ON THE NOTION OF GUESSING MODEL

MATTEO VIALE

My current research focuses on the notion of guessing model. This has been analyzed and introduced in [1]. The ultimate and most likely out of reach ambition in this work is to provide by means of guessing models useful tools to show that for a given model W of MM, $(\aleph_2)^W$ has an arbitrarily high degree of supercompactness in some simply definable inner model V.

A guessing model come in pair with an infinite cardinal δ :

- \aleph_0 -guessing models provide an interesting characterization of all large cardinal axioms which can be described in terms of elementary embedding $j : V_{\gamma} \to V_{\lambda}$. In particular supercompactness, hugeness, and the axioms I_1 and I_3 can be characterized in terms of the existence of appropriate \aleph_0 -guessing models.
- In a paper with Weiss [2] we showed that PFA implies that there are \aleph_1 -guessing models, and that in many interesting models W of PFA such \aleph_1 -guessing models M can be used to show that in some inner model V of $W, M \cap V$ is an \aleph_0 -guessing models belonging to V and witnessing that \aleph_2 is supercompact in V.
- In [1] I also outline some interesting properties guessing models have in models of MM. For example assume θ is inaccessible in W, then:
 - (1) If W models PFA, then for a stationary set G of \aleph_1 -guessing models $M \prec H_{\theta}$ the isomorphism-type of M is uniquely determined by the ordinal $M \cap \aleph_2$ and the order type of $M \cap Card$ where Card is the set of cardinals in H_{θ} .
 - (2) In the seminal paper of Foreman Magidor and Shelah [4] on Martin's maximum and in a recent work by Sean Cox [3] several strong forms of diagonal reflections are obtained, for example Cox shows:
 - Assume MM holds in V. Then for every regular θ there is S stationary set of models $M \prec H_{\theta}$ such that every $M \in T$ computes correctly stationarity in the following sense: For every $X \in M$ and every set $B \in M$ subset of $[X]^{\aleph_0}$ if B is

For every $X \in M$ and every set $R \in M$ subset of $[X]^{\aleph_0}$ if R is projectively stationary in V then R reflects on $[M \cap X]^{\aleph_0}$.

(3) We can improve (1) and (2) above to further argue that in a model V of MM, $G \cap S$ is stationary.

Such results even if rather technical are attributing to \aleph_2 properties shared by supercompact cardinals in the sense that \aleph_0 -guessing models M are characterized by property (1) when \aleph_2 is replaced by some suitable inaccessible cardinal $\kappa \in M$ and satisfy many strenghtenings of property (2).

MATTEO VIALE

References

- [1] Matteo Viale, On the notion of guessing model, submitted, available at: http://fiesh.homeip.net/guessing_model.pdf, 2010, 17 pages.
- [2] Matteo Viale, Christoph Weiss, On the consistency strength of the proper forcing axiom, submitted, available at: http://fiesh.homeip.net/viale_weiss.pdf, 2010, 20 pages.
- [3] Sean Cox, *The diagonal reflection principle*, submitted, available at: http://wwwmath.uni-muenster.de/logik/Personen/Cox/Research/DRP.pdf, 2010, 11 pages.
- [4] Matthew Foreman, Menachem Magidor, Saharon Shelah Martin's maximum, saturated ideals, and nonregular ultrafilters. I, Annals of Mathematics. Second Series, 127(1) (1988), 1–47.