Projective maximal almost disjoint families

Lyubomyr Zdomskyy

Kurt Gödel Research Center for Mathematical Logic, Universität Wien http://www.logic.univie.ac.at/~Izdomsky

Joint work with S.D. Friedman

Young Set Theory Workshop
Seminarzentrum Raach, Austria, February 2010.

Survey

Definitions and basic facts

Indestructibility

Models of $\mathfrak{b}>\omega_{1}$

Basic definitions: families of infinite subsets of ω

- $a, b \in[\omega]^{\omega}$ are almost disjoint, if $a \cap b$ is finite.

An infinite set A is said to be an almost disjoint family of infinite subsets of ω (or an almost disjoint subfamily of $[\omega]^{\omega}$) if $A \subset[\omega]^{\omega}$ and any two elements of A are almost disjoint.

- $A \subset[\omega]^{\omega}$ is called a mad family of infinite subsets of ω (abbreviated from "maximal almost disjoint"), if it is maximal with respect to inclusion among almost disjoint families of infinite subsets of ω.
- Given $A \subset[\omega]^{\omega}$, we denote by $\mathcal{L}(A)$ the collection of all positive sets with respect to the ideal generated by A.
A mad subfamily A of $[\omega]^{\omega}$ is defined to be ω-mad, if for every $B \in[\mathcal{L}(A)]^{\omega}$ there exists $a \in A$ such that $|a \cap b|=\omega$ for all $b \in B$.

Basic definitions: families of functions from ω to ω

- $a, b \in \omega^{\omega}$ are almost disjoint, if $a \cap b$ is finite.

An infinite set A is said to be an almost disjoint family of functions from ω to ω (or an almost disjoint subfamily of ω^{ω}) if $A \subset \omega^{\omega}$ and any two elements of A are almost disjoint.

- $A \subset \omega^{\omega}$ is called a mad family of functions from ω to ω (abbreviated from "maximal almost disjoint"), if it is maximal with respect to inclusion among almost disjoint families of functions from ω to ω.
- Given $A \subset \omega^{\omega}$, we denote by $\mathcal{L}(A)$ the collection of all $f \in \omega^{\omega}$ which are positive with respect to the ideal generated by A. A mad subfamily A of ω^{ω} is defined to be ω-mad, if for every $B \in[\mathcal{L}(A)]^{\omega}$ there exists $a \in A$ such that $|a \cap b|=\omega$ for all $b \in B$.

Nonexistence results

Theorem

(Mathias 1977). There exists no Σ_{1}^{1} definable mad family of infinite subsets of ω.

Theorem
(Kastermans-Steprāns-Zhang 2008). There exists no Σ_{1}^{1} definable ω-mad family of functions from ω to ω.

Proof.

Suppose that such a family $A \subset \omega^{\omega}$ exists. Take $f \in \mathcal{L}(A)$ and consider $B=\{[f=a]: a \in A\}$, where
$[f=a]=\{n \in \omega: f(n)=a(n)\}$.
Claim
$C:=B \cap[\omega]^{\omega}$ is a Σ_{1}^{1}-definable mad family.

Nonexistence results, continued

Proof.

If not, there exists $x \in[\omega]^{\omega}$ almost disjoint from all elements of C.
Fix distinct $a_{0}, a_{1} \in A$ and set $x_{i}=f \upharpoonright x \cup a_{i} \upharpoonright(\omega \backslash x), i \in 2$.
Observe that $x_{i} \in \mathcal{L}(A)$. Therefore $\left|\left[x_{0}=a\right]\right|=\left|\left[x_{1}=a\right]\right|=\omega$ for some $a \in A$, which is impossible.

Problem

Is there a Σ_{1}^{1} definable mad family of functions from ω to ω ?

Problem

Do ω-mad families exist in ZFC?
(Raghavan: Yes if $\mathfrak{b}=\mathfrak{c}$.)

Existence results

Definition

A subfamily A of ω^{ω} is called a Van Douwen mad family if for any infinite partial function p there is $a \in A$ with $|a \cap p|=\omega$.

Observation
Every ω-mad subfamily of ω^{ω} is a Van Douwen mad family.
Theorem
(Raghavan 2008). There exists a Van Douwen mad family.
Theorem
(A. Miller 1989). ($V=L$). There exists a Π_{1}^{1} definable mad family of infinite subsets of ω.

Theorem
(Kastermans-Steprāns-Zhang 2008). ($V=L$). There exists a Π_{1}^{1} definable ω-mad family of functions from ω to ω.

