Projective maximal almost disjoint families

Lyubomyr Zdomskyy

Kurt Gödel Research Center for Mathematical Logic, Universität Wien http://www.logic.univie.ac.at/~lzdomsky

Joint work with S.D. Friedman

Young Set Theory Workshop Seminarzentrum Raach, Austria, February 2010.

Definitions and basic facts

Indestructibility

Models of $\mathfrak{b} > \omega_1$

Basic definitions: families of infinite subsets of $\boldsymbol{\omega}$

- a, b ∈ [ω]^ω are almost disjoint, if a ∩ b is finite.
 An infinite set A is said to be an almost disjoint family of infinite subsets of ω (or an almost disjoint subfamily of [ω]^ω) if A ⊂ [ω]^ω and any two elements of A are almost disjoint.
- A ⊂ [ω]^ω is called a *mad family* of infinite subsets of ω (abbreviated from "maximal almost disjoint"), if it is maximal with respect to inclusion among almost disjoint families of infinite subsets of ω.
- Given A ⊂ [ω]^ω, we denote by L(A) the collection of all positive sets with respect to the ideal generated by A.
 A mad subfamily A of [ω]^ω is defined to be ω-mad, if for every B ∈ [L(A)]^ω there exists a ∈ A such that |a ∩ b| = ω for all b ∈ B.

Basic definitions: families of functions from ω to ω

- a, b ∈ ω^ω are almost disjoint, if a ∩ b is finite.
 An infinite set A is said to be an almost disjoint family of functions from ω to ω (or an almost disjoint subfamily of ω^ω) if A ⊂ ω^ω and any two elements of A are almost disjoint.
- A ⊂ ω^ω is called a *mad family* of functions from ω to ω (abbreviated from "maximal almost disjoint"), if it is maximal with respect to inclusion among almost disjoint families of functions from ω to ω.
- Given A ⊂ ω^ω, we denote by L(A) the collection of all f ∈ ω^ω which are positive with respect to the ideal generated by A.
 A mad subfamily A of ω^ω is defined to be ω-mad, if for every B ∈ [L(A)]^ω there exists a ∈ A such that |a ∩ b| = ω for all b ∈ B.

Theorem

(Mathias 1977). There exists no Σ_1^1 definable mad family of infinite subsets of ω .

Theorem

(Kastermans-Steprāns-Zhang 2008). There exists no Σ_1^1 definable ω -mad family of functions from ω to ω .

Proof.

Suppose that such a family $A \subset \omega^{\omega}$ exists. Take $f \in \mathcal{L}(A)$ and consider $B = \{[f = a] : a \in A\}$, where $[f = a] = \{n \in \omega : f(n) = a(n)\}.$

Claim

 $C := B \cap [\omega]^{\omega}$ is a Σ_1^1 -definable mad family.

Proof.

If not, there exists $x \in [\omega]^{\omega}$ almost disjoint from all elements of C. Fix distinct $a_0, a_1 \in A$ and set $x_i = f \upharpoonright x \cup a_i \upharpoonright (\omega \setminus x), i \in 2$. Observe that $x_i \in \mathcal{L}(A)$. Therefore $|[x_0 = a]| = |[x_1 = a]| = \omega$ for some $a \in A$, which is impossible.

Problem

Is there a Σ_1^1 definable mad family of functions from ω to ω ?

Problem

Do ω -mad families exist in ZFC? (Raghavan: Yes if $\mathfrak{b} = \mathfrak{c}$.)

Definition

A subfamily A of ω^{ω} is called a Van Douwen mad family if for any infinite partial function p there is $a \in A$ with $|a \cap p| = \omega$.

Observation

Every ω -mad subfamily of ω^{ω} is a Van Douwen mad family.

Theorem

(Raghavan 2008). There exists a Van Douwen mad family.

Theorem

(A. Miller 1989). (V=L). There exists a Π_1^1 definable mad family of infinite subsets of ω .

