Around Jensen's square principle

Young Researchers in Set Theory

Königswinter, Germany
22-March-2011

Assaf Rinot
Ben-Gurion University of the Negev

Introduction

Ladder systems. A discussion

Definition
A ladder for a limit ordinal α is a cofinal subset of α.

Ladder systems. A discussion

Definition
A ladder for a limit ordinal α is a cofinal subset of α. A ladder for a successor ordinal $\alpha+1$ is the singleton $\{\alpha\}$.

Ladder systems. A discussion

Definition

A ladder for a limit ordinal α is a cofinal subset of α.
A ladder for a successor ordinal $\alpha+1$ is the singleton $\{\alpha\}$.
Definition
A ladder system over a cardinal κ is a sequence, $\left\langle\boldsymbol{A}_{\alpha} \mid \alpha<\kappa\right\rangle$, such that each A_{α} is a ladder for α.

Ladder systems. A discussion

Definition

A ladder for a limit ordinal α is a cofinal subset of α.
A ladder for a successor ordinal $\alpha+1$ is the singleton $\{\alpha\}$.

Definition

A ladder system over a cardinal κ is a sequence, $\left\langle A_{\alpha} \mid \alpha<\kappa\right\rangle$, such that each A_{α} is a ladder for α.

Remark

The existence of ladder systems follows from the axiom of choice.

Ladder systems. Famous applications

Partitioning a stationary set
The standard proof of the fact that any stationary subset of ω_{1} can be partitioned into uncountably many mutually disjoint stationary sets builds on an analysis of ladder systems over ω_{1}.

Strong colorings, $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$
Todorcevic established the existence of a function $f:\left[\omega_{1}\right]^{2} \rightarrow \omega_{1}$ such that $f^{\prime \prime}[U]^{2}=\omega_{1}$ for every uncountable $U \subseteq \omega_{1}$. This function f is determined by a ladder system over ω_{1}.

A particular ladder system

Definition (Jensen, 1960's)
\square_{λ} asserts the existence of a ladder system over λ^{+}, $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$, such that for all $\alpha<\lambda^{+}$:

- (Ladders are closed) C_{α} is a club in α;
- (Ladders are of bounded type) $\operatorname{otp}\left(C_{\alpha}\right) \leq \lambda$;
- (Coherence) if $\sup \left(C_{\alpha} \cap \beta\right)=\beta$, then $C_{\alpha} \cap \beta=C_{\beta}$.

A particular ladder system

Definition (Jensen, 1960's)
\square_{λ} asserts the existence of a ladder system over λ^{+},
$\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$, such that for all $\alpha<\lambda^{+}$:

- (Ladders are closed) C_{α} is a club in α;
- (Ladders are of bounded type) $\operatorname{otp}\left(C_{\alpha}\right) \leq \lambda$;
- (Coherence) if $\sup \left(C_{\alpha} \cap \beta\right)=\beta$, then $C_{\alpha} \cap \beta=C_{\beta}$.

Famous applications
The existence of various sorts of λ^{+}-trees; The existence of non-reflecting stationary subsets of λ^{+}; The existence of other incompact objects.

A particular ladder system

Definition (Jensen, 1960's)
\square_{λ} asserts the existence of a ladder system over λ^{+},
$\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$, such that for all $\alpha<\lambda^{+}$:

- (Ladders are closed) C_{α} is a club in α;
- (Ladders are of bounded type) $\operatorname{otp}\left(C_{\alpha}\right) \leq \lambda$;
- (Coherence) if $\sup \left(C_{\alpha} \cap \beta\right)=\beta$, then $C_{\alpha} \cap \beta=C_{\beta}$.

Today's talk would be centered around the above principle, but let us dedicate some time to discuss abstract ladder systems.

Triviality of ladder systems

Means of triviality
A ladder system $\left\langle A_{\alpha} \mid \alpha<\kappa\right\rangle$ is considered to be trivial, if, in some sense, it is determined by a single κ-sized object.

Triviality of ladder systems

Means of triviality
A ladder system $\left\langle A_{\alpha} \mid \alpha<\kappa\right\rangle$ is considered to be trivial, if, in some sense, it is determined by a single κ-sized object.
Example of such sense:
"There exists $A \subseteq \kappa$ such that $A_{\alpha}=A \cap \alpha$ for club many $\alpha<\kappa$."

Triviality of ladder systems

Means of triviality
A ladder system $\left\langle A_{\alpha} \mid \alpha<\kappa\right\rangle$ is considered to be trivial, if, in some sense, it is determined by a single κ-sized object.
Example of such sense:
"There exists $A \subseteq \kappa$ such that $A_{\alpha}=A \cap \alpha$ for club many $\alpha<\kappa$."
If κ is a large cardinal, then we may necessarily face means of triviality.

Fact (Rowbottom, 1970's)
If κ is measurable, then every ladder system $\left\langle A_{\alpha} \mid \alpha<\kappa\right\rangle$, admits a set $A \subseteq \kappa$ such that $A_{\alpha}=A \cap \alpha$ for stationary many $\alpha<\kappa$.

Triviality of ladder systems

Means of triviality

A ladder system $\left\langle A_{\alpha} \mid \alpha<\kappa\right\rangle$ is considered to be trivial, if, in some sense, it is determined by a single κ-sized object.
Example of such sense:
"There exists $A \subseteq \kappa$ such that $A_{\alpha}=A \cap \alpha$ for club many $\alpha<\kappa$."

On the other hand, if κ is non-Mahlo, then for every cofinal $A \subseteq \kappa$, the following set contains a club:

$$
\{\alpha<\kappa \mid \operatorname{cf}(\alpha)<\operatorname{otp}(A \cap \alpha)\} .
$$

This suggests that non-triviality may be insured here, by setting a global bound on $\operatorname{otp}\left(A_{\alpha}\right)$, e.g., letting $\operatorname{otp}\left(A_{\alpha}\right)=\operatorname{cf}(\alpha)$ for all α.

Triviality of ladder systems

Means of triviality

A ladder system $\left\langle\boldsymbol{A}_{\alpha} \mid \alpha<\kappa\right\rangle$ is considered to be trivial, if, in some sense, it is determined by a single κ-sized object.
It turns out that requiring that $\operatorname{otp}\left(A_{\alpha}\right)=\operatorname{cf}(\alpha)$ for all α does not eliminate all means of triviality. For instance, it may be the case that any sequence of functions defined on the ladders is necessarily induced from a single κ-sized object.

Triviality of ladder systems

Means of triviality

A ladder system $\left\langle\boldsymbol{A}_{\alpha} \mid \alpha<\kappa\right\rangle$ is considered to be trivial, if, in some sense, it is determined by a single κ-sized object.
It turns out that requiring that $\operatorname{otp}\left(A_{\alpha}\right)=\operatorname{cf}(\alpha)$ for all α does not eliminate all means of triviality. For instance, it may be the case that any sequence of functions defined on the ladders is necessarily induced from a single κ-sized object.

