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Abstract

An exposition of the consistency of Baumgartner Axiom, following
the approach taken by Shelah to prove Baumgartner’s result. For de-
tails and much more see Abraham, Rubin, Shelah: On the consistency
of some partition theorems for continuous colorings, and the structure
of ℵ1-dense real order types, APAL 29 (1985) pp 123–206,

1 The nearness axiom

A non-empty A ⊆ ℜ is said to be ℵ1 dense if it has no first nor last member
and between any two members of A there are exactly ℵ1 members of A. Let
K denote the collection of all ℵ1-dense (order-types of) subsets of ℜ. The
nearness axioms (NA) says that if A,B ∈ K then NA(A,B) holds, which
means that there is some C ∈ K such that C ⪯ A and C ⪯ B. We will show
in this section how to obtain the consistency of NA. The structure of the
proof is standard. Assuming CH in the ground model we iterate c.c.c posets
with finite support iteration along !2, each of size ℵ1 and taking care of all
possible A and B’s. So the main point is in the following theorem.

Theorem 1.1 Assume CH, and let A and B be two ℵ1 dense subsets of ℜ.
Then there is a c.c.c poset of cardinality ℵ1 which makes NA(A,B).

We may assume thatA andB are disjoint: although not strictly necessary,
this assumption somewhat simplifies the picture.

∗Lecture 1 prepared for the Young Set Theory Workshop February, 2010
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We may try for our poset all finite (partial) functions p : A → B that
are order-preserving (x1, x2 ∈ dom(p) and x1 < x2 implies that f(x1) <
f(x2)). But this is clearly not c.c.c, and in fact it immediately collapses the
continuum. So the basic idea (of Baumgartner) is to limit the possibilities
for p(x) to a countable set. To express this limitation in a convenient way, we
prefer to have A,B ⊆ !1 and to have an ordering relation <R over !1 which
reflects the real ordering (namely (!1, <R) is isomorphic to ℜ (assuming
CH) or just to a set of reals of size ℵ1 that contains the two given sets.
Let M ⊇ !1 be an ∈ structure that contains all relevant information (for
example let it be H(ℵ1) with A,B,<R as predicates over !1). Then let
M� ≺ M be countable and increasing elementary substructures, and define
C = {� ∈ !1 ∣ � = M� ∩ !1} as the resulting club set. Let ⟨�i ∣ i < !1⟩
be an increasing and continuous enumeration of C (and it is convenient to
start with �0 = 0). The ordinal interval Ei = [�i, �i+1) is called the i-th slice
of C. As a limitation on a condition p we may require that for any x in its
domain p(x) must remain in the same slice. This will prevent an obvious
counterexample to the c.c.c since there is only a countable set of possibilities
for p(x), but it may be problematic if for example there is an order reversing
map f from A to B and there are uncountably many slices containing some
x and f(x). So the idea is that a condition should separate x and p(x) but
not too much. For example, a limitation that works is for a point in slice Ei
to move to the next slice Ei+1.

We define now P as the set of all finite functions p : A→ B that are <R

order preserving and satisfy the following: for every slice Ei, the intersection
Ei ∩ (dom(p)∪ range(p)) contains at most one point, and if x ∈ Ei ∩ dom(p)
then p(x) ∈ Ei+1.

So there is a member of C between x and p(x), but the distance between
these two points is not too big. Since Ei∩A is dense in A and Ei∩B is dense
in B (by elementarity of the models M�), each condition can be extended
on any slice, and the generic function is order preserving and its domain
intersects every other slice and is thence uncountable.

It follows for p ∈ P that if dom(p) = {�0, . . . , �n−1} is an enumeration in
increasing ordinal order, then �0 < p(�0) < �1 < p(�1) < ⋅ ⋅ ⋅ < p(�n−1), and
these ordinals are C separated. So, any condition in P of size n is a member
of the space !2n

1 .

