Descriptive set theory at uncountable cardinals

Philipp Schlicht, Universität Bonn

Young set theory workshop Raach, 16. 02. 2010

Topics:

regularity properties for subsets of κ_{κ} and κ_{2} : Baire property and perfect set property

definable equivalence relations on $\,^\kappa\kappa$ and $\,^\kappa 2$

Motivation:

framework for classification problems for uncountable structures

1. Setting

Let κ always be a regular uncountable cardinal with $\kappa^{<\kappa} = \kappa$, e.g. ω_1 under CH.

- ${}^{\kappa}\kappa$ is the space of functions $\kappa \to \kappa$ with basic open sets $O(s) = \{f \in {}^{\kappa}\kappa : s \subseteq f\}$ for $s \in {}^{<\kappa}\kappa$
- closed sets [T] for trees $T \subseteq {}^{<\kappa}\kappa$

The intersection of κ many open dense sets is nonempty. Borel sets are generated from the open sets by unions of length κ and complements. Meager sets are unions of κ many nowhere dense sets. Σ_1^1 formulas are of the form $\exists x \in \kappa \forall \alpha_0 < \kappa \exists \alpha_1 < \kappa ... \forall \alpha_n < \kappa \phi(x, \vec{y}, \vec{\alpha})$ where ϕ is quantifier-free.

Lemma 1. The following are equivalent for $A \subseteq {}^{\kappa}\kappa$:

- 1. A is Σ_1^1 over ${}^\kappa\kappa$ in some parameter $h \in {}^{\kappa \times \kappa}\kappa$
- 2. A = p[T] for a tree $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$
- 3. A is $\Sigma_1(H_{\kappa^+})$ in some parameter $h \in {}^{\kappa}\kappa$

The set of wellfounded binary relations on κ is a closed subset of κ^2 .

There are non-Borel Δ_1^1 sets.

Suppose two players try to form a decreasing sequence $(p_{\alpha} : \alpha < \kappa)$ in a forcing \mathbb{P} with player 2 playing at limit stages, and player 2 wins if she can always extend.

Definition 1. \mathbb{P} is $< \kappa$ -strategically closed if player 2 has a winning strategy.

Lemma 2. If \mathbb{P} is $< \kappa$ -strategically closed, then $V \prec_{\Sigma_1^1(\kappa_\kappa)} V^{\mathbb{P}}$.

Proof. Deny. Then \mathbb{P} adds a κ -branch to a tree T which doesn't have a branch in V. Let σ be a name for this branch. Player 2 can choose a condition p_{α} in move α which decides $\sigma \upharpoonright \alpha$, so T has a κ -branch in V.

2. Regularity properties

For $\kappa = \omega$, it is consistent that all subset of ${}^{\omega}\omega$ in $L(\mathbb{R})$ are Lebesgue measurable and have the Baire property and the perfect set property.

Lemma 3. (Halko-Shelah, Kovachev) The club filter on κ does not have the property of Baire in κ^2 .

The club filter is a Σ_1^1 set. It's not known whether it is consistent that the Banach-Mazur game is determined for all Σ_1^1 sets.

Definition 2. A tree $T \subseteq {}^{<\kappa}\kappa$ is perfect if it is $< \kappa$ -closed and its set of splitting nodes is cofinal.

Definition 3. A set $A \subseteq {}^{\kappa}\kappa$ is perfect if A = [T] for some perfect tree T.

Definition 4. A set $A \subseteq {}^{\kappa}\kappa$ has the perfect set property if $|A| \leq \kappa$ or A contains a perfect subset.

If there is a ω_1 -Kurepa tree T, i.e. its levels are countable and there are ω_2 many branches, then [T] is a closed set of size ω_2 without a perfect subset.

7

Proposition 1. Suppose $\lambda > \kappa$ is inaccessible. Then in $V^{Col(\kappa, <\lambda)}$ every Σ_1^1 set has the perfect set property.

Proof. Let G be $Col(\kappa, < \lambda)$ -generic over V. Let $T \subseteq {}^{<\kappa}\kappa \times {}^{<\kappa}\kappa$ be a tree in V[G] with $|p[T]| > \kappa$. Let's assume $T \in V$.

Suppose $p \Vdash |p[T]| > \kappa$ and σ, τ are names with $p \Vdash (\sigma, \tau) \in [T]$ and $p \Vdash \sigma \notin V$.

We build $(p_u, s_u, t_u : u \in {}^{<\kappa}2)$ with

- $u \subsetneq v$ implies $s_u \subsetneq s_v$ and $t_u \subsetneq t_v$
- $p_u \Vdash s_u \subseteq \sigma, t_u \subseteq \tau$
- $s_u \perp s_v$ for $u \neq v \in {}^{\alpha}2$, $\alpha < \kappa$

8

Proposition 2. It is consistent that 2^{κ} is arbitrarily large and every Σ_2^1 subset of ${}^{\kappa}\kappa$ has size $\leq \kappa^+$ or a perfect subset.

For trees S and T we write $S \leq T$ if there is a strict order-preserving map from S to T.

A universal family for for the class of trees of height and size κ is a family of such trees so that for every such tree S there is a tree T in the universal family with $S \leq T$.

Theorem 1. (Mekler-Väänänen) Such a family of arbitrary regular size μ with $\kappa^+ \leq \mu \leq 2^{\kappa}$ can be added by $< \kappa$ -closed κ^+ -c.c. forcing.

The forcing is an iteration which in every step adds a tree T such that $S \leq T$ for all previous trees S. The forcing can be modified to get a universal family $(T_{\alpha} : \alpha < \kappa^{+})$ and add many Cohen subsets of κ .