Theorem

(Kastermans-Steprans-Zhang 2008). (V=L). There exists a Π_1^1 definable ω -mad family of functions from ω to ω .

Corollary

(V=L). There exists a Π_1^1 definable ω -mad family of infinite subsets of ω .

Proof.

If $A \subset \omega^{\omega}$ is ω -mad, then $A \cup \{$ vertical lines $\}$ is an ω -mad family of infinite subsets of ω .

Definition

Let \mathcal{A} be a mad family and \mathbb{P} be a poset. \mathcal{A} is \mathbb{P} *indestructible*, if \mathcal{A} stays mad in $V^{\mathbb{P}}$.

Theorem

(Kurilić 2001). A mad family $\mathcal{A} \subset [\omega]^{\omega}$ is Cohen indestructible iff for every $B \in \mathcal{L}(\mathcal{A})$ there exists $\mathcal{L}(\mathcal{A}) \ni C \subset B$ such that $\mathcal{A}|C = \{A \cap C : A \in \mathcal{A}, |A \cap C| = \omega\}$ is an ω -mad subfamily of $[C]^{\omega}$.

Proof

We prove the "only if" part. Suppose that for every $B \in \mathcal{L}(\mathcal{A})$ there exists a countable $\mathcal{B}_B \subset [B]^{\omega} \cap \mathcal{L}(\mathcal{A})$ witnessing for $\mathcal{A}|B$ being not ω -mad. Fix $B_{\emptyset} \in \mathcal{L}(\mathcal{A})$ and consider a map $\omega^{<\omega} \ni \langle s_0, \ldots, s_n \rangle \mapsto B_{\langle s_0, \ldots, s_n \rangle} \in \mathcal{L}(\mathcal{A})$ such that $\{B_s \cdot_n : n \in \omega = \mathcal{B}_{B_s}\}$ for all $s \in \omega^{<\omega}$.

Now let $c \in \omega^{\omega}$ be a Cohen real (i.e., a generic subset of $\omega^{<\omega}$). In V[c], find a set $X \in [\omega]^{\omega}$ such that $X \subset^* B_{c \restriction n}$ for all n.

Claim

X is almost disjoint from all elements of A.

Proof.

Given $A \in \mathcal{A}$, the set $D_A := \{s \in \omega^{<\omega} : |A \cap B_s| < \omega\}$ is dense in $\omega^{<\omega}$.

Fix $A \in \mathcal{A}$ and find $n \in \omega$ such that $c \upharpoonright n \in D_A$. The latter menas that $B_{c \upharpoonright n} \cap A$ is finite. Since $X \subset^* B_{c \upharpoonright n}$, $X \cap A$ is finite either.

Definition

(Raghavan 2009). Let \mathbb{P} be a poset. \mathbb{P} has diagonal fusion if there exist a sequence $\langle \leq_n : n \in \omega \rangle$ of partial orderings on \mathbb{P} , a strictly increasing sequence of natural numbers $\langle i_n : n \in \omega \rangle$ with $i_0 = 0$, and for each $p \in \mathbb{P}$ a sequence $\langle p_i : i \in \omega \rangle \in \mathbb{P}^{\omega}$ such that the following hold:

• P has fusion with respect to $\langle \leq_n : n \in \omega \rangle$;

For all
$$i \in \omega$$
, $p_i \leq p$;

- If $q \leq p$, then $q \not\perp p_i$ for infinitely many i;
- If $q \leq_n p$, then $q_i \leq p_i$ for all $i \leq i_n$;
- ▶ If $\langle r_i : i_n \leq i < i_{n+1} \rangle$ is a sequence such that $r_i \leq p_i$ for all $i \in [i_n, i_{n+1})$, then exists $q \leq_n p$ such that $q_i \leq r_i$ for all $i \in [i_n, i_{n+1})$.