Fact (Devlin-Shelah, 1978)
$M A_{\omega_{1}}$ implies that any ladder system $\left\langle A_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ satisfying $\operatorname{otp}\left(A_{\alpha}\right)=\operatorname{cf}(\alpha)$ for every α, is trivial in the following sense. For every sequence of local functions $\left\langle f_{\alpha}: A_{\alpha} \rightarrow 2 \mid \alpha<\omega_{1}\right\rangle$ there exists a global function $f: \omega_{1} \rightarrow 2$ such that for each α :

$$
f_{\alpha}=f \upharpoonright A_{\alpha}(\bmod \text { finite })
$$

Nontrivial ladder systems over ω_{1}

In contrast, the following concept yields a ladder system which is resistant to Devlin and Shelah's notion of triviality.
Definition (Ostaszweski's \&)
$\$$ asserts the existence of a ladder system $\left\langle A_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ such that for every cofinal $A \subseteq \omega_{1}$, there exists a limit $\alpha<\omega_{1}$ with $A_{\alpha} \subseteq A$.

Nontrivial ladder systems over ω_{1}

In contrast, the following concept yields a ladder system which is resistant to Devlin and Shelah's notion of triviality.

Definition (Ostaszweski's \&)

$\$$ asserts the existence of a ladder system $\left\langle A_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ such that for every cofinal $A \subseteq \omega_{1}$, there exists a limit $\alpha<\omega_{1}$ with $A_{\alpha} \subseteq A$.

Indeed, if $\left\langle A_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ is a \boldsymbol{R}-sequence, then for every global $f: \omega_{1} \rightarrow 2$, there exists a limit $\alpha<\omega_{1}$ for which $f \upharpoonright A_{\alpha}$ is constant.
Thus, if $f_{\alpha}: A_{\alpha} \rightarrow 2$ partitions A_{α} into two cofinal subsets for all limit α, then no global f trivializes the sequence $\left\langle f_{\alpha} \mid \alpha<\omega_{1}\right\rangle$.

Improve your square!

Suppose that $\kappa=\lambda^{+}$is a successor cardinal. Thus, we are interested in a ladder system $\left\langle A_{\alpha} \mid \alpha<\kappa\right\rangle$ with ALL of the following features:

1. the set $\left\{\operatorname{otp}\left(A_{\alpha}\right) \mid \alpha<\kappa\right\}$ is bounded below κ;
2. the ladders are closed;
3. the ladders cohere;
4. yields a canonical partition of κ into mutually disjoint stationary sets;
5. induces strong colorings;
6. a non-triviality condition à la Devlin-Shelah.

The Ostaszewski square

λ-sequences

We propose a principle which combines \square_{λ} together with $\boldsymbol{\AA}_{\lambda^{+}}$.

λ-sequences

We propose a principle which combines \square_{λ} together with $\boldsymbol{Q}_{\lambda^{+}}$.
For clarity, let us adopt the next ad-hoc terminology:
Definition
A sequence $\left\langle A_{i} \mid i<\lambda\right\rangle$ is a λ-sequence if the following two holds:

1. each A_{i} is a cofinal subset of λ^{+};
2. if $i<\lambda$ is a limit ordinal, then A_{i} is moreover closed.

Remark. Clause (2) may be viewed as a continuity condition.

The Ostaszewski square

Definition

[0 ${ }_{\lambda}$ asserts the existence of a ladder system $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$ such that:

- otp $\left(C_{\alpha}\right) \leq \lambda$ for all $\alpha<\lambda^{+}$;
- C_{α} is a club in α for all limit $\alpha<\lambda^{+}$;
- if $\sup \left(C_{\alpha} \cap \beta\right)=\beta$, then $C_{\alpha} \cap \beta=C_{\beta}$;

The Ostaszewski square

Definition

. λ asserts the existence of a ladder system $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$ such that:

- \vec{C} is a \square_{λ}-sequence. Let $C_{\alpha}(i)$ denote the $i_{t h}$ element of C_{α}.

The Ostaszewski square

Definition

, asserts the existence of a ladder system $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$ such that:

- \vec{C} is a \square_{λ}-sequence. Let $C_{\alpha}(i)$ denote the $i_{t h}$ element of C_{α}.
- Suppose that $\left\langle A_{i} \mid i<\lambda\right\rangle$ is a λ-sequence. Then for every cofinal $B \subseteq \lambda^{+}$, and every limit $\theta<\lambda$, there exists some $\alpha<\lambda^{+}$such that:

1. $\operatorname{otp}\left(C_{\alpha}\right)=\theta$;
2. for all $i<\theta, C_{\alpha}(i) \in A_{i}$;
3. for all $i<\theta$, there exists $\beta_{i} \in B$ with $C_{\alpha}(i)<\beta_{i}<C_{\alpha}(i+1)$.

The Ostaszewski square (cont.)

R ${ }^{2}$ asserts the existence of a \square_{λ}-sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$such that for every λ-sequence $\left\langle A_{i} \mid i<\lambda\right\rangle$, every cofinal $B \subseteq \lambda^{+}$, and every limit $\theta<\lambda$, there exists some $\alpha<\lambda^{+}$such that:

1. the inverse collapse of C_{α} is an element of $\prod_{i<\theta} A_{i}$;

The Ostaszewski square (cont.)

T ${ }_{\lambda}$ asserts the existence of a \square_{λ}-sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$such that for every λ-sequence $\left\langle A_{i} \mid i<\lambda\right\rangle$, every cofinal $B \subseteq \lambda^{+}$, and every limit $\theta<\lambda$, there exists some $\alpha<\lambda^{+}$such that:

1. the inverse collapse of C_{α} is an element of $\prod_{i<\theta} A_{i}$;
2. if $\gamma<\delta$ belong to C_{α}, then $B \cap(\gamma, \delta) \neq \emptyset$.

The Ostaszewski square (cont.)

T ${ }_{\lambda}$ asserts the existence of a \square_{λ}-sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$such that for every λ-sequence $\left\langle A_{i} \mid i<\lambda\right\rangle$, every cofinal $B \subseteq \lambda^{+}$, and every limit $\theta<\lambda$, there exists some $\alpha<\lambda^{+}$such that:

1. the inverse collapse of C_{α} is an element of $\prod_{i<\theta} A_{i}$;
2. if $\gamma<\delta$ belong to C_{α}, then $B \cap(\gamma, \delta) \neq \emptyset$.

The Ostaszewski square (cont.)

R ${ }^{2}$ asserts the existence of a \square_{λ}-sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$such that for every λ-sequence $\left\langle A_{i} \mid i<\lambda\right\rangle$, every cofinal $B \subseteq \lambda^{+}$, and every limit $\theta<\lambda$, there exists some $\alpha<\lambda^{+}$such that:

1. the inverse collapse of C_{α} is an element of $\prod_{i<\theta} A_{i}$;
2. if $\gamma<\delta$ belong to C_{α}, then $B \cap(\gamma, \delta) \neq \emptyset$.