Corollary

($V=L$). There exists a Π_{1}^{1} definable ω-mad family of infinite subsets of ω.

Proof.
If $A \subset \omega^{\omega}$ is ω-mad, then $A \cup\{$ vertical lines $\}$ is an ω-mad family of infinite subsets of ω.

Indestructibility of mad families

Definition

Let \mathcal{A} be a mad family and \mathbb{P} be a poset. \mathcal{A} is \mathbb{P} indestructible, if \mathcal{A} stays mad in $V^{\mathbb{P}}$.

Theorem
(Kurilić 2001). A mad family $\mathcal{A} \subset[\omega]^{\omega}$ is Cohen indestructible iff for every $B \in \mathcal{L}(\mathcal{A})$ there exists $\mathcal{L}(\mathcal{A}) \ni C \subset B$ such that $\mathcal{A} \mid C=\{A \cap C: A \in \mathcal{A},|A \cap C|=\omega\}$ is an ω-mad subfamily of $[C]^{\omega}$.

Proof

We prove the "only if" part. Suppose that for every $B \in \mathcal{L}(\mathcal{A})$ there exists a countable $\mathcal{B}_{B} \subset[B]^{\omega} \cap \mathcal{L}(\mathcal{A})$ witnessing for $\mathcal{A} \mid B$ being not ω-mad. Fix $B_{\emptyset} \in \mathcal{L}(\mathcal{A})$ and consider a map $\omega^{<\omega} \ni\left\langle s_{0}, \ldots, s_{n}\right\rangle \mapsto B_{\left\langle s_{0}, \ldots, s_{n}\right\rangle} \in \mathcal{L}(\mathcal{A})$ such that $\left\{B_{s}{ }^{\wedge}{ }_{n}: n \in \omega=\mathcal{B}_{B_{s}}\right\}$ for all $s \in \omega^{<\omega}$.

Now let $c \in \omega^{\omega}$ be a Cohen real (i.e., a generic subset of $\omega^{<\omega}$). In $V[c]$, find a set $X \in[\omega]^{\omega}$ such that $X \subset^{*} B_{c \upharpoonright n}$ for all n.
Claim
X is almost disjoint from all elements of \mathcal{A}.
Proof.
Given $A \in \mathcal{A}$, the set $D_{A}:=\left\{s \in \omega^{<\omega}:\left|A \cap B_{s}\right|<\omega\right\}$ is dense in $\omega^{<\omega}$.

Fix $A \in \mathcal{A}$ and find $n \in \omega$ such that $c \upharpoonright n \in D_{A}$. The latter menas that $B_{c \upharpoonright n} \cap A$ is finite. Since $X \subset^{*} B_{c \mid n}, X \cap A$ is finite either.

More indestructibility

Definition

(Raghavan 2009). Let \mathbb{P} be a poset. \mathbb{P} has diagonal fusion if there exist a sequence $\left\langle\leq_{n}: n \in \omega\right\rangle$ of partial orderings on \mathbb{P}, a strictly increasing sequence of natural numbers $\left\langle i_{n}: n \in \omega\right\rangle$ with $i_{0}=0$, and for each $p \in \mathbb{P}$ a sequence $\left\langle p_{i}: i \in \omega\right\rangle \in \mathbb{P}^{\omega}$ such that the following hold:

- P has fusion with respect to $\left\langle\leq_{n}: n \in \omega\right\rangle$;
- For all $i \in \omega, p_{i} \leq p$;
- If $q \leq p$, then $q \not \perp p_{i}$ for infinitely many i;
- If $q \leq_{n} p$, then $q_{i} \leq p_{i}$ for all $i \leq i_{n}$;
- If $\left\langle r_{i}: i_{n} \leq i<i_{n+1}\right\rangle$ is a sequence such that $r_{i} \leq p_{i}$ for all $i \in\left[i_{n}, i_{n+1}\right)$, then exists $q \leq_{n} p$ such that $q_{i} \leq r_{i}$ for all $i \in\left[i_{n}, i_{n+1}\right)$.

More indestructibility, continued

Theorem

(Raghavan 2009.) Suppose that $\left\langle\mathbb{P}_{\xi}, \dot{\mathbb{Q}}_{\eta}: \xi \leq \gamma, \eta<\gamma\right\rangle$ is a countable support iteration forcing construction such that \Vdash_{ξ} " $\dot{\mathbb{Q}}_{\xi}$ has a diagonal fusion" for all ξ. Then all ground model ω-mad subfamilies of ω^{ω} are \mathbb{P}_{γ}-indestructible.