Lemma 1.2 P satisfies the c.c.c.
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Proof. Suppose D = {p� ∣ � < !1} ⊂ P is given. Say U(p�) = dom(p�) ∪
range(p�) is the universe of p�. We may assume that U(p�), form a Δ system
with an empty core, and that for � < � an ordinal in C separates U(p�) from
U(p�). (Note that without the limitation on the conditions of P we would
not be able to claim that the core of the Delta system can be safely removed
with the remaining part being a condition.)

Now the duplication method can work, but some notations will be needed
for a detailed presentation.

In the following, we take the rationals to be a subset of !1, and so every
rational interval (q1, q2) = {� ∣ q1 <R � <r q2} is a subset of !1. Relation <R

induces a partial ordering on these intervals: X <R Y iff for all x ∈ X and
y ∈ Y x <R y holds.

An open “envelop” is a sequence of pairwise disjoint rational intervals
I = (I0, . . . , Ik−1). Given a sequence of ordinals � = (�0, . . . , �k−1) we say
that I “covers” � when �i ∈ Ii for all i. An open envelop b refines an open
envelop a if a and b have the same length and each each interval of a contains
an interval from b (a unique one).

We now turn to the proof of the c.c.c. Let U(p�) = (��0 , . . . , �
�
2n−1) be

enumerated in increasing ordinal order. The index set of the domain of p�
is the set of even indices, and we have p�(��2i) = ��2i+1. In the first step we
find for every � < !1 an open envelop that covers U(p�). By renaming our
antichain D we may assume that a single open envelop a covers all p�’s. Say
a = I0, . . . , I2n−1 where ��i ∈ Ii. The following remark will be used later on:

The function which takes I2i to I2i+1 is order preserving. (1)

Let D0 ⊂ D be countable and dense in D. (Recall that conditions in P
are represented as members of !2n

1 .) So for every p� ∈ D and envelop b that
covers p� there is some p� ∈ D0 that is covered by b. There is �0 < !1 so
that D0 ∈M�0 .

Let � < !1 be so that p� is above �0. We are going to define by descending
induction on k < 2n envelops bk and b′k of length 2n− k and are of the form:

bk = (Xℓ ∣ k ≤ ℓ < 2n},

b′k = (X ′ℓ ∣ k ≤ ℓ < 2n},

so that the following hold.
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1. Xℓ, X
′
ℓ ⊂ Iℓ, and Xℓ <R X

′
ℓ for every k ≤ ℓ < 2n.

2. There are two sequences (�k, . . . , �2n−1) ∈ Xk×⋅ ⋅ ⋅X2n−1 and (� ′k, . . . , �2n−1) ∈
X ′k × ⋅ ⋅ ⋅X ′2n−1 so that the following two ordinal sequences are in the
closure of D0:

(��0 , . . . , �
�
k−1)

⌢(�k, . . . , �2n−1)

and
(��0 , . . . , �

�
k−1)

⌢(� ′k, . . . , �
′
2n−1)

We end the inductive construction with open envelops b = (X0, . . . , X2n−1)
and b′ = (X ′0, . . . , X

′
2n−1). Let fb be the function that takes interval X2i to

X2i+1, and fb′ be the function that takes X ′2i to X ′2i+1. Then condition 1
and the fact that these envelops refine a together with the remark at (1)
imply that fb ∪ fb′ is also an order preserving function. But by property 2,
b covers a member of the closure of D0 and hence a member of D0. And
likewise b′ covers a condition in D0, and hence these two conditions of D0 are
compatible.

Turning our attention to the inductive construction now, suppose that
bk+1 and b′k+1 are defined and we have to define Xk and X ′k so that conditions
1 and 2 hold. Pick � in C such that

��0 , . . . , �
�
k−1 < � ≤ ��k .