Feature 1. Club guessing
For every club $D \subseteq \lambda^{+}$, there exists $\alpha<\lambda^{+}$such that $C_{\alpha} \subseteq D$.

The Ostaszewski square (cont.)

\square_{λ} asserts the existence of a \square_{λ}-sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$such that for every λ-sequence $\left\langle A_{i} \mid i<\lambda\right\rangle$, every cofinal $B \subseteq \lambda^{+}$, and every limit $\theta<\lambda$, there exists some $\alpha<\lambda^{+}$such that:

1. the inverse collapse of C_{α} is an element of $\prod_{i<\theta} A_{i}$;
2. if $\gamma<\delta$ belong to C_{α}, then $B \cap(\gamma, \delta) \neq \emptyset$.

Feature 2. \& λ^{+}

For every cofinal $A \subseteq \lambda^{+}$, there exists $\alpha<\lambda^{+}$s.t. $\operatorname{nacc}\left(C_{\alpha}\right) \subseteq A$. a

$$
{ }^{\mathrm{a}} \operatorname{nacc}\left(C_{\alpha}\right)=C_{\alpha} \backslash \operatorname{acc}\left(C_{\alpha}\right), \text { where } \operatorname{acc}\left(C_{\alpha}\right):=\left\{\beta \in C_{\alpha} \mid \sup \left(C_{\alpha} \cap \beta\right)=\beta\right\}
$$

The Ostaszewski square (cont.)

R ${ }^{2}$ asserts the existence of a \square_{λ}-sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$such that for every λ-sequence $\left\langle A_{i} \mid i<\lambda\right\rangle$, every cofinal $B \subseteq \lambda^{+}$, and every limit $\theta<\lambda$, there exists some $\alpha<\lambda^{+}$such that:

1. the inverse collapse of C_{α} is an element of $\prod_{i<\theta} A_{i}$;
2. if $\gamma<\delta$ belong to C_{α}, then $B \cap(\gamma, \delta) \neq \emptyset$.

Feature 3. Canonical partition to stationary sets

Denote $S_{\theta}:=\left\{\alpha<\lambda^{+} \mid \operatorname{otp}\left(C_{\alpha}\right)=\theta\right\}$.
Then $\left\langle S_{\theta} \mid 0 \in \theta \in \operatorname{acc}(\lambda)\right\rangle$ is a canonical partition of the set of limit ordinals $<\lambda^{+}$into λ many mutually disjoint stationary sets.

The Ostaszewski square (cont.)

$\square{ }^{\circ}$ asserts the existence of a \square_{λ}-sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$such that for every λ-sequence $\left\langle A_{i} \mid i<\lambda\right\rangle$, every cofinal $B \subseteq \lambda^{+}$, and every limit $\theta<\lambda$, there exists some $\alpha<\lambda^{+}$such that:

1. the inverse collapse of C_{α} is an element of $\prod_{i<\theta} A_{i}$;
2. if $\gamma<\delta$ belong to C_{α}, then $B \cap(\gamma, \delta) \neq \emptyset$.

Feature 4. Simultaneous $\boldsymbol{\&}_{\lambda^{+}}$\& Club guessing
For every cofinal $A \subseteq \lambda^{+}$, every club $D \subseteq \lambda^{+}$, and every $\theta<\lambda$, there exists $\alpha \in S_{\theta}$ such that $\operatorname{nacc}\left(C_{\alpha}\right) \subseteq A$, and $\operatorname{acc}\left(C_{\alpha}\right) \subseteq D$.

The Ostaszewski square (cont.)

$\square{ }^{\circ}$ asserts the existence of a \square_{λ}-sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$such that for every λ-sequence $\left\langle A_{i} \mid i<\lambda\right\rangle$, every cofinal $B \subseteq \lambda^{+}$, and every limit $\theta<\lambda$, there exists some $\alpha<\lambda^{+}$such that:

1. the inverse collapse of C_{α} is an element of $\prod_{i<\theta} A_{i}$;
2. if $\gamma<\delta$ belong to C_{α}, then $B \cap(\gamma, \delta) \neq \emptyset$.

Further features

We shall now turn to discuss further features.

Simple constructions of higher Souslin trees

λ^{+}-Souslin trees

Jensen proved that "GCH $+\square_{\lambda}+\diamond_{S}$ for all stationary $S \subseteq \lambda^{+}$" yields the existence of a λ^{+}-Souslin tree, for every singular λ. We now suggest a simple construction from a related hypothesis.

λ^{+}-Souslin trees

Jensen proved that "GCH $+\square_{\lambda}+\diamond_{S}$ for all stationary $S \subseteq \lambda^{+}$" yields the existence of a λ^{+}-Souslin tree, for every singular λ. We now suggest a simple construction from a related hypothesis.

Proposition

Suppose that λ is an uncountable cardinal. If $\emptyset_{\lambda}+\diamond_{\lambda^{+}}$holds, then there exists a λ^{+}-Souslin tree.

λ^{+}-Souslin trees

Jensen proved that "GCH $+\square_{\lambda}+\diamond_{S}$ for all stationary $S \subseteq \lambda^{+}$" yields the existence of a λ^{+}-Souslin tree, for every singular λ. We now suggest a simple construction from a related hypothesis.

Proposition

Suppose that λ is an uncountable cardinal. If $\emptyset_{\lambda}+\diamond_{\lambda^{+}}$holds, then there exists a λ^{+}-Souslin tree.

Conventions
A κ-tree \mathbf{T} is a tree of height κ, whose underlying set is κ, and levels are of size $<\kappa$.
The $\alpha_{t h}$-level is denoted T_{α}, and we write $\mathbf{T} \upharpoonright \beta:=\bigcup_{\alpha<\beta} T_{\alpha}$. \mathbf{T} is κ-Souslin if it is ever-branching and has no κ-sized antichains.

λ^{+}-Souslin trees

Proposition

Suppose that λ is an uncountable cardinal.
If $\boldsymbol{\infty}_{\lambda}+\diamond_{\lambda^{+}}$holds, then there exists a λ^{+}-Souslin tree.
Proof.
Let $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$witness ${ }_{\lambda}$, and $\left\langle S_{\gamma} \mid \gamma<\lambda^{+}\right\rangle$witness $\diamond_{\lambda^{+}}$. We build the λ^{+}-Souslin tree, \mathbf{T}, by recursion on the levels.

λ^{+}-Souslin trees

Proposition

Suppose that λ is an uncountable cardinal.
If $\boldsymbol{\infty}_{\lambda}+\diamond_{\lambda^{+}}$holds, then there exists a λ^{+}-Souslin tree.
Proof.
Let $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$witness ${ }_{\lambda}$, and $\left\langle S_{\gamma} \mid \gamma<\lambda^{+}\right\rangle$witness $\diamond_{\lambda^{+}}$. We build the λ^{+}-Souslin tree, \mathbf{T}, by recursion on the levels. Set $T_{0}:=\{0\}$.