Example.

Miller and Sacks forcings have diagonal fusion, while Laver does not.

Theorem
(Brendle-Yatabe 2005) Suppose \mathbb{P} is a forcing notion that adds a new real, and suppose \mathcal{A} is a mad subfamily (either of $[\omega]^{\omega}$ or of ω^{ω}). If \mathcal{A} is \mathbb{P}-indestructible, then \mathcal{A} is also Sacks indestructible.

Problem
(Brendle-Yatabe 2005) Do Sacks indestructible mad families exist in ZFC?

Definability with higher continuum

If $\mathcal{A} \in V$ is a Π_{1}^{1} definable almost disjoint family whose Π_{1}^{1} definition is provided by formula $\varphi(x)$, then $\varphi(x)$ defines an almost disjoint family in any extension V^{\prime} of V. This is a straightforward consequence of the Shoenfield's Absoluteness Theorem:
$\forall x \in \omega^{\omega} \forall y \in \omega^{\omega}(\varphi(x) \wedge \varphi(y) \rightarrow(|x \cap y|<\omega))$ is a Π_{2}^{1} statement.

Thus if a ground model Π_{1}^{1} definable mad family remains mad in a forcing extension, it remains Π_{1}^{1} definable by means of the same formula.
It follows that the Π_{1}^{1} definable ω-mad family in L of functions constructed by Kastermans, Steprāns, and Zhang remains Π_{1}^{1} definable and ω-mad in $L[G]$, where G is a generic over L for the countable support iteration of Miller forcing of length ω_{2}.

Corollary

Let κ be a regular cardinal. The existence of a Π_{1}^{1} definable ω-mad family is consistent with $2^{\omega}=\kappa$.

Models of $\mathfrak{b}>\omega_{1}$

Theorem
(Friedman-Z. 2009). It is consistent that $2^{\omega}=\mathfrak{b}=\omega_{2}$ and there exists a Π_{2}^{1} definable ω-mad family of infinite subsets of ω (of functions from ω to ω).

Proof in case of subfamilies of $[\omega]^{\omega}$

Some auxiliary facts:

Proposition

- There exists an almost disjoint family $R=\left\{r_{\langle\zeta, \xi\rangle}: \zeta \in \omega \cdot 2, \xi \in \omega_{1}^{L}\right\} \in L$ of infinite subsets of ω such that $R \cap M=\left\{r_{\langle\zeta, \xi\rangle}: \zeta \in \omega \cdot 2, \xi \in\left(\omega_{1}^{L}\right)^{M}\right\}$ for every transitive model M of ZF^{-}.
- There exists a Σ_{1} definable over $L_{\omega_{2}}$ sequence $\bar{S}=\left\langle S_{\alpha}: \alpha<\omega_{2}\right\rangle$ of pairwise almost disjoint L-stationary subsets of ω_{1} such that whenever M, N are suitable models of $Z F^{-}$such that $\omega_{1}^{M}=\omega_{1}^{N}, \bar{S}^{M}$ agrees with \bar{S}^{N} on $\omega_{2}^{M} \cap \omega_{2}^{N}$. Moreover, we can additionally assume that $\omega_{1} \backslash \bigcup_{\xi<\omega_{2}} S_{\xi}$ is stationary in L.

We say that transitive ZF^{-}model M is suitable if $M \vDash^{\prime \prime} \omega_{2}$ exists and $\omega_{2}=\omega_{2}^{L^{\prime \prime}}$

The poset

We start with the ground model $V=L$. Recursively, we shall define a countable support iteration $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta}: \alpha \leq \omega_{2}, \beta<\omega_{2}\right\rangle$. The desired family A is constructed along the iteration: for cofinally many α 's the poset \mathbb{Q}_{α} takes care of some countable family B of infinite subsets of ω which might appear in $\mathcal{L}(A)$ in the final model, and adds to A some $a_{\alpha} \in[\omega]^{\omega}$ almost disjoint from all elements of A_{α} such that $|a \cap b|=\omega$ for all $b \in B$ (here A_{α} stands for the set of all elements of A constructed up to stage α). Our forcing construction may be slightly modified to allow for further applications.
We proceed with the definition of $\mathbb{P}_{\omega_{2}}$. For successor α let $\dot{\mathbb{Q}}_{\alpha}$ be a \mathbb{P}_{α}-name for some proper forcing of size ω_{1} adding a dominating real. For a subset s of ω and $l \in|s|(=\operatorname{card}(s) \leq \omega)$ we denote by $s(l)$ the l 'th element of s. In what follows we shall denote by $E(s)$ and $O(s)$ the sets $\{s(2 i): 2 i \in|s|\}$ and $\{s(2 i+1): 2 i+1 \in|s|\}$, respectively. Let us consider some limit α and a \mathbb{P}_{α}-generic filter G_{α}.