Let '(�) be the formula with free ordinal variable � which says that the
following two sets have a non-empty intersection with the closure of D0

{��0 } × ⋅ ⋅ ⋅ × {�
�
k−1} × {�} ×Xk+1 × ⋅ ⋅ ⋅ ×X2n−1. (2)

and
{��0 } × ⋅ ⋅ ⋅ × {�

�
k−1} × {�} ×X

′
k+1 × ⋅ ⋅ ⋅ ×X ′2n−1. (3)

Then all parameters of '(�) are in M� (the rational intervals are certainly
there), and '[��k ] holds. Since ��k ≥ � and � = M� ∩!1, the set of � for which
'(�) hold is uncountable (by the following lemma), and in particular we can
find � <R �

′ that are both in this set. Thus we can find disjoint open rational
intervals Xk <R X

′
k that contain � and � ′ respectively and that are contained

in the corresponding interval Ik of a.
It follows now that both of (2) and (3) hold when we replace {�} with

Xk (or with X ′k). Yet, for the induction step we only need to know that (2)
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holds when {�} is replaced with Xk, and that (3) holds when {�} is replaced
with Xk. That is, we get bk and b′k as required.

The following simple and yet useful lemma was employed: If M is a
countable elementary substructure say of H(ℵ2), and X is any set in M . If
there exists x ∈ X ∖M , then X is uncountable. Proof: if X were countable
it would have an enumeration in M and in this case we would have X ⊂M .

2 Baumgartner’s Axiom

Baumgartner’s axiom BA says that every two ℵ1-dense sets of reals with no
end-points are order isomorphic.

Let A, B be two ℵ1-dense subsets of ℝ (no endpoints and ℵ1 members
between any two). For notational simplicity we may assume that A and B
are disjoint (any interval contains a copy of the reals). Assuming CH we want
to define a c.c.c poset which introduces a generic isomorphism from A onto
B. This would be enough. Define first a club set C ⊂ !1 as in the previous
section. Recall that in that section we forced a partial function from A into
B and hence we could require that a condition touches a single member of a
slice [�i, �i+1) of C. Here, however, the isomorphism has to be defined over
all of A and its range must be all of B and this complication requires a new
idea. Suppose we take as our restriction on a condition p the demand that
if x is in a slice then p(x) is in an adjacent slice. This will not work and the
problem in proving the c.c.c can already be seen with conditions of size two
as follows. Say p� has domain x�1 <R x�2 in the �th slice, and p�(x�i ) = y�i
is in the next slice. The duplication technique may not work here. For when
we try to duplicate the y’s part we will have to duplicate a pair of y’s rather
than a single one. We may get y1 <R y2 and y′1 <R y′2 but so that (for
example) y1 <R y

′
1 <R y

′
2 <R y2. But when we try to make a corresponding

duplication of the x’s, we may only have a pattern x1 <R x2 <R x′1 <R x′2,
which will not allow us to continue. The solution is in demanding stricter
restrictions on our conditions, which we now describe.

We need two simple combinatorial observations which we state first.

Lemma 2.1 There is a graph (!,E) on ! (with undirected set of edges E)
so that 1) there are no cycles, and 2) every node n is connected to infinitely
many other nodes.

Proof. For example take the tree !<! of all finite sequences of natural num-
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bers, and let E be the set of all {�, �⌢(n) where � ∈ !<! and n ∈ !. That
is, every finite sequence is connected to its immediate successors and to its
immediate predecessor (if it is not the empty sequence). By definition a cycle
is a sequence v0, . . . , vk of nodes where k > 2, v0 = vk but vm ∕= vn for indexes
below k, and {vi, vi+1} ∈ E for every i < k. There are no cycles since once
you go up on the tree you cannot go down. Now, as the tree is countable the
graph can be made on ! and the lemma follows.

Here is another simple observation.

Lemma 2.2 Let (V,E) be an arbitrary cycle-free graph, and suppose that
g : E → {=, ∕=} is a function assigning to every edge one of the = and ∕=
tokens. Then there exists a function ℎ : V → {0, 1} on the vertices so that
for every edge e = {v1, v2} g(e) is “=” if and only if ℎ(v1) = ℎ(v2).

