpha}[s] \vDash \xi \in I(\dot{r}) \Rightarrow T(\xi)$$
 has a branch.

and Φ is an automorphism of $\overline{T} * P_{\kappa}$, then also

 $1 \Vdash_{\overline{T} * P_{\kappa}} \exists sL_{\alpha}[s] \vDash \xi \in \Phi(I(\dot{r})) \Rightarrow T(\xi) \text{ has a branch.}$

I.e. we should expect Γ to be closed under such Φ . This makes it harder to show $r \in \Gamma \Leftarrow \exists s \Psi(s, r)$.

Sketch of the iteration Coding Stratified forcing Amalgamation

What's I(r)? The Problem

The most obvious choice

$$I(r) = \{\xi \cdot \omega + n \mid n \in r\}$$

must fail: this would force a well-ordering of reals of length ω_1 in $L[\bar{B}][G_{\kappa}]$. Observe: if

1
$$\Vdash_{\overline{T}*P_{\kappa}} \exists sL_{\alpha}[s] \vDash \xi \in I(\dot{r}) \Rightarrow T(\xi)$$
 has a branch.

and Φ is an automorphism of $\overline{T} * P_{\kappa}$, then also

 $1 \Vdash_{\overline{T} * P_{\kappa}} \exists sL_{\alpha}[s] \vDash \xi \in \Phi(I(\dot{r})) \Rightarrow T(\xi) \text{ has a branch.}$

I.e. we should expect Γ to be closed under such Φ . This makes it harder to show $r \in \Gamma \Leftarrow \exists s \Psi(s, r)$.

Sketch of the iteration Coding Stratified forcing Amalgamation

What's I(r)? The Solution

Let *C* be an Add(κ)^{*L*} generic added at stage $\xi - 1$. Set

$$I(r) = \{(\sigma, n, i) \mid \sigma \lhd C, r(n) = i\}$$

where \lhd denotes "initial segment".

One can show $\Phi(\dot{C}) \neq \dot{C}$ whenever $\dot{r} \neq \Phi(\dot{r})$, for any automorphism coming from amalgamation. This uses that *C* is κ -closed. Thus I(r) and $\Phi(I(r))$ are almost disjoint.

ヘロン 人間 とくほど くほとう

Sketch of the iteration Coding Stratified forcing Amalgamation

$\forall^* \alpha < \kappa \quad L_{\alpha}[s] \vDash \exists a \text{ large set } C \text{ s.t.}$ $(r(n) = i \text{ and } \sigma \lhd C) \Rightarrow T^{\alpha}(\sigma, n, i, 0) \text{ has a branch.}$

Excuse the change of notation in the indexing of the trees.

イロト 不得 トイヨト イヨト 二日 二

Sketch of the iteration Coding Stratified forcing Amalgamation

Outline

Some context

- Some classical results on measure and category
- Seperating category and measure (two ways)

2 Some ideas of the proof

- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

くロト (過) (目) (日)

ъ

Sketch of the iteration Coding Stratified forcing Amalgamation

To show we preserve cardinals:

We need a property that is

- iterable with the right support
- Jensen coding has it
- it is preserved by amalgamation.
- Jensen coding is nice because for every regular λ, you can write it as P^λ ∗ P
 _λ, where P^λ is (almost) λ⁺-closed and P^λ ⊢ P_λ is λ-centered.
- Does this iterate? We formulate an abstraction, called "stratified", satisfying above requirements.

ヘロト ヘ戸ト ヘヨト ヘヨト

Sketch of the iteration Coding Stratified forcing Amalgamation

Careful!

We do collapse everything below κ . Stratification does not help much at the final stage κ . The Mahlo-ness of κ is used to show:

- κ remains a cardinal in $L[\bar{B}]^{P_{\kappa}}$
- No reals are added at stage κ, every real is contained in some L[B̄]^{P_ξ}, ξ < κ.

We need to use Easton-like Jensen coding!