The poset

Suppose also that

$$
(*) \quad \forall B \in\left[A_{\alpha}\right]^{<\omega} \forall r \in R(|E(r) \backslash \cup B|=|O(r) \backslash \cup B|=\omega)
$$

Observe that equation (*) yields $|E(r) \backslash \cup B|=|O(r) \backslash \cup B|=\omega$ for every $B \in\left[R \cup A_{\alpha}\right]^{<\omega}$ and $r \in R \backslash B$. Let us fix some function $F: \operatorname{Lim} \cap \omega_{2} \rightarrow L_{\omega_{2}}$ such that $F^{-1}(x)$ is unbounded in ω_{2} for every $x \in L_{\omega_{2}}$. Unless the following holds, $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α}-name for the trivial poset. Suppose that $F(\alpha)$ is a sequence $\left\langle\dot{b}_{i}: i \in \omega\right\rangle$ of \mathbb{P}_{α}-names such that $b_{i}=\dot{b}_{i}^{G_{\alpha}} \in[\omega]^{\omega}$ and none of the b_{i} 's is covered by a finite subfamily of A_{α}. In this case \mathbb{Q}_{α} defined as follows.
Find a limit ordinal $\eta_{\alpha} \in \omega_{1}$ such that there are no finite subsets J, E of $(\omega \cdot 2) \times\left(\omega_{1} \backslash \eta_{\alpha}\right), A_{\alpha}$, respectively, and $i \in \omega$, such that $b_{i} \subset \bigcup_{\langle\zeta, \xi\rangle \in J} r_{\langle\zeta, \xi\rangle} \cup \bigcup E$. (The almost disjointness of the $r_{\langle\zeta, \xi\rangle}$'s imply that if $b_{i} \subset \bigcup R^{\prime} \cup \bigcup A^{\prime}$ for some $R^{\prime} \in[R]^{<\omega}$ and $A^{\prime} \in\left[A_{\alpha}\right]^{<\omega}$, then $b_{i} \backslash \bigcup A^{\prime}$ has finite intersection with all elements of $R \backslash R^{\prime}$. Together with equation (*) this easily yields the existence of such an η_{α}.)

The poset, continued

Let z_{α} be an infinite subset of ω coding a surjection from ω onto η_{α}. For a subset s of ω we denote by \bar{s} the set $\{2 k+1: k \in s\} \cup\{2 k: k \in(\sup s \backslash s)\}$.
In $V\left[G_{\alpha}\right], \mathbb{Q}_{\alpha}$ consists of sequences $\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle$
satisfying the following conditions:
(i) c_{k} is a closed, bounded subset of $\omega_{1} \backslash \eta_{\alpha}$ such that $S_{\alpha+k} \cap c_{k}=\emptyset$ for all $k \in \omega ;$
(ii) $y_{k}:\left|y_{k}\right| \rightarrow 2,\left|y_{k}\right|>\eta_{\alpha}, y_{k} \upharpoonright \eta_{\alpha}=0$, and $\operatorname{Even}\left(y_{k}\right)=\left(\left\{\eta_{\alpha}\right\} \cup\left(\eta_{\alpha}+X_{\alpha}\right)\right) \cap\left|y_{k}\right| ;$
(iii) $s \in[\omega]^{<\omega}, s^{*} \in\left[\left\{r_{\langle m, \xi\rangle}: m \in \bar{s}, \xi \in c_{m}\right\} \cup\left\{r_{\langle\omega+m, \xi\rangle}: m \in\right.\right.$ $\left.\left.\bar{s}, y_{m}(\xi)=1\right\} \cup A_{\alpha}\right]^{<\omega}$. In addition, for every $2 n \in\left|s \cap r_{\langle 0,0\rangle}\right|$, $n \in z_{\alpha}$ if and only if there exists $m \in \omega$ such that $\left(s \cap r_{\langle 0,0\rangle}\right)(2 n)=r_{\langle 0,0\rangle}(2 m)$; and