Suppose A = p[B] is a Σ_2^1 subset of $\kappa \kappa$. Suppose T is a tree on $\kappa \times \kappa \times \kappa$ with $B = (\kappa \kappa \times \kappa \kappa) - p[T]$. Then $x \in A$ iff $\exists y(x, y) \in B$ iff there is y such that $T_{x,y}$ does not have κ -branches.

We build a tree U on $\kappa \times \kappa^+$ which searches for $y \in {}^{\kappa}\kappa$ and a strict order preserving map from $T_{x,y}$ into some T_{α} , $\alpha < \kappa$, for any given $x \in {}^{\kappa}\kappa$.

Let V[g] be an intermediate extension with $U \in V[g]$ and σ a V[g]-name for an element of A - V[g]. We can build a perfect subset of A.

3. A counterexample to Silver's theorem

Theorem 2. (Silver) Every coanalytic equivalence relation on ω_{ω} either has countably many equivalence classes, or there's a perfect set of inequivalent reals.

A natural question is whether there is any generalization to equivalence relations on $\kappa_{\kappa}.$

The prewellorder which compares the ranks of wellorders with domain κ is Δ_1^1 . There are κ^+ many ranks.

Let \mathbb{P} be the forcing which adds a Cohen subset of κ .

Lemma 4. Suppose \leq is a Σ_1^1 prevellorder on ${}^{\kappa}\kappa$ so that forcing with \mathbb{P} preserves ranks, and suppose this is true in every \mathbb{P} -generic extension. Then there is no perfect set of elements of ${}^{\kappa}\kappa$ of pairwise different ranks.

Proof. Suppose [T] is a perfect set of elements of κ_{κ} of pairwise different ranks. The elements of [T] are inequivalent in every \mathbb{P} -generic extension. Let σ be a name for a new element of [T] of rank α .

Corollary 1. There is no perfect set of wellorders with domain κ of pairwise different ranks. **Lemma 5.** Suppose \leq is a \mathbb{P}^i -absolutely Δ_1^1 prevellorder for $i \leq 3$. Then forcing with \mathbb{P} preserves ranks and no element of $\kappa \in \mathbb{N}^{\mathbb{P}}$ bounds $\kappa \in \mathbb{N}$.

Lemma 6. Suppose \leq is a \mathbb{P}^i -absolutely Δ_1^1 prewellorder for $i \leq 3$. Then there is no perfect set of elements of κ_{κ} of different ranks.

Corollary 2. There is no absolutely Δ_1^1 wellorder of κ_{κ} .

5. A weak variant of Silver's theorem

Suppose $2^{\kappa} = \kappa^+$ and \mathbb{Q} is the forcing for adding $\mu > \kappa$ many Cohen subsets of κ .

Proposition 3. If *E* is a coanalytic equivalence relation on κ_{κ} in $V^{\mathbb{Q}}$, then *E* has $\leq \kappa^+$ many equivalence classes or there is a perfect set of inequivalent elements of κ_{κ} .

Let G be Q-generic over V. Let σ, τ denote nice Q-names for subsets of κ .

Let \mathbb{Q}_{κ} be the subforcing of \mathbb{Q} of the first κ many factors. There are $(\kappa^+)^{V[G]}$ many nice \mathbb{Q}_{κ} -names for subsets of κ .

Case 1: (1,1) $\Vdash_{\mathbb{Q}\times\mathbb{Q}} (\sigma,\sigma) \in E$ for all σ .

Then for every $x \in {}^{\kappa}\kappa \cap V[G]$, there is a \mathbb{Q}_{κ} -name τ with $xE\tau^{G}$.

Case 2: There is σ and a condition $p \in \mathbb{Q}$ with $\forall q \leq p \exists r, s \leq q : (r, s) \Vdash (\sigma, \sigma) \notin E$.

Suppose $E = (\kappa \kappa \times \kappa \kappa) - p[T]$. Let's assume $T \in V$.

We build $(p_u, s_u : u \in {}^{<\kappa}2)$ with

• $u \subsetneq v$ implies $s_u \subsetneq s_v$

•
$$p_u \Vdash s_u \subseteq \sigma$$

• $s_u \perp s_v$ for $u \neq v \in {}^{\alpha}2$, $\alpha < \kappa$

together with witnesses that pairs of branches are in p[T].

Let $\{t_n : n < \omega\} \subseteq {}^{<\omega}2$ be dense with $lh(s_n) = n$.

Let G_0 be the graph on ${}^{\omega}\omega$ whose edges are the pairs $(t_n \frown i \frown x, t_n \frown j \frown x)$ for $i \neq j$, i, j = 0, 1, and $x \in {}^{\omega}2$.

Theorem 3. (Kechris-Solecki-Todorcevic) Suppose G is an analytic graph on ω_{ω} . Then either there is a Borel ω -coloring of G, or there is a continuous homomorphism from G_0 to G.

Let $\{t_{\alpha} : \alpha < \kappa\} \subseteq {}^{<\kappa}2$ be dense with $lh(s_{\alpha}) = \alpha$.

Let G_0 be the graph on $\kappa \kappa$ whose edges are the pairs $(t_{\alpha} \frown i \frown x, t_{\alpha} \frown j \frown x)$ for $i \neq j$, i, j = 0, 1, and $x \in \kappa 2$.

Lemma 7. G_0 is acyclic.

Lemma 8. There is no Baire measurable coloring of G_0 with $\leq \kappa$ many colors.

Suppose $2^{\kappa} = \kappa^+$ and \mathbb{Q} is the forcing for adding $\mu > \kappa$ many Cohen subsets of κ .

Proposition 4. If G is an analytic graph on $\kappa \kappa$ in $V^{\mathbb{Q}}$, then there is a κ^+ -coloring of G or a continuous homomorphism $G_0 \to G$. Thank you for listening!