イロト 不得 とくほ とくほとう

P is stratified above λ_0 means we have relations for each regular $\lambda \ge \lambda_0$ such that:

- \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
- ② $\langle P, \preccurlyeq^{\lambda}
 angle$ is closed under definable, strategic sequences
- **③** $\mathbf{C}^{\lambda} \subseteq \mathbf{P} \times \lambda$ is similar to a centering function
- $\textcircled{9} \preccurlyeq^{\lambda}$ is a binary relation on P weaker than \leq
- **●** If $\mathbf{C}^{\lambda}(r) \cap \mathbf{C}^{\lambda}(q) \neq \emptyset$ and *r* ≺^{*λ*} *q* then *r* · *q* ≠ 0
- If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
- **(**) dom(\mathbf{C}^{λ}) is dense (in the sense of $\preccurlyeq^{\lambda'}$ for any $\lambda' < \lambda$)
- **B** \mathbf{C}^{λ} is "continuous".

イロト 不得 とくほ とくほ とうほ

P is stratified above λ_0 means we have relations for each regular $\lambda \ge \lambda_0$ such that:

- \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
- ② $\langle P, \preccurlyeq^{\lambda}
 angle$ is closed under definable, strategic sequences
- **③** $\mathbf{C}^{\lambda} \subseteq \mathbf{P} \times \lambda$ is similar to a centering function
- $\textcircled{9} \preccurlyeq^{\lambda}$ is a binary relation on P weaker than \leq
- **●** If $\mathbf{C}^{\lambda}(r) \cap \mathbf{C}^{\lambda}(q) \neq \emptyset$ and *r* ≺^{*λ*} *q* then *r* · *q* ≠ 0
- If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
- **(**) dom(\mathbf{C}^{λ}) is dense (in the sense of $\preccurlyeq^{\lambda'}$ for any $\lambda' < \lambda$)
- **B** \mathbf{C}^{λ} is "continuous".

イロト 不得 とくほ とくほ とうほ

P is stratified above λ_0 means we have relations for each regular $\lambda \ge \lambda_0$ such that:

- \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
- 2 $\langle P, \preccurlyeq^{\lambda} \rangle$ is closed under definable, strategic sequences
- **③** $\mathbf{C}^{\lambda} \subseteq \mathbf{P} \times \lambda$ is similar to a centering function
- $\textcircled{9} \preccurlyeq^{\lambda}$ is a binary relation on P weaker than \leq
- **⑤** If $\mathbf{C}^{\lambda}(r) \cap \mathbf{C}^{\lambda}(q) \neq \emptyset$ and $r ≺^{\lambda} q$ then $r \cdot q \neq 0$
- If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
- **(**) dom(\mathbf{C}^{λ}) is dense (in the sense of $\preccurlyeq^{\lambda'}$ for any $\lambda' < \lambda$)
- **B** \mathbf{C}^{λ} is "continuous".

P is stratified above λ_0 means we have relations for each regular $\lambda \ge \lambda_0$ such that:

- \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
- 2 $\langle P, \preccurlyeq^{\lambda} \rangle$ is closed under definable, strategic sequences
- **(**) $\mathbf{C}^{\lambda} \subseteq \mathbf{P} \times \lambda$ is similar to a centering function
- ${\scriptstyle \textcircled{\ }}{\scriptstyle \textcircled{\ }}{\scriptstyle \textcircled{\ }}{\scriptstyle \Huge{\ }}{\scriptstyle \Huge{\ }}{\scriptstyle \Huge{\ }}{\scriptstyle \Huge{\ }}{\scriptstyle \Huge{\ }}{\scriptstyle \large \large}$ is a binary relation on P weaker than ${\scriptstyle \large \large \leq}{\scriptstyle \large \large}$
- **If C**^λ(*r*) ∩ **C**^λ(*q*) ≠ \emptyset and *r* $≺^{\lambda}$ *q* then *r* · *q* ≠ 0
- **●** If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
- **(**) dom(\mathbf{C}^{λ}) is dense (in the sense of $\preccurlyeq^{\lambda'}$ for any $\lambda' < \lambda$)
- **B** \mathbf{C}^{λ} is "continuous".

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

P is stratified above λ_0 means we have relations for each regular $\lambda \ge \lambda_0$ such that:

- \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
- 2 $\langle P, \preccurlyeq^{\lambda} \rangle$ is closed under definable, strategic sequences
- **③** $\mathbf{C}^{\lambda} \subseteq \mathbf{P} \times \lambda$ is similar to a centering function
- $\textcircled{9} \preccurlyeq^{\lambda}$ is a binary relation on P weaker than \leq
- **If C**^λ(*r*) ∩ **C**^λ(*q*) ≠ \emptyset and *r* $≺^{\lambda}$ *q* then *r* · *q* ≠ 0
- **●** If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
- () dom(\mathbf{C}^{λ}) is dense (in the sense of $\preccurlyeq^{\lambda'}$ for any $\lambda' < \lambda$)
- **B** \mathbf{C}^{λ} is "continuous".