The poset, continued

(iv) For all $k \in \bar{s} \cup(\omega \backslash(\max \bar{s}))$, limit ordinals $\xi \in \omega_{1}$ such that $\eta_{\alpha}<\xi \leq\left|y_{k}\right|$, and suitable ZF^{-}models M containing $y_{k} \upharpoonright \xi$ and $c_{k} \cap \xi$ with $\omega_{1}^{M}=\xi, \quad \xi$ is a limit point of c_{k}, and the following holds in M : $\left(\operatorname{Even}\left(y_{k}\right)-\min \operatorname{Even}\left(y_{k}\right)\right) \cap \xi$ codes a limit ordinal $\bar{\alpha}$ such that $S_{\bar{\alpha}+k}^{M}$ is non-stationary.
The tuples $\left\langle s, s^{*}\right\rangle$ and $\left\langle c_{k}, y_{k}: k \in \omega\right\rangle$ will be referred to as the finite part and the infinite part of the condition $\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle$, respectively.

The poset, continued

For conditions $\vec{p}=\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle$ and $\vec{q}=\left\langle\left\langle t, t^{*}\right\rangle,\left\langle d_{k}, z_{k}: k \in \omega\right\rangle\right\rangle$ in \mathbb{Q}_{α}, we let $\vec{q} \leq \vec{p}$ (by this we mean that \vec{q} is stronger than \vec{p}) if and only if
$(v)\left(t, t^{*}\right)$ extends $\left(s, s^{*}\right)$ in the almost disjoint coding, i.e. t is an end-extension of s and $t \backslash s$ has empty intersection with all elements of s^{*};
(vi) If $m \in \bar{t} \cup(\omega \backslash(\max \bar{t}))$, then d_{m} is an end-extension of c_{m} and $y_{m} \subset z_{m}$.
This finishes our definition of $\mathbb{P}_{\omega_{2}}$.

Properties of the poset

Proposition

$\dot{\mathbb{Q}}_{\alpha}$ is $\omega_{1} \backslash \bigcup_{\xi<\omega_{2}} S_{\xi}$-proper. Consequently, $\mathbb{P}_{\omega_{2}}$ is $\omega_{1} \backslash \bigcup_{\xi<\omega_{2}} S_{\xi}$-proper and hence preserves cardinals.
More precisely, for every condition
$\vec{p}=\left\langle\left\langle s, s^{*}\right\rangle,\left\langle c_{k}, y_{k}: k \in \omega\right\rangle\right\rangle \in \mathbb{K}_{\alpha}^{1}$ the poset $\left\{\vec{r} \in \mathbb{K}_{\alpha}^{1}: \vec{r} \leq \vec{p}\right\}$ is
$\omega_{1} \backslash \bigcup_{n \in \bar{s} \cup(\omega \backslash(\max \bar{s}))} S_{\alpha+n}$-proper.
Consequently, $S_{\alpha+n}$ remains stationary in $V^{\mathbb{P}_{\omega_{2}}}$ for all $n \in \omega \backslash \overline{a_{\alpha}}$.

Why is the constructed family Π_{2}^{1} definable?

Lemma

In $L[G]$ the following conditions are equivalent:
(1) $a \in A$;
(2) For every countable suitable model M of ZF^{-}containing a as an element there exists $\bar{\alpha}<\omega_{2}^{M}$ such that $S_{\bar{\alpha}+k}^{M}$ is nonstationary in M for all $k \in \bar{a}$.

The condition in (2) provides a Π_{2}^{1} definition of A.

Combining two methods

Fischer and Friedman have recently proved that some inequalities between cardinal invariants are consistent with the existence of a Δ_{3}^{1} definable wellorder of the reals.
Theorem
(Friedman-Z. 2009). It is consistent with Martin's Axiom that there exists a Δ_{3}^{1} definable wellorder of the reals and a Π_{2}^{1} definable ω-mad family of infinite subsets of ω.

Some questions

Question
Is it consistent to have $\mathfrak{b}>\omega_{1}$ with a Σ_{2}^{1} definable (ω-)mad family?
Question
Is it consistent to have $\omega_{1}<\mathfrak{b}<2^{\omega}$ with a Π_{2}^{1} definable (ω-)mad family?

Question
Is it consistent to have $\mathfrak{b}<\mathfrak{a}$ and a Π_{2}^{1} definable (ω-)mad family?
Question
Is a projective (ω-)mad family consistent with $\mathfrak{b} \geq \omega_{3}$?

The last slide

Thank you for your attention.