Theorem

(Raghavan 2009.) Suppose that $\langle \mathbb{P}_{\xi}, \dot{\mathbb{Q}}_{\eta} : \xi \leq \gamma, \eta < \gamma \rangle$ is a countable support iteration forcing construction such that \Vdash_{ξ} " $\dot{\mathbb{Q}}_{\xi}$ has a diagonal fusion" for all ξ . Then all ground model ω -mad subfamilies of ω^{ω} are \mathbb{P}_{γ} -indestructible.

Example.

Miller and Sacks forcings have diagonal fusion, while Laver does not.

Theorem

(Brendle-Yatabe 2005) Suppose \mathbb{P} is a forcing notion that adds a new real, and suppose \mathcal{A} is a mad subfamily (either of $[\omega]^{\omega}$ or of ω^{ω}). If \mathcal{A} is \mathbb{P} -indestructible, then \mathcal{A} is also Sacks indestructible.

Problem

(Brendle-Yatabe 2005) *Do Sacks indestructible mad families exist in ZFC?*

Definability with higher continuum

If $\mathcal{A} \in V$ is a Π_1^1 definable almost disjoint family whose Π_1^1 definition is provided by formula $\varphi(x)$, then $\varphi(x)$ defines an almost disjoint family in any extension V' of V. This is a straightforward consequence of the Shoenfield's Absoluteness Theorem:

 $\forall x \in \omega^\omega \forall y \in \omega^\omega \left(\varphi(x) \land \varphi(y) \to (|x \cap y| < \omega)\right) \text{ is a } \Pi^1_2 \text{ statement}.$

Thus if a ground model Π_1^1 definable mad family *remains mad* in a forcing extension, it remains Π_1^1 definable by means of the same formula.

It follows that the Π_1^1 definable ω -mad family in L of functions constructed by Kastermans, Steprans, and Zhang remains Π_1^1 definable and ω -mad in L[G], where G is a generic over L for the countable support iteration of Miller forcing of length ω_2 .

Corollary

Let κ be a regular cardinal. The existence of a Π_1^1 definable ω -mad family is consistent with $2^{\omega} = \kappa$.

Theorem

(Friedman-Z. 2009). It is consistent that $2^{\omega} = \mathfrak{b} = \omega_2$ and there exists a Π_2^1 definable ω -mad family of infinite subsets of ω (of functions from ω to ω).

Some auxiliary facts:

Proposition

► There exists an almost disjoint family $R = \{r_{\langle \zeta, \xi \rangle} : \zeta \in \omega \cdot 2, \xi \in \omega_1^L\} \in L$ of infinite subsets of ω such that $R \cap M = \{r_{\langle \zeta, \xi \rangle} : \zeta \in \omega \cdot 2, \xi \in (\omega_1^L)^M\}$ for every transitive model M of ZF⁻.

• There exists a Σ_1 definable over L_{ω_2} sequence $\bar{S} = \langle S_{\alpha} : \alpha < \omega_2 \rangle$ of pairwise almost disjoint *L*-stationary subsets of ω_1 such that whenever M, N are suitable models of ZF^- such that $\omega_1^M = \omega_1^N$, \bar{S}^M agrees with \bar{S}^N on $\omega_2^M \cap \omega_2^N$. Moreover, we can additionally assume that $\omega_1 \setminus \bigcup_{\xi < \omega_2} S_{\xi}$ is stationary in *L*.

We say that transitive ZF^ model M is suitable if $M\vDash "\omega_2$ exists and $\omega_2=\omega_2^{L"}$

The poset

We start with the ground model V = L. Recursively, we shall define a countable support iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} : \alpha \leq \omega_2, \beta < \omega_2 \rangle$. The desired family A is constructed along the iteration: for cofinally many α 's the poset \mathbb{Q}_{α} takes care of some countable family B of infinite subsets of ω which might appear in $\mathcal{L}(A)$ in the final model, and adds to A some $a_{\alpha} \in [\omega]^{\omega}$ almost disjoint from all elements of A_{α} such that $|a \cap b| = \omega$ for all $b \in B$ (here A_{α} stands for the set of all elements of A constructed up to stage α). Our forcing construction may be slightly modified to allow for further applications.