P is stratified above λ_0 means we have relations for each regular $\lambda \ge \lambda_0$ such that:

- \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
- 2 $\langle P, \preccurlyeq^{\lambda} \rangle$ is closed under definable, strategic sequences
- **③** $\mathbf{C}^{\lambda} \subseteq \mathbf{P} \times \lambda$ is similar to a centering function
- **④** \preccurlyeq^{λ} is a binary relation on P weaker than \leq
- **ⓑ** If $\mathbf{C}^{\lambda}(r) \cap \mathbf{C}^{\lambda}(q) \neq \emptyset$ and *r* ⊰^{*λ*} *q* then *r* · *q* ≠ 0
- If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
- **(**) dom(\mathbf{C}^{λ}) is dense (in the sense of $\preccurlyeq^{\lambda'}$ for any $\lambda' < \lambda$)
- **B** \mathbf{C}^{λ} is "continuous".

P is stratified above λ_0 means we have relations for each regular $\lambda \ge \lambda_0$ such that:

- \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
- 2 $\langle P, \preccurlyeq^{\lambda} \rangle$ is closed under definable, strategic sequences
- **③** $\mathbf{C}^{\lambda} \subseteq \mathbf{P} \times \lambda$ is similar to a centering function
- **④** \preccurlyeq^{λ} is a binary relation on P weaker than \leq
- **●** If $C^{\lambda}(r) \cap C^{\lambda}(q) \neq \emptyset$ and $r \prec^{\lambda} q$ then $r \cdot q \neq 0$
- If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
- () dom(\mathbf{C}^{λ}) is dense (in the sense of $\preccurlyeq^{\lambda'}$ for any $\lambda' < \lambda$)
- **B** \mathbf{C}^{λ} is "continuous".

P is stratified above λ_0 means we have relations for each regular $\lambda \ge \lambda_0$ such that:

- \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
- 2 $\langle P, \preccurlyeq^{\lambda} \rangle$ is closed under definable, strategic sequences
- **③** $\mathbf{C}^{\lambda} \subseteq \mathbf{P} \times \lambda$ is similar to a centering function
- **④** \preccurlyeq^{λ} is a binary relation on P weaker than \leq
- **⑤** If $\mathbf{C}^{\lambda}(r) \cap \mathbf{C}^{\lambda}(q) \neq \emptyset$ and $r \prec^{\lambda} q$ then $r \cdot q \neq 0$
- If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
- O dom(\mathbf{C}^{λ}) is dense (in the sense of $\preccurlyeq^{\lambda'}$ for any $\lambda' < \lambda$)
- **O** \mathbf{C}^{λ} is "continuous".

P is stratified above λ_0 means we have relations for each regular $\lambda \ge \lambda_0$ such that:

- \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
- 2 $\langle P, \preccurlyeq^{\lambda} \rangle$ is closed under definable, strategic sequences
- **③** $\mathbf{C}^{\lambda} \subseteq \mathbf{P} \times \lambda$ is similar to a centering function
- **④** \preccurlyeq^{λ} is a binary relation on P weaker than \leq
- **⑤** If $\mathbf{C}^{\lambda}(r) \cap \mathbf{C}^{\lambda}(q) \neq \emptyset$ and $r \prec^{\lambda} q$ then $r \cdot q \neq 0$
- If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
- **(**) dom(\mathbf{C}^{λ}) is dense (in the sense of $\preccurlyeq^{\lambda'}$ for any $\lambda' < \lambda$)
- C^{λ} is "continuous".