Now we return to the definition of the poset P . Let ⟨�i ∣ i ∈ !1} be
an increasing and continuous enumeration of the club set C, starting with
�0 = 0. For any ordinal � the interval B� = [�!�, �!�+!) is called the �th
block, and the subinterval S�,m = [�!�+m, �!�+m+1) is the mth slice of that
block. We define now a graph on the set of all slices with edges E that
satisfy the properties of Lemma 2.1 on each block (no cycles and surely no
self connecting edges, and every node is connected to an infinite number of
nodes). (No edge in E connects slices in different blocks.)

Now we define our poset PA,B as the collection of all finite <R order
preserving functions p : A → B (here A,B ⊂ !1) such that for every � ∈
dom(p) � and p(�) are in the same block, and if S, S ′ are the slices containing
� and p(�) then {S, S ′} ∈ E. Moreover, this edge {S, S ′} is unique. Namely
if �′ is in dom(p) (�′ ∕= �) and �′ ∈ S∪S ′, then p(�) ∕∈ S∪S ′. (In other words,
if {S, S ′} ∈ E then there is at most one � ∈ S ∩dom(p) with p(�) ∈ S ′.) The
ordering of PA,B is extension.

It can be checked that for every � ∈ A and �′ ∈ B the set of conditions
with these ordinals in their domain and range is dense. For this, use the fact
that the graph has an infinite number of neighbors of every node (and the
observation that every slice is dense in both A and B).

We will prove now that PA,B satisfies the c.c.c. So let D = {p� ∣ � ∈ !1}
be a set of conditions of size ℵ1. As usual form a Δ system of U(p�) =
dom(p�) ∪ range(p�) enumerated in increasing ordinal order ��0 , . . . , �

�
2n−1

(where n is the cardinality of any condition in D) and remove if necessary its
core. Thus we may assume that D is already a Δ system with an empty core.
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Pick pairwise disjoint rational intervals a = (I0, . . . , I2n−1) with Ik containing
��k . We may assume that this envelop a is fixed and does not depend on �.

Moreover, we may assume that there is a fixed set DM ⊂ {0, . . . , 2n− 1}
of size n and a fixed function f : DM → {0, . . . , 2n − 1} ∖ DM so that
dom(p�) = {�k ∣ k ∈ DM} and p�(��k ) = ��f(k) for all � < !1. If follows that

the function fa : {Ik ∣ k ∈ DM} → {Ij ∣ j ∕∈ DM} defined by fa(Ik) = If(k)
is order preserving.

Although a condition may stretch over several blocks, we assume for no-
tational simplicity that every condition p� lives on a single block.

Let D0 ⊂ D be countable and dense in D. Our aim is to find compatible
envelops J = (J0, . . . , J2n−1) and J ′ = (J ′0, . . . , J

′
2n−1) such that

1. Ji, J
′
i ⊂ Ii and Ji ∩ J ′i = ∅.

2. If f(i) = j, then Ji <R J
′
i iff Jj <R J

′
j.

3. Both J and J ′ cover members of D0.

This will finish the proof, for if p�, p�′ are covered by J and (respectively)
J ′, then p� ∪ p�′ is order-preserving, and since there is a member of C in
between this union is a condition.

Suppose that D0 ∈M�0 . Let � be so that p� lies above �0. By assumption
p� lives on a single block B� , and we let r be the number of slices occupied

by p�. We write (��0 , . . . , �
�
2n−1) = �⌢1 �2 ⌢ ⋅ ⋅ ⋅�r as a concatenation of r

sequences where �s is the sequence of elements of U(p�) that lie in its s-th

slice. Let n(s) be its length. So �1 = (��0 , . . . , �
�
n(1)−1) is the sequence of

elements of p� in its first slice, �2 = (��n(1), . . . , �
�
n(1)+n(2)−1) in the second

(higher) slice and generally if we let si = n(1) + ⋅ ⋅ ⋅n(i − 1), then �i =
(��si , . . . , �

�
si+n(i)−1). For simplicity of expression, we say that an index ℓ is in

�i when ��ℓ ∈ �i (i.e. si ≤ ℓ < si + n(i)).
Recall that a = (I0, . . . , I2n−1) and so we have a corresponding concate-

nation a = I1
⌢ . . .⌢ Ir), where I i = (Isi , . . . , Isi+n(i)−1) is the sequence of

open rational intervals that covers �i. Recall that we have a cycle-free graph
E with the slices as vertices, and the poset is defined with respect to this
graph. Since each sequence �i corresponds to a slice, we can think of the
graph as if its vertices are the indexes {1, . . . , r}. Then for i < j

{i, j} ∈ E holds whenever there are indices ℓ = ℓ(i, j) in �i
and ℓ′ = ℓ′(i, j) in �j so that f(ℓ) = ℓ′ or f(ℓ′) = ℓ.