We proceed with the definition of \mathbb{P}_{ω_2} . For successor α let $\dot{\mathbb{Q}}_{\alpha}$ be a \mathbb{P}_{α} -name for some proper forcing of size ω_1 adding a dominating real. For a subset s of ω and $l \in |s|$ (= card $(s) \leq \omega$) we denote by s(l) the l'th element of s. In what follows we shall denote by E(s) and O(s) the sets $\{s(2i): 2i \in |s|\}$ and $\{s(2i+1): 2i+1 \in |s|\}$, respectively. Let us consider some limit α and a \mathbb{P}_{α} -generic filter G_{α} .

The poset

Suppose also that

(*) $\forall B \in [A_{\alpha}]^{<\omega} \forall r \in R (|E(r) \setminus \cup B| = |O(r) \setminus \cup B| = \omega)$ Observe that equation (*) yields $|E(r) \setminus \cup B| = |O(r) \setminus \cup B| = \omega$ for every $B \in [R \cup A_{\alpha}]^{<\omega}$ and $r \in R \setminus B$. Let us fix some function $F: Lim \cap \omega_2 \to L_{\omega_2}$ such that $F^{-1}(x)$ is unbounded in ω_2 for every $x \in L_{\omega_2}$. Unless the following holds, $\hat{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α} -name for the trivial poset. Suppose that $F(\alpha)$ is a sequence $\langle b_i : i \in \omega \rangle$ of \mathbb{P}_{α} -names such that $b_i = \dot{b}_i^{G_{\alpha}} \in [\omega]^{\omega}$ and none of the b_i 's is covered by a finite subfamily of A_{α} . In this case \mathbb{Q}_{α} defined as follows. Find a limit ordinal $\eta_{\alpha} \in \omega_1$ such that there are no finite subsets J, E of $(\omega \cdot 2) \times (\omega_1 \setminus \eta_\alpha)$, A_α , respectively, and $i \in \omega$, such that $b_i \subset \bigcup_{\langle \zeta, \xi \rangle \in J} r_{\langle \zeta, \xi \rangle} \cup \bigcup E$. (The almost disjointness of the $r_{\langle \zeta, \xi \rangle}$'s imply that if $b_i \subset \bigcup R' \cup \bigcup A'$ for some $R' \in [R]^{<\omega}$ and $A' \in [A_{\alpha}]^{<\omega}$, then $b_i \setminus \bigcup A'$ has finite intersection with all elements of $R \setminus R'$. Together with equation (*) this easily yields the existence of such an η_{α} .)

Let z_{α} be an infinite subset of ω coding a surjection from ω onto η_{α} . For a subset s of ω we denote by \bar{s} the set $\{2k + 1 : k \in s\} \cup \{2k : k \in (\sup s \setminus s)\}$. In $V[G_{\alpha}]$, \mathbb{Q}_{α} consists of sequences $\langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle$ satisfying the following conditions:

(i)
$$c_k$$
 is a closed, bounded subset of $\omega_1 \setminus \eta_\alpha$ such that $S_{\alpha+k} \cap c_k = \emptyset$ for all $k \in \omega$;

(ii)
$$y_k : |y_k| \to 2, |y_k| > \eta_{\alpha}, y_k \upharpoonright \eta_{\alpha} = 0$$
, and
 $\operatorname{Even}(y_k) = (\{\eta_{\alpha}\} \cup (\eta_{\alpha} + X_{\alpha})) \cap |y_k|;$
(iii) $s \in [\omega]^{<\omega}, s^* \in [\{r_{\langle m, \xi \rangle} : m \in \overline{s}, \xi \in c_m\} \cup \{r_{\langle \omega+m, \xi \rangle} : m \in \overline{s}, y_m(\xi) = 1\} \cup A_{\alpha}]^{<\omega}$. In addition, for every $2n \in |s \cap r_{\langle 0, 0 \rangle}|,$
 $n \in z_{\alpha}$ if and only if there exists $m \in \omega$ such that
 $(s \cap r_{\langle 0, 0 \rangle})(2n) = r_{\langle 0, 0 \rangle}(2m);$ and