P is stratified above λ_0 means we have relations for each regular $\lambda \ge \lambda_0$ such that:

- \preccurlyeq^{λ} is a pre-order on P stronger than \leq : a notion of direct extension
- 2 $\langle P, \preccurlyeq^{\lambda} \rangle$ is closed under definable, strategic sequences
- **③** $\mathbf{C}^{\lambda} \subseteq \mathbf{P} \times \lambda$ is similar to a centering function
- **④** \preccurlyeq^{λ} is a binary relation on P weaker than \leq
- **●** If $C^{\lambda}(r) \cap C^{\lambda}(q) \neq \emptyset$ and $r \prec^{\lambda} q$ then $r \cdot q \neq 0$
- If $r \leq q$ there is $p \preccurlyeq^{\lambda} q$ such that $p \preccurlyeq^{\lambda} r$
- **(**) dom(\mathbf{C}^{λ}) is dense (in the sense of $\preccurlyeq^{\lambda'}$ for any $\lambda' < \lambda$)
- **3** \mathbf{C}^{λ} is "continuous".

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Sketch of the iteration Coding Stratified forcing Amalgamation

A closer look at "quasi-closure"

We work in a model of the form L[A]. There is a function $F: \lambda \times V \times P \to P$ definable by a ${}^{A}_{1}$ formula such that for any $\lambda \leq \overline{\lambda}$, both regular

- $F(\lambda, \underline{x}, p) \preccurlyeq^{\lambda} p$
- if $p \preccurlyeq^{\overline{\lambda}} 1$ then $F(\lambda, x, p) \preccurlyeq^{\overline{\lambda}} 1$
- every λ-adequate sequence p
 = (p_ξ)_{ξ<ρ} has a greatest lower bound

where \bar{p} is adequate iff $\rho \leq \lambda$, \bar{p} is \preccurlyeq^{λ} -descending and there is x such that

- $p_{\xi+1} \preccurlyeq^{\lambda'} F(\lambda, x, p_{\xi})$ for some regular λ'
- \bar{p} is $\Delta_1^A(\lambda, x)$

• for limits $\bar{\xi} < \rho$, $p_{\bar{\xi}}$ is a greatest lower bound of $(p_{\xi})_{\xi < \bar{\xi}}$. We also need that $p \preccurlyeq^{\lambda} p_{\xi}$ for each $\xi < \rho$ and if all $p_{\xi} \preccurlyeq^{\bar{\lambda}} 1$, then $p \preccurlyeq^{\bar{\lambda}} 1$.

Sketch of the iteration Coding Stratified forcing Amalgamation

Diagonal support

The right support to iterate stratified forcing is diagonal support: Let λ be regular. Let $\bar{P} = (P_{\xi}, \dot{Q}_{\xi})_{\xi < \theta}$ be an iteration of stratified forcings, and let π_{ξ} be the projection to P_{ξ} .

Definition

$$\operatorname{supp}^{\lambda}(\boldsymbol{\rho}) = \{ \xi \mid \pi_{\xi+1}(\boldsymbol{\rho}) \not\preccurlyeq^{\lambda} \pi_{\xi}(\boldsymbol{\rho}) \}$$

For diagonal support on P_{θ} we demand that $\operatorname{supp}(p)$ be of size $< \lambda$.

We also need to demand of \bar{P} that for each regular λ there is $\iota < \lambda^+$ such that

$$\forall p \in P_{\theta} \quad p \preccurlyeq^{\lambda} \pi_{\iota}(p).$$

ヘロン ヘアン ヘビン ヘビン

Sketch of the iteratior Coding Stratified forcing Amalgamation

Stratified extension

When $P_{\xi+1}$ results from an amalgamation of P_{ξ} , $P_{\xi+1}$: P_{ξ} is not forced to be stratified by P_{ξ} .

Therefore we introduce the notion of (Q, P) being a stratified extension above λ_0 .

- $(P, P * \dot{Q})$ is a stratified extension, if $\Vdash_P Q$ is stratified
- So is $(P, P \times Q)$ if P and Q are stratified
- Same for (P, A(P)), where A(P) denotes an amalgamation of P
- *P* is stratified $\iff (\{1_P\}, P)$ is a stratified extension
- If (*Q*, *P*) is a stratified extension, *P* is stratified

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Sketch of the iteratior Coding Stratified forcing Amalgamation

Stratified extension and iteration

Most importantly:

Theorem

If $(P_{\xi})_{\xi \leq \theta}$ has diagonal supports and for all $\xi < \theta$, $(P_{\xi}, P_{\xi+1})$ is a stratified extension, then P_{θ} is stratified.

