Research Statement

Alexander Primavesi

I began my doctoral research by looking at a long-standing question of the set theorist I. Juhasz, of whether the axiom \clubsuit implies the existence of a Suslin tree (an uncountable tree with no uncountable chains or antichains). The existence of Suslin trees is known to be independent of ZFC. \clubsuit is one of a family of axioms known as 'guessing axioms' and is a natural weakening of \diamondsuit , which is itself a strengthening of the Continuum Hypothesis and is known to imply the existence of a Suslin tree. \clubsuit + CH is equivalent to \diamondsuit , so \clubsuit can be thought of as \diamondsuit without the cardinal arithmetic assumptions. Juhasz's question is one of a class of natural questions that ask: how different are \diamondsuit and \clubsuit ?

My research is concerned with several such questions. Two examples are the following:

- ♦ has an *invariance property* in the sense that making small changes to its definition won't, in general, get you a different (either strictly stronger or strictly weaker) statement. To what extent is this invariance property shared by ♣?
- It is known that ♣ is consistent with ¬CH, but there are related questions that remain unanswered. For example, is it possible to force ♣ from a model of ¬CH without collapsing 2^ω?

These are questions that came to light in my research into Juhasz's question and could have application in answering it. The definition of \clubsuit is as follows:

Definition 0.1. (**4**) There is a sequence $\langle A_{\delta} : \delta \in Lim(\omega_1) \rangle$ such that $A_{\delta} \subseteq \delta$ and $\sup(A_{\delta}) = \delta$, and if $X \subseteq \omega_1$ is uncountable then the set $\{\delta < \omega_1 : A_{\delta} \subseteq X\}$ is stationary.