(iv) For all $k \in \bar{s} \cup (\omega \setminus (\max \bar{s}))$, limit ordinals $\xi \in \omega_1$ such that $\eta_{\alpha} < \xi \leq |y_k|$, and suitable ZF⁻ models M containing $y_k \upharpoonright \xi$ and $c_k \cap \xi$ with $\omega_1^M = \xi$, ξ is a limit point of c_k , and the following holds in M: (Even $(y_k) - \min \text{Even}(y_k)$) $\cap \xi$ codes a limit ordinal $\bar{\alpha}$ such that $S_{\bar{\alpha}+k}^M$ is non-stationary.

The tuples $\langle s, s^* \rangle$ and $\langle c_k, y_k : k \in \omega \rangle$ will be referred to as the *finite part* and the *infinite part* of the condition $\langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle$, respectively.

For conditions $\vec{p} = \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle$ and $\vec{q} = \langle \langle t, t^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle$ in \mathbb{Q}_{α} , we let $\vec{q} \leq \vec{p}$ (by this we mean that \vec{q} is stronger than \vec{p}) if and only if

- (v) (t, t^*) extends (s, s^*) in the almost disjoint coding, i.e. t is an end-extension of s and $t \setminus s$ has empty intersection with all elements of s^* ;
- (vi) If $m \in \overline{t} \cup (\omega \setminus (\max \overline{t}))$, then d_m is an end-extension of c_m and $y_m \subset z_m$.

This finishes our definition of \mathbb{P}_{ω_2} .

Proposition

$$\begin{split} \dot{\mathbb{Q}}_{\alpha} \ &\text{is } \omega_1 \setminus \bigcup_{\xi < \omega_2} S_{\xi}\text{-proper. Consequently, } \mathbb{P}_{\omega_2} \ &\text{is} \\ \omega_1 \setminus \bigcup_{\xi < \omega_2} S_{\xi}\text{-proper and hence preserves cardinals.} \\ &\text{More precisely, for every condition} \\ &\vec{p} = \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle \in \mathbb{K}^1_{\alpha} \ &\text{the poset} \ \{ \vec{r} \in \mathbb{K}^1_{\alpha} : \vec{r} \leq \vec{p} \} \ &\text{is} \\ &\omega_1 \setminus \bigcup_{n \in \overline{s} \cup (\omega \setminus (\max \overline{s}))} S_{\alpha + n}\text{-proper.} \end{split}$$

Consequently, $S_{\alpha+n}$ remains stationary in $V^{\mathbb{P}_{\omega_2}}$ for all $n \in \omega \setminus \overline{a_{\alpha}}$.

Lemma

In L[G] the following conditions are equivalent:

(1) $a \in A;$

(2) For every countable suitable model M of ZF^- containing a as an element there exists $\bar{\alpha} < \omega_2^M$ such that $S^M_{\bar{\alpha}+k}$ is nonstationary in M for all $k \in \bar{a}$.

The condition in (2) provides a Π_2^1 definition of A.

Fischer and Friedman have recently proved that some inequalities between cardinal invariants are consistent with the existence of a Δ_3^1 definable wellorder of the reals.

Theorem

(Friedman-Z. 2009). It is consistent with Martin's Axiom that there exists a Δ_3^1 definable wellorder of the reals and a Π_2^1 definable ω -mad family of infinite subsets of ω .

Question

Is it consistent to have $\mathfrak{b} > \omega_1$ with a Σ_2^1 definable (ω -)mad family?

Question

Is it consistent to have $\omega_1 < \mathfrak{b} < 2^{\omega}$ with a Π_2^1 definable (ω -)mad family?

Question

Is it consistent to have $\mathfrak{b} < \mathfrak{a}$ and a Π_2^1 definable (ω -)mad family?

Question

Is a projective (ω -)mad family consistent with $\mathfrak{b} \geq \omega_3$?

Thank you for your attention.