Research Statement

Jonathan L. Verner Charles University, Prague

March 4, 2011

My current research focuses on questions concerning ultrafilters. Recently, new connections have been discovered between strong P-points and Mathias forcing and several interesting questions remain open, e.g.

Question Is is the relativized ultrafilter-Mathias forcing almost ${}^{\omega}\omega$ -bounding provided the ultrafilter is a strong P-point?

Question Is the iteration of the natural forcing to add a strong P-point followed by killing this ultrafilter via Mathias forcing Π_1^1 on Σ_1^1 ?

Question Is being a Canjar filter equivalent to being a strong P-filter for meager-filters?

Of course, there are also other very intersting questions, which are probably much harder:

Question [1] Is it provable in ZFC that there is a non-meager P-filter?

One can also look at ultrafilters from a topological perspective and find interesting questions. For example there are points in ω^* which are limit points of a countable set without isolated points, however the neibourghood traces on any countable subset generate an ultrafilter. Put in a different way, these points cannot be \mathcal{F} -limits of a countable sequence for any filter which is not an ultrafilter. It is a standard fact that no point in ω^* can be a \mathcal{FR} -limit of a sequence. Recently I learned from T. Banach, that there are points, which can be \mathcal{F} -limits of some sequence with \mathcal{F} a meager filter. This cannot happen if \mathcal{F} is an F_{σ} -filter or an analytic P-filter.

Question Is there an analytic filter \mathcal{F} such that the \mathcal{F} -limit of some sequence in ω^* exists?

References

 Kanamori, A. Some combinatorics involving ultrafilters, Fund. Math., vol 100, 1978, pp.145–155.