(4)
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By downward induction on i = r, . . . , 1 we shall follow the sequences

�r, . . . , �1 and define for every i = r, . . . , 1 two envelops J
0

i = (J0
si
, . . . , J0

si+n(i)−1)

and J
1

i = (J1
si
, . . . , J1

si+n(i)−1) so that:

1. For every index si ≤ k < si +n(i), J0
k and J1

k are disjoint subsets of Ik.

2. For every function v ∈ 2{i,i+1,...,r}, the cartesian product

{��0 } × . . . ,×{�
�
si−1} ×

∏
J
v(i)

i × ⋅ ⋅ ⋅ ×
∏

J
v(r)

r

has a non-empty intersection with the closure of D0. (For a sequence
of intervals V = (V0, . . . , Vm−1) we write

∏
V for the cartesian product

V0 × ⋅ ⋅ ⋅ × Vm−1. )

When done, we shall define a function g on the set of edges which will allow
us to apply Lemma 2.2 as follows. Suppose there are indices ℓ = ℓ(i, j)
in �i and ℓ′ = ℓ′(i, j) in �j as defined above in 4. Then {i, j} is an edge.
Now there are two cases in the definition of g(i, j) ∈ {=, ∕=}. If the pairs
(J0
ℓ , J

1
ℓ ) and (J0

ℓ′ , J
1
ℓ′) is order preserving, then g(i, j) is “=” and otherwise it

is “ ∕=”. Then we have a function v ∈ 2{1,...,r} as in the lemma, and we let v′

be the complementary function. Then it follows that the interval sequences

J = J
v(1)

1
⌢ . . . , J

v(r)

r and J ′ = J
v′(1)

1
⌢ . . . , J

v′(r)

r are compatible. That is,
their union form an envelop. Yet each of J and J ′ contains a member of D0,
and so these two members are compatible in P .

Returning to the definition of the sequences, suppose that J
q

r, . . . , J
q

i+1

are defined for q = 0, 1 and we want to define J
0

i and J
1

i . Consider the
following formula '(�si , . . . , �si+1−1) with parameters ��0 , . . . , �

�
si−1 and J0

ℓ , J
1
ℓ

for si+1 ≤ ℓ < 2n which is the conjunction of (�si , . . . , �si+1−1) ∈
∏
I i with

For every 2{i+1,...,r} the product {��0 }×⋅ ⋅ ⋅×{�
�
si−1}×{�si}×⋅ ⋅ ⋅×

{�si+1−1}×
∏
J
v(i+1)
i+1 × ⋅ ⋅ ⋅ ×

∏
J
v(r)
r has a nonempty intersection

with the closure of D0.

Then '[��si , . . . , �
�
si+1−1] holds. By a duplication argument which is now fa-

miliar, we can get two sequences with disjoint ranges that satisfy '. Then
by separating their points with pairwise disjoint rational intervals we get J0

i

and J1
i as required.
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3 Baumgartner Axiom with a larger contin-

uum

In the model obtained for BA we have that 2ℵ0 = ℵ2. The iteration is of
length !2 and we used this fact in order to ensure that CH holds at each
stage of the iteration. Why CH was needed? In order to find a club set
C ⊂ !1 which is thiner than any club definable from a real. But we can get
clubs by using Jensen’s forcing PJensen which introduces a generic club that
is almost included in any ground model club. It was left as an exercise to
find a model in which BA holds and the continuum is above ℵ2.
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