λ^{+}-Souslin trees

Proposition

Suppose that λ is an uncountable cardinal.
If $\boldsymbol{\omega}_{\lambda}+\diamond_{\lambda^{+}}$holds, then there exists a λ^{+}-Souslin tree.
Proof.
Let $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$witness ${ }_{\lambda}$, and $\left\langle S_{\gamma} \mid \gamma<\lambda^{+}\right\rangle$witness $\diamond_{\lambda^{+}}$. We build the λ^{+}-Souslin tree, \mathbf{T}, by recursion on the levels. Set $T_{0}:=\{0\}$. If $\mathbf{T} \upharpoonright \alpha+1$ is defined, $T_{\alpha+1}$ is obtained by providing each element of T_{α} with two successors in $T_{\alpha+1}$.

λ^{+}-Souslin trees

Proposition

Suppose that λ is an uncountable cardinal.
If $\boldsymbol{m}_{\lambda}+\diamond_{\lambda^{+}}$holds, then there exists a λ^{+}-Souslin tree.
Proof.
Let $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$witness λ_{λ}, and $\left\langle S_{\gamma} \mid \gamma<\lambda^{+}\right\rangle$witness $\diamond_{\lambda^{+}}$. We build the λ^{+}-Souslin tree, \mathbf{T}, by recursion on the levels.
Set $T_{0}:=\{0\}$. If $\mathbf{T} \upharpoonright \alpha+1$ is defined, $T_{\alpha+1}$ is obtained by providing each element of T_{α} with two successors in $T_{\alpha+1}$. Assume now that α is a limit ordinal; for every $x \in \mathbf{T} \upharpoonright \alpha$, we attach a sequence x_{α} which is increasing and cofinal in $\mathbf{T} \upharpoonright \alpha$, and then T_{α} is defined as the limit of all these sequences.
Consequently, the outcome T_{α} is of size $\leq|\mathbf{T} \upharpoonright \alpha| \leq \lambda$.

λ^{+}-Souslin trees (cont.)

For every $x \in \mathbf{T} \mid \alpha$, pick $x_{\alpha}=\left\langle x_{\alpha}(\gamma) \mid \gamma \in C_{\alpha} \backslash h t(x)+1\right\rangle$ s.t.:

1. $\operatorname{ht}\left(x_{\alpha}(\gamma)\right)=\gamma$ for all $\gamma \in \operatorname{dom}\left(x_{\alpha}\right)$;
2. $x<x_{\alpha}\left(\gamma_{1}\right)<x_{\alpha}\left(\gamma_{2}\right)$ whenever $\gamma_{1}<\gamma_{2}$;
3. If $\gamma \in \operatorname{nacc}\left(\operatorname{dom}\left(x_{\alpha}\right)\right)$, and S_{γ} is a maximal antichain in $\mathbf{T} \upharpoonright \gamma$, then $x_{\alpha}(\gamma)$ happens to be above some element from S_{γ}.

λ^{+}-Souslin trees (cont.)

For every $x \in \mathbf{T} \upharpoonright \alpha$, pick $x_{\alpha}=\left\langle x_{\alpha}(\gamma) \mid \gamma \in C_{\alpha} \backslash h t(x)+1\right\rangle$ s.t.:

1. $\operatorname{ht}\left(x_{\alpha}(\gamma)\right)=\gamma$ for all $\gamma \in \operatorname{dom}\left(x_{\alpha}\right)$;
2. $x<x_{\alpha}\left(\gamma_{1}\right)<x_{\alpha}\left(\gamma_{2}\right)$ whenever $\gamma_{1}<\gamma_{2}$;
3. If $\gamma \in \operatorname{nacc}\left(\operatorname{dom}\left(x_{\alpha}\right)\right)$, and S_{γ} is a maximal antichain in $\mathbf{T} \upharpoonright \gamma$, then $x_{\alpha}(\gamma)$ happens to be above some element from S_{γ}.
If we make sure to choose $x_{\alpha}(\gamma)$ in a canonical way (e.g., using a well-ordering), then the coherence of the square sequence implies that the branches cohere: $\sup \left(C_{\alpha} \cap \delta\right)=\delta$ implies $x_{\delta}=x_{\alpha} \upharpoonright \delta$. In turn, we get that the whole construction may be carried, ending up with a λ^{+}-tree.

λ^{+}-Souslin trees (cont.)

For every $x \in \mathbf{T} \upharpoonright \alpha$, pick $x_{\alpha}=\left\langle x_{\alpha}(\gamma) \mid \gamma \in C_{\alpha} \backslash h t(x)+1\right\rangle$ s.t.:

1. $h t\left(x_{\alpha}(\gamma)\right)=\gamma$ for all $\gamma \in \operatorname{dom}\left(x_{\alpha}\right)$;
2. $x<x_{\alpha}\left(\gamma_{1}\right)<x_{\alpha}\left(\gamma_{2}\right)$ whenever $\gamma_{1}<\gamma_{2}$;
3. If $\gamma \in \operatorname{nacc}\left(\operatorname{dom}\left(x_{\alpha}\right)\right)$, and S_{γ} is a maximal antichain in $\mathbf{T} \upharpoonright \gamma$, then $x_{\alpha}(\gamma)$ happens to be above some element from S_{γ}.
Sousliness: towards a contradiction, suppose that $A \subseteq \lambda^{+}$is an antichain in \mathbf{T} of size λ^{+}. By $\diamond_{\lambda^{+}}$, the following set is stationary

$$
A^{\prime}:=\left\{\gamma<\lambda^{+} \mid A \cap \gamma=S_{\gamma} \text { is a maximal antichain in } \mathbf{T} \upharpoonright \gamma\right\} .
$$

λ^{+}-Souslin trees (cont.)

For every $x \in \mathbf{T} \upharpoonright \alpha$, pick $x_{\alpha}=\left\langle x_{\alpha}(\gamma) \mid \gamma \in C_{\alpha} \backslash h t(x)+1\right\rangle$ s.t.:

1. $h t\left(x_{\alpha}(\gamma)\right)=\gamma$ for all $\gamma \in \operatorname{dom}\left(x_{\alpha}\right)$;
2. $x<x_{\alpha}\left(\gamma_{1}\right)<x_{\alpha}\left(\gamma_{2}\right)$ whenever $\gamma_{1}<\gamma_{2}$;
3. If $\gamma \in \operatorname{nacc}\left(\operatorname{dom}\left(x_{\alpha}\right)\right)$, and S_{γ} is a maximal antichain in $\mathbf{T} \upharpoonright \gamma$, then $x_{\alpha}(\gamma)$ happens to be above some element from S_{γ}.
Sousliness: towards a contradiction, suppose that $A \subseteq \lambda^{+}$is an antichain in \mathbf{T} of size λ^{+}. By $\diamond_{\lambda^{+}}$, the following set is stationary

$$
A^{\prime}:=\left\{\gamma<\lambda^{+} \mid A \cap \gamma=S_{\gamma} \text { is a maximal antichain in } \mathbf{T} \upharpoonright \gamma\right\}
$$

Let $\left\langle A_{i} \mid i<\lambda\right\rangle$ be a λ-sequence with $A_{i+1}=A^{\prime}$ for all $i<\lambda$. Pick $\alpha<\lambda^{+}$such that $C_{\alpha}(i) \in A_{i}$ for all $i<\operatorname{otp}\left(C_{\alpha}\right)$.
Then $\operatorname{nacc}\left(C_{\alpha}\right) \subseteq A^{\prime}$, and hence clause (3) above applies to the construction of x_{α} for each and every $x \in \mathbf{T} \upharpoonright \alpha$.