イロト イポト イヨト イヨト

ъ

Sketch of the iteratior Coding Stratified forcing Amalgamation

Outline

Some context

- Some classical results on measure and category
- Seperating category and measure (two ways)

2 Some ideas of the proof

- Sketch of the iteration
- Coding
- Stratified forcing
- Amalgamation

くロト (過) (目) (日)

ъ

Sketch of the iteratior Coding Stratified forcing Amalgamation

How to get all sets LM.

Why do all projective sets have a measure in Solovays model? If we force with an iteration $(P_{\xi}, \dot{Q}_{\xi})_{\xi < \kappa}$ of length κ and the following holds in $V^{P_{\kappa}}$:

- $\mathbb{R} \cap V^{P_{\xi}}$ is null (meager) for any $\xi < \kappa$
- every real is small generic, i.e. every $r \in \mathbb{R}$ is in some $V^{P_{\xi}}$, for $\xi < \kappa$.
- P_{κ} has many automorphisms.

Then every projective set is is measurable (has BP). In Solovays model, projective sets are both BP and LM because $Col(\omega, < \kappa)$ is *very* homogeneous.

Shelah: only *just enough* automorphism to get *one* kind of regularity.

ヘロト ヘワト ヘビト ヘビト

Sketch of the iteratior Coding Stratified forcing Amalgamation

How to get all sets LM.

Why do all projective sets have a measure in Solovays model? If we force with an iteration $(P_{\xi}, \dot{Q}_{\xi})_{\xi < \kappa}$ of length κ and the following holds in $V^{P_{\kappa}}$:

- $\mathbb{R} \cap V^{P_{\xi}}$ is null (meager) for any $\xi < \kappa$
- every real is small generic, i.e. every r ∈ ℝ is in some V^{P_ξ}, for ξ < κ.
- P_{κ} has many automorphisms.

Then every projective set is is measurable (has BP). In Solovays model, projective sets are both BP and LM because $Col(\omega, < \kappa)$ is *very* homogeneous.

Shelah: only *just enough* automorphism to get *one* kind of regularity.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Sketch of the iteratior Coding Stratified forcing Amalgamation

How to get all sets LM.

Why do all projective sets have a measure in Solovays model? If we force with an iteration $(P_{\xi}, \dot{Q}_{\xi})_{\xi < \kappa}$ of length κ and the following holds in $V^{P_{\kappa}}$:

- $\mathbb{R} \cap V^{P_{\xi}}$ is null (meager) for any $\xi < \kappa$
- every real is small generic, i.e. every *r* ∈ ℝ is in some *V<sup>P_ξ*, for *ξ* < *κ*.
 </sup>
- P_{κ} has many automorphisms.

Then every projective set is is measurable (has BP). In Solovays model, projective sets are both BP and LM because $Col(\omega, < \kappa)$ is *very* homogeneous.

Shelah: only *just enough* automorphism to get *one* kind of regularity.

・ロット (雪) () () () ()

Sketch of the iteratior Coding Stratified forcing Amalgamation

To get all projective sets LM, P_{κ} has enough automorphisms means:

Extend isomorphisms of Random subalgebras

Say r_0 , r_1 are Random reals over $V^{P_{\iota}}$. Let \dot{B}_i be the complete sub-abgebra of $ro(P_{\xi} : P_{\iota})$ generated by r_i in $V^{P_{\iota}}$, let $B_i = P_{\iota} * \dot{B}_i$ and let f be the isomorphism:

$$f \colon B_0 \to B_1$$

Then there is an automorphism

$$\Phi\colon P_\kappa\to P_\kappa$$

which extends f.

イロト イ理ト イヨト イヨト

Here's an adaptation of Shelah's amalgamation more apt to preserve closure:

Let $f: B_0 \to B_1$ be an isomorphism of two sub-algebras of ro(*P*). Let $\pi_i: P_{\xi} \to B_i$ denote the canonical projection.

Amalgamation

 $P_f^{\mathbb{Z}}$ consists of all $\bar{p} \colon \mathbb{Z} \to P \cdot B_0 \cdot B_1$ such that

$$\forall i \in \mathbb{Z} \quad f(\pi_0(\bar{p}(i)) = \pi_1(\bar{p}(i+1)))$$

- The map p → (..., f⁻¹(π₁(p)), p, f(π₀(p)),...) is a complete embedding
- The left shift is an automorphism extending f.