λ^{+}-Souslin trees (cont.)

For every $x \in \mathbf{T} \mid \alpha$, pick $x_{\alpha}=\left\langle x_{\alpha}(\gamma) \mid \gamma \in C_{\alpha} \backslash h t(x)+1\right\rangle$ s.t.:

1. $\operatorname{ht}\left(x_{\alpha}(\gamma)\right)=\gamma$ for all $\gamma \in \operatorname{dom}\left(x_{\alpha}\right)$;
2. $x<x_{\alpha}\left(\gamma_{1}\right)<x_{\alpha}\left(\gamma_{2}\right)$ whenever $\gamma_{1}<\gamma_{2}$;
3. If $\gamma \in \operatorname{nacc}\left(\operatorname{dom}\left(x_{\alpha}\right)\right)$, and S_{γ} is a maximal antichain in $\mathbf{T} \upharpoonright \gamma$, then $x_{\alpha}(\gamma)$ happens to be above some element from S_{γ}.
Sousliness: towards a contradiction suppose that $A \subseteq \lambda^{+}$is an antichain in \mathbf{T} of size λ^{+}. By $\diamond_{\lambda^{+}}$, the following set is stationary

$$
A^{\prime}:=\left\{\gamma<\lambda^{+} \mid A \cap \gamma=S_{\gamma} \text { is a maximal antichain in } \mathbf{T} \upharpoonright \gamma\right\}
$$

Let $\left\langle A_{i} \mid i<\lambda\right\rangle$ be a λ-sequence with $A_{i+1}=A^{\prime}$ for all $i<\lambda$. Pick $\alpha<\lambda^{+}$such that $C_{\alpha}(i) \in A_{i}$ for all $i<\operatorname{otp}\left(C_{\alpha}\right)$.
Then $\operatorname{nacc}\left(C_{\alpha}\right) \subseteq A^{\prime}$, and hence clause (3) above applies to all x_{α}. As every element of T_{α} is the limit of some x_{α}, every element of T_{α} happens to be above some element from $A \cap \alpha$. So, $A \cap \alpha$ is a maximal antichain in \mathbf{T}. This is a contradiction.

λ^{+}-Souslin trees. The aftermath

So, what do we gain from the fact that we may guess a λ-sequence if at the end of the day we are only concerned with guessing a single set?

λ^{+}-Souslin trees. The aftermath

So, what do we gain from the fact that we may guess a λ-sequence if at the end of the day we are only concerned with guessing a single set?
Suppose we wanted the resulted tree to be, in additional, rigid. Then fix a $\diamond_{\lambda^{+}}$sequence that guesses functions $\left\langle f_{\gamma} \mid \gamma<\lambda^{+}\right\rangle$. Given an hypothetical maximal antichain A, and a non-trivial automorphism f, the following sets would be cofinal (in fact, stat.):

$$
\begin{aligned}
A_{0} & :=\left\{\gamma<\lambda^{+} \mid A \cap \gamma=S_{\gamma} \text { is a maximal antichain in } \mathbf{T} \upharpoonright \gamma\right\} ; \\
A_{1} & :=\left\{\gamma<\lambda^{+} \mid f \upharpoonright \gamma=f_{\gamma} \text { is a n.t. automorphism of } \mathbf{T} \upharpoonright \gamma\right\} .
\end{aligned}
$$

So, we could find C_{α} whose odd nacc points are in A_{0}, and even nacc points are in A_{1}. Meaning that we could overcome A and f along the way.

λ^{+}-Souslin trees. The aftermath

So, what do we gain from the fact that we may guess a λ-sequence if at the end of the day we are only concerned with guessing a single set?
Suppose we wanted the resulted tree to be, in additional, rigid. Then fix a $\diamond_{\lambda^{+}}$sequence that guesses functions $\left\langle f_{\gamma} \mid \gamma<\lambda^{+}\right\rangle$. Given an hypothetical maximal antichain A, and a non-trivial automorphism f, the following sets would be cofinal (in fact, stat.):

$$
\begin{aligned}
A_{0} & :=\left\{\gamma<\lambda^{+} \mid A \cap \gamma=S_{\gamma} \text { is a maximal antichain in } \mathbf{T} \upharpoonright \gamma\right\} ; \\
A_{1} & :=\left\{\gamma<\lambda^{+} \mid f \upharpoonright \gamma=f_{\gamma} \text { is a n.t. automorphism of } \mathbf{T} \upharpoonright \gamma\right\} .
\end{aligned}
$$

So, we could find C_{α} whose odd nacc points are in A_{0}, and even nacc points are in A_{1}. Meaning that we could overcome A and f along the way. Similarly, we may overcome λ many obstructions in a very elegant way.

λ^{+}-Souslin trees. The aftermath

Question

What do we gain from the fact that we may guess a λ-sequence if we are only concerned with guessing a single cofinal set?

Answer
We can smoothly construct complicated objects, taking into account λ many independent considerations.

λ^{+}-Souslin trees. The aftermath

We can smoothly construct complicated objects, having in mind λ many independent considerations.

Question
"smoothly"?

λ^{+}-Souslin trees. The aftermath

> We can smoothly construct complicated objects, having in mind λ many independent considerations.

> Question
> "smoothly"?

Answer
Jensen's original construction consists of two distinct components; one which is responsible for insuring that the construction may be carried up to height λ^{+}, and the other responsible for sealing potential large antichains.
This distinction affects the completeness degree of the tree.
In contrast, here, the potential antichains are sealed along the way.

λ^{+}-Souslin trees. The aftermath

We can smoothly construct complicated objects, having in mind λ many independent considerations.

A complaint
"smoothly"... okay! But Jensen's construction is from

$$
\mathrm{GCH}+\square_{\lambda}+\diamond_{S} \text { for all stationary } S \subseteq \lambda^{+}
$$

while the other construction requires ${ }^{2}$!!

λ^{+}-Souslin trees. The aftermath

We can smoothly construct complicated objects, having in mind λ many independent considerations.

A complaint
"smoothly"... okay! But Jensen's construction is from

$$
\mathrm{GCH}+\square_{\lambda}+\diamond_{S} \text { for all stationary } S \subseteq \lambda^{+}
$$

while the other construction requires ${ }_{\lambda}$!!
Answer
If you are serious about purchasing my , let me make a price quote.

Ostaszewski square - the price

It should be clear that the usual fine-structural-type of arguments yield that $\boldsymbol{\infty}_{\lambda}$ holds in L for all λ. But that's an high price to pay.

Ostaszewski square - the price

It should be clear that the usual fine-structural-type of arguments yield that \boldsymbol{C}_{λ} holds in L for all λ. But that's an high price to pay.
Main Theorem
Suppose that \square_{λ} holds for a given cardinal λ.

1. If λ is a limit cardinal, then $\lambda^{\lambda}=\lambda^{+}$entails \boldsymbol{m}_{λ}.
2. If λ is a successor, then $\lambda^{<\lambda}<\lambda^{\lambda}=\lambda^{+}$entails λ.

Corollary
Assume GCH. Then for every uncountable cardinal λ, TFAE:

- \square_{λ};
- \boldsymbol{m}_{λ}.

Ostaszewski square - the price

It should be clear that the usual fine-structural-type of arguments yield that \boldsymbol{C}_{λ} holds in L for all λ. But that's an high price to pay.
Main Theorem
Suppose that \square_{λ} holds for a given cardinal λ.

1. If λ is a limit cardinal, then $\lambda^{\lambda}=\lambda^{+}$entails λ.
2. If λ is a successor, then $\lambda^{<\lambda}<\lambda^{\lambda}=\lambda^{+}$entails λ.

Corollary
Assume GCH. Then for every uncountable cardinal λ, TFAE:

- \square_{λ};
- \boldsymbol{m}_{λ}.

So, for the Jensen setup, you pay no extra!

Ostaszewski square - the price

It should be clear that the usual fine-structural-type of arguments yield that \boldsymbol{C}_{λ} holds in L for all λ. But that's an high price to pay.
Main Theorem
Suppose that \square_{λ} holds for a given cardinal λ.

1. If λ is a limit cardinal, then $\lambda^{\lambda}=\lambda^{+}$entails λ.
2. If λ is a successor, then $\lambda^{<\lambda}<\lambda^{\lambda}=\lambda^{+}$entails λ.

Corollary

Assume GCH. Then for every uncountable cardinal λ, TFAE:

- \square_{λ};
- $\operatorname{Din}_{\lambda}$.

So, for the Jensen setup, you pay no extra! In fact, you pay less, since $\square_{\lambda}+$ GCH implies $\wp_{\lambda}+\diamond_{\lambda^{+}}$.

Reflection

Reflection of stationary sets

Definition
We say that a stationary subset $S \subseteq \kappa$ reflects at an ordinal $\alpha<\kappa$, if $S \cap \alpha$ is stationary (as a subset of α).

Fact (Hanf-Scott, 1960's)
If κ is a weakly compact cardinal, then every stationary subset of κ reflects at some $\alpha<\kappa$.

Reflection of stationary sets

Definition

We say that a stationary subset $S \subseteq \kappa$ reflects at an ordinal $\alpha<\kappa$, if $S \cap \alpha$ is stationary (as a subset of α).

Fact (Hanf-Scott, 1960's)
If κ is a weakly compact cardinal, then every stationary subset of κ reflects at some $\alpha<\kappa$.

Proof.

By Todorcevic, κ is weakly compact iff every ladder system $\left\langle A_{\alpha} \mid \alpha<\kappa\right\rangle$ whose ladders are closed, is trivial in the following sense. There exists a club $C \subseteq \kappa$ such that for all $\beta<\kappa$, there exists $\alpha \geq \beta$ for which $A_{\alpha} \cap \beta=C \cap \beta$.

Reflection of stationary sets

Definition

We say that a stationary subset $S \subseteq \kappa$ reflects at an ordinal $\alpha<\kappa$, if $S \cap \alpha$ is stationary (as a subset of α).

Fact (Hanf-Scott, 1960's)
If κ is a weakly compact cardinal, then every stationary subset of κ reflects at some $\alpha<\kappa$.

Proof.

By Todorcevic, κ is weakly compact iff every ladder system
$\left\langle A_{\alpha} \mid \alpha<\kappa\right\rangle$ whose ladders are closed, is trivial in the following sense. There exists a club $C \subseteq \kappa$ such that for all $\beta<\kappa$, there exists $\alpha \geq \beta$ for which $A_{\alpha} \cap \beta=C \cap \beta$.
Suppose now that $S \subseteq \kappa$ is stationary and non-reflecting. Then there exists a ladder system as above with $A_{\alpha} \cap S=\emptyset$ for all limit α. This contradicts the fact that there exists a limit $\beta \in S \cap C$.

Weak sqaure

A \square_{λ}-sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$is non-trivial in the above sense.

Weak sqaure

A \square_{λ}-sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$is non-trivial in the above sense. Indeed, since the ladders cohere, $S_{\theta}=\left\{\alpha<\lambda^{+} \mid \operatorname{otp}\left(C_{\alpha}\right)=\theta\right\}$ does not reflect for any $\theta<\lambda$, whereas by Fodor's lemma, there must exist some $\theta<\lambda$ for which S_{θ} is stationary.

Weak sqaure

A \square_{λ}-sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$is non-trivial in the above sense. Indeed, since the ladders cohere, $S_{\theta}=\left\{\alpha<\lambda^{+} \mid \operatorname{otp}\left(C_{\alpha}\right)=\theta\right\}$ does not reflect for any $\theta<\lambda$, whereas by Fodor's lemma, there must exist some $\theta<\lambda$ for which S_{θ} is stationary.

Definition (Jensen, 1960's)
\square_{λ}^{*} asserts the existence of a ladder system, $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$, s.t.:

- otp $\left(C_{\alpha}\right) \leq \lambda ;$
- C_{α} is closed;
- for all $\beta<\lambda^{+},\left\{C_{\alpha} \cap \beta \mid \alpha<\lambda^{+}\right\}$is of size at most λ.

Weak sqaure

A \square_{λ}-sequence $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$is non-trivial in the above sense. Indeed, since the ladders cohere, $S_{\theta}=\left\{\alpha<\lambda^{+} \mid \operatorname{otp}\left(C_{\alpha}\right)=\theta\right\}$ does not reflect for any $\theta<\lambda$, whereas by Fodor's lemma, there must exist some $\theta<\lambda$ for which S_{θ} is stationary.

Definition (Jensen, 1960's)
\square_{λ}^{*} asserts the existence of a ladder system, $\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$, s.t.:

- otp $\left(C_{\alpha}\right) \leq \lambda ;$
- C_{α} is closed;
- for all $\beta<\lambda^{+},\left\{C_{\alpha} \cap \beta \mid \alpha<\lambda^{+}\right\}$is of size at most λ.
\square_{λ}^{*} follows from \square_{λ}, but also from $\lambda^{<\lambda}=\lambda$, hence the main interest in \square_{λ}^{*} is whenever λ is singular.

Squares and reflection of stationary sets

Theorem (Cummings-Foreman-Magidor, 2001)
It is relatively consistent with the existence of infinitely many supercompact cardinals, that all of the following holds simultaneously:

- GCH;
- $\square_{\aleph_{\omega}}^{*}$;
- every stationary subset of $\aleph_{\omega+1}$ reflects.