・ロト ・ 理 ト ・ ヨ ト ・

Sketch of the iteratior Coding Stratified forcing Amalgamation

How amalgamation is used

For any *ι* < *κ* and any two reals *r*₀, *r*₁ random over *L*[*B*]^{*P_ι*} there should be *ξ* < *κ* such that

$$P_{\xi+1} = (P_{\xi})_f^{\mathbb{Z}}$$

where $B_i = P_{\iota} * \dot{B}(r_i)$ and *f* is the isomorphism of B_0 and B_1 .

- Then $P_{\xi+1}$ has an automorphism Φ
- Of course you have to extend this Φ to Φ': P_{ξ'} → P_{ξ'}, for cofinally many ξ' < κ.
- Amalgamation may collapse the current ω₁.

・ロト ・ 理 ト ・ ヨ ト ・

Sketch of the iteration Coding Stratified forcing Amalgamation

Amalgamation and stratification

Problem: preserve some closure

- P carries an auxillary ordering ≼
- Certain "adequate" ≼-descending sequences have lower bounds in P
- π_i not continuous, why should

$$f(\pi_0(\bar{p}(i)) = \pi_1(\bar{p}(i+1)))$$

hold for the coordinatewise limit of a sequence $\bar{p}_{\xi} \in P_{f}^{\mathbb{Z}}$?

ヘロト ヘ戸ト ヘヨト ヘヨト

Sketch of the iteration Coding Stratified forcing Amalgamation

Amalgamation and stratification

Problem: preserve some closure

Why should $f(\pi_0(\bar{p}(i)) = \pi_1(\bar{p}(i+1))$ hold for the coordinatewise limit of a sequence $\bar{p}_{\xi} \in P_f^{\mathbb{Z}}$?

Solution:

Replace *P* by a dense subset *D*, where $p \in D \iff$

$$\forall q \preccurlyeq p \quad \forall b \in B_0 \quad \pi_1(q \cdot b) = \pi_1(p \cdot b)$$

Fine point:

To show *D* completely embedds into $D_f^{\mathbb{Z}}$, we need

- $Q \subseteq D$
- $Q \cdot D \subseteq D$.

イロン 不得 とくほ とくほ とうほ

Sketch of the iteration Coding Stratified forcing Amalgamation

Amalgamation and stratification

Problem: preserve some closure

Why should $f(\pi_0(\bar{p}(i)) = \pi_1(\bar{p}(i+1))$ hold for the coordinatewise limit of a sequence $\bar{p}_{\xi} \in P_f^{\mathbb{Z}}$?

Solution:

Replace *P* by a dense subset *D*, where $p \in D \iff$

$$\forall q \preccurlyeq p \quad \forall b \in B_0 \quad \pi_1(q \cdot b) = \pi_1(p \cdot b)$$

Fine point:

To show *D* completely embedds into $D_f^{\mathbb{Z}}$, we need

- $Q \subseteq D$
- $Q \cdot D \subseteq D$.

ヘロン 人間 とくほ とくほ とう

ъ

A few questions

So projective measure does not imply projective Baire.

Questions:

- Can we make Γ Δ¹_{k+1}, keeping the Baire-property for all Σ¹_k sets, k ≥ 3?
- For which σ -ideals can we substitute "Borel modulo *I*" for either of them?
- Force ¬CH at the same time?
- Prove the Mahlo is necessary or get rid of it?

ヘロン 人間 とくほど くほとう

A few questions

So projective measure does not imply projective Baire.

Questions:

- Can we make Γ Δ¹_{k+1}, keeping the Baire-property for all Σ¹_k sets, k ≥ 3?
- For which σ-ideals can we substitute "Borel modulo *I*" for either of them?
- Force ¬CH at the same time?
- Prove the Mahlo is necessary or get rid of it?

イロト イポト イヨト イヨト

Another question

Again, the question:

How do you separate regularity properties in the projective hierarchy?

Theorem (A blueprint for a theorem)

The following is consistent, assuming small large cardinals (for any k,n):

- Every Σ_n^1 set is regular, but there is a non-regular Δ_{n+1}^1 set.
- 2 Every Σ_k^1 set is regular, but there is a non-regular Δ_{k+1}^1 set.

ヘロン ヘアン ヘビン ヘビン