So, unlike square, weak square does not imply non-reflection.

Squares and reflection of stationary sets

Theorem (Cummings-Foreman-Magidor, 2001)
It is relatively consistent with the existence of infinitely many
supercompact cardinals, that all of the following holds simultaneously:

- GCH;
- $\square_{\aleph_{\omega}}^{*}$;
- every stationary subset of $\aleph_{\omega+1}$ reflects.

Cummings-Foreman-Magidor and Aspero-Krueger-Yoshinobu found that (for a singular λ,) \square_{λ}^{*} implies sorts of non-reflection, but of generalized stationary sets (in the sense of $\mathcal{P}_{\kappa}(\lambda), \mathcal{P}_{\kappa}\left(\lambda^{+}\right)$.)

Squares and reflection of stationary sets

Theorem (Cummings-Foreman-Magidor, 2001)
It is relatively consistent with the existence of infinitely many
supercompact cardinals, that all of the following holds simultaneously:

- GCH;
- $\square_{\aleph_{\omega}}^{*}$;
- every stationary subset of $\aleph_{\omega+1}$ reflects.

We found out that \square_{λ}^{*} does entail ordinary non-reflection; it is just that the non-reflection takes place in an outer universe...

Weak squares and reflection of stationary sets

Theorem
Suppose that $2^{\lambda}=\lambda^{+}$for a strong limit singular cardinal λ. If \square_{λ}^{*} holds, then in $V^{\text {Add }\left(\lambda^{+}, 1\right)}$, there exists a non-reflecting stationary subset of λ^{+}.
So, this aspect of non-triviality of the weak square system is witnessed in a generic extension.

Weak squares and reflection of stationary sets

Theorem
Suppose that $2^{\lambda}=\lambda^{+}$for a strong limit singular cardinal λ. If \square_{λ}^{*} holds, then in $V^{\text {Add }\left(\lambda^{+}, 1\right)}$, there exists a non-reflecting stationary subset of $\left\{\alpha<\lambda^{+} \mid \operatorname{cf}(\alpha)=\operatorname{cf}(\lambda)\right\}$.
So, this aspect of non-triviality of the weak square system is witnessed in a generic extension.

Weak squares and reflection of stationary sets

Theorem
Suppose that $2^{\lambda}=\lambda^{+}$for a strong limit singular cardinal λ. If \square_{λ}^{*} holds, then in $V^{\text {Add }\left(\lambda^{+}, 1\right)}$, there exists a non-reflecting stationary subset of $\left\{\alpha<\lambda^{+} \mid \operatorname{cf}(\alpha)=\operatorname{cf}(\lambda)\right\}$.
So, this aspect of non-triviality of the weak square system is
witnessed in a generic extension.
Compare with the following.

Example

Suppose that $\lambda>\kappa>\operatorname{cf}(\lambda)$, where λ is a strong limit, and κ is a Laver-indestructible supercompact cardinal.
Then $2^{\lambda}=\lambda^{+}$holds for the strong limit singular cardinal λ, while in $V^{\operatorname{Add}\left(\lambda^{+}, 1\right)}$, every stationary subset of $\left\{\alpha<\lambda^{+} \mid \operatorname{cf}(\alpha)=\operatorname{cf}(\lambda)\right\}$ do reflect.

Strong Colorings

Strong colorings

Suppose that $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ is a ladder system whose ladders are closed. For every $\alpha<\beta<\kappa$, let $\beta=\beta_{0}>\cdots>\beta_{k+1}=\alpha$ denote the minimal walk from β down to α along \vec{C}. Let $[\alpha, \beta]_{n}$ denote the $n_{t h}$ element in the walk from β to α.

Strong colorings

Suppose that $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\kappa\right\rangle$ is a ladder system whose ladders are closed. For every $\alpha<\beta<\kappa$, let $\beta=\beta_{0}>\cdots>\beta_{k+1}=\alpha$ denote the minimal walk from β down to α along \vec{C}. Let $[\alpha, \beta]_{n}$ denote the $n_{t h}$ element in the walk from β to α.
Fact (Todorcevic, Shelah, 1980's)
Suppose that S is a stationary subset of κ such that $S \cap C_{\alpha}=\emptyset$ for every limit $\alpha<\kappa$. (So, S is non-reflecting).
Then there exists an oscillating function $o:[\kappa]^{2} \rightarrow \omega$ such that

$$
S \backslash \bigcup\left\{[\alpha, \beta]_{o(\alpha, \beta)} \mid \alpha<\beta \text { in } \mathrm{A}\right\}
$$

is non-stationary for every cofinal $A \subseteq \kappa$.

Simply definable strong colorings

Suppose that $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$witnesses ${ }_{\lambda}$, and let $[\alpha, \beta]_{n}$ denote the $n_{t h}$ element in the \vec{C}-walk from β to α.

Simply definable strong colorings

Suppose that $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$witnesses 皿 $_{\lambda}$, and let $[\alpha, \beta]_{n}$ denote the $n_{t h}$ element in the \vec{C}-walk from β to α.

Proposition

For every cofinal $B \subseteq \lambda^{+}$, there exists an $n<\omega$ such that for every cofinal $A \subseteq \lambda^{+}$, the set

$$
\left\{[\alpha, \beta]_{n} \mid \alpha \in A, \beta \in B, \alpha<\beta\right\}
$$

is co-bounded in λ^{+}.

Simply definable strong colorings

Suppose that $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$witnesses λ^{\prime}, and let $[\alpha, \beta]_{n}$ denote the $n_{t h}$ element in the \vec{C}-walk from β to α.

Proposition

For every cofinal $B \subseteq \lambda^{+}$, there exists an $n<\omega$ such that for every cofinal $A \subseteq \lambda^{+}$, the set

$$
\left\{[\alpha, \beta]_{n} \mid \alpha \in A, \beta \in B, \alpha<\beta\right\}
$$

is co-bounded in λ^{+}.

Corollary
For every cofinal $B \subseteq \lambda^{+}$, there exists an $n<\omega$ such that for every cofinal $A \subseteq \lambda^{+}$, the set

$$
\left\{\operatorname{otp}\left(C_{[\alpha, \beta]_{n}}\right) \mid \alpha \in A, \beta \in B, \alpha<\beta\right\}
$$

contains each and every limit ordinal $<\lambda$.

Simply definable strong colorings

Suppose that $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$witnesses λ^{\prime}, and let $[\alpha, \beta]_{n}$ denote the $n_{t h}$ element in the \vec{C}-walk from β to α.
Proposition
For every cofinal $B \subseteq \lambda^{+}$, there exists an $n<\omega$ such that for every cofinal $A \subseteq \lambda^{+}$, the set

$$
\left\{[\alpha, \beta]_{n} \mid \alpha \in A, \beta \in B, \alpha<\beta\right\}
$$

is co-bounded in λ^{+}.

Remark

The above is optimal in the sense that for every $n<\omega$, there exists a cofinal $B \subseteq \lambda^{+}$, such that

$$
\left\{[\alpha, \beta]_{n} \mid \alpha, \beta \in B, \alpha<\beta\right\}
$$

omits any limit ordinal $<\lambda^{+}$.

Simply definable strong colorings

Suppose that $\vec{C}=\left\langle C_{\alpha} \mid \alpha<\lambda^{+}\right\rangle$witnesses λ^{\prime}, and let $[\alpha, \beta]_{n}$ denote the $n_{t h}$ element in the \vec{C}-walk from β to α.
Proposition
For every cofinal $B \subseteq \lambda^{+}$, there exists an $n<\omega$ such that for every cofinal $A \subseteq \lambda^{+}$, the set

$$
\left\{[\alpha, \beta]_{n} \mid \alpha \in A, \beta \in B, \alpha<\beta\right\}
$$

is co-bounded in λ^{+}.

Conjecture
There exists a one-place function $o: \lambda^{+} \rightarrow \omega$ such that for every cofinal $A, B \subseteq \lambda^{+}$, the set

$$
\left\{[\alpha, \beta]_{o(\beta)} \mid \alpha \in A, \beta \in B, \alpha<\beta\right\}
$$

is co-bounded in λ^{+}.

Squares and small forcings

Squares and small forcing notions

Some people (including the speaker) speculated at some point in time that \square_{λ} cannot be introduced by a forcing notion of size $\ll \lambda$. This indeed sounds plausible, However:

Squares and small forcing notions

Some people (including the speaker) speculated at some point in time that \square_{λ} cannot be introduced by a forcing notion of size $\ll \lambda$. This indeed sounds plausible, However:

Theorem (Cummings-Foreman-Magidor, 2001)
It is relatively consistent with the existence of a supercompact cardinal that $\square_{\aleph_{\omega}}$ is introduced by a forcing of size \aleph_{1}.

Squares and small forcing notions

Some people (including the speaker) speculated at some point in time that \square_{λ} cannot be introduced by a forcing notion of size $\ll \lambda$. This indeed sounds plausible, However:

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact cardinal that $\square_{\aleph_{\omega}}$ is introduced by a forcing of size \aleph_{1}.
The idea of the proof is to cook up a model in which $\square_{\aleph_{\omega}}$ fails, while $\left\{\alpha<\aleph_{\omega+1} \mid \operatorname{cf}(\alpha)>\omega_{1}\right\}$ does carry a so-called partial square. Then, to overcome the lack of coherence over $\left\{\alpha<\aleph_{\omega+1} \mid \operatorname{cf}(\alpha)=\omega_{1}\right\}$, they Levy collapse \aleph_{1} into countable cardinality.

Squares and small forcing notions

Some people (including the speaker) speculated at some point in time that \square_{λ} cannot be introduced by a forcing notion of size $\ll \lambda$. This indeed sounds plausible, However:

Theorem (Cummings-Foreman-Magidor, 2001)

It is relatively consistent with the existence of a supercompact cardinal that $\square_{\aleph_{\omega}}$ is introduced by a forcing of size \aleph_{1}.
The idea of the proof is to cook up a model in which $\square_{\aleph_{\omega}}$ fails, while $\left\{\alpha<\aleph_{\omega+1} \mid \operatorname{cf}(\alpha)>\omega_{1}\right\}$ does carry a so-called partial square. Then, to overcome the lack of coherence over $\left\{\alpha<\aleph_{\omega+1} \mid \operatorname{cf}(\alpha)=\omega_{1}\right\}$, they Levy collapse \aleph_{1} into countable cardinality. The latter trivially overcomes the failure of $\square_{\aleph_{\omega}}$, and is a forcing notion of size \aleph_{1}.

Squares and small forcing notions

Theorem (Cummings-Foreman-Magidor, 2001)
It is relatively consistent with the existence of a supercompact cardinal that $\square_{\aleph_{\omega}}$ is introduced by coll $\left(\omega, \omega_{1}\right)$.

A rant
Insuring coherence by collapsing cardinals? this is cheating!! Let me correct my conjecture.

Squares and small forcing notions

Theorem (Cummings-Foreman-Magidor, 2001)
It is relatively consistent with the existence of a supercompact cardinal that $\square_{\aleph_{\omega}}$ is introduced by coll $\left(\omega, \omega_{1}\right)$.

Speculation, revised
Square/weak square cannot be introduced by a small forcing that does not collapse cardinals.

Squares and small forcing notions

Theorem (Cummings-Foreman-Magidor, 2001)
It is relatively consistent with the existence of a supercompact cardinal that $\square_{\aleph_{\omega}}$ is introduced by $\operatorname{coll}\left(\omega, \omega_{1}\right)$.

False speculation

Square/weak square cannot be introduced by a small forcing that does not collapse cardinals.

Theorem
It is relatively consistent with the existence of two supercompact cardinals that $\square_{\aleph_{\omega_{1}}}^{*}$ is introduced by a cofinality preserving forcing of size \aleph_{3}.

Squares and small forcing notions

Theorem (Cummings-Foreman-Magidor, 2001)
It is relatively consistent with the existence of a supercompact cardinal that $\square_{\aleph_{\omega}}$ is introduced by $\operatorname{coll}\left(\omega, \omega_{1}\right)$.

Theorem

It is relatively consistent with the existence of two supercompact cardinals that $\square_{\aleph_{\omega_{1}}}^{*}$ is introduced by a cofinality preserving forcing of size \aleph_{3}.

Conjecture
As \aleph_{1}-sized notion of forcing suffices to introduce $\square_{\aleph_{\omega}}$, then \aleph_{2}-sized notion of forcing should suffice to introduce (in a cofinality-preserving manner!) $\square_{\aleph_{\omega_{1}}}^{*}$.

Open Problems

Two problems

Question

Suppose that $\$_{\lambda}+\diamond_{\lambda^{+}}$holds for a given singular cardinal λ. Does there exists an homogenous λ^{+}-Souslin tree?

Two problems

Question

Suppose that $\$_{\lambda}+\diamond_{\lambda^{+}}$holds for a given singular cardinal λ. Does there exists an homogenous λ^{+}-Souslin tree?

Theorem (Dolinar-Džamonja, 2010)
$\square_{\omega_{1}}$ may be introduced by a forcing notion whose working parts are finite. (that is, the part in the forcing conditions which approximates the generic square sequence is finite.)

Conjecture
$\square_{\aleph_{\omega_{1}}}^{*}$ may be introduced by a small, cofinality preserving forcing notion whose working parts are finite.

Epilogue

Summary

- \square_{λ} is a particular form of \square_{λ} whose intrinsic complexity allows to derive complex objects (such as trees, partitions of stationary sets, and strong colorings) in a canonical way;
- ∞_{λ} and \square_{λ} are equivalent, assuming GCH;
- weak square may be introduced by a small forcing that preserves the cardinal structure;
- weak square implies the existence of a non-reflecting stationary set in a generic extension by Cohen forcing.

