
The Isar Proof Language
after Two Decades

Makarius Wenzel, Augsburg
https://sketis.net

February 2020

λ
→

∀
=Is

ab
el
le

β

α

Isar

https://sketis.net

Introduction

Isar language: Philosophy

Isar: Intelligible semi-automated reasoning

• human-readable and machine-checkable proofs
by simple interpretation process

• extensible automation via proof methods (not “tactics”)

• language to write proof texts (not “scripts”, not “code”)

• source text close to presented document via Isabelle symbols
(not “Unicode”)

• syntax stylistically inspired by SML’90, Haskell’98, Perl 4

• many add-on tools: notably Sledgehammer

• advanced document editor: Prover IDE (PIDE)

• Isar is the primary language of Isabelle, all others are
embedded sublanguages (e.g. ML, type, term, document)

Introduction 2

History of Structured Proof Languages

• Mizar (Trybulec ≈ 1973, published 1993)

• Mizar-MSE (Trybulec / Rudnicki 1982, published 1993)

• experimental “Mizar modes”, e.g. for HOL-Light
(Harrison 1996) (Wiedijk 2001)

• experimental “declarative modes”, e.g. for Coq, Matita

• DECLARE language and system (Syme 1997/1998)

• Isabelle/Isar (Wenzel 1999–2001, 2015/2016)

• SSReflect proof language for Coq (Gonthier ≈ 2005)

• Lean (De Moura 2013, published 2015)

Introduction 3

History of the Isar Proof Language (1)

1999: first usable version

• primary notion of proof document (not “proof script”)

• secondary notion of proof method (not “tactic”)

• subproofs with refinement: proof m1 . . . qed m2

• nested proof refinement: fix x assume A x show B x

• local facts: note, have

• chaining of facts: then, with, from, using

2000–2001: various refinements

• generalized elimination: obtain

• support for induction: case and induct method

• calculations: also, finally, moreover, ultimately

Introduction 4

History of the Isar Proof Language (2)

2006: minor reforms

• unfolding, obtains

• literal facts: 〈prop〉

• advanced induct method

2015/2016: major renovations

• structured statements: have B x if A x for x

• elimination statements: consider x where A x | B x | C x

• refined cases method

• structured goal refinement: subgoal premises prems for x . . .

• explicit facts for proof methods: (use ∗ in m)

Introduction 5

History of keywords (1)

• have

– origin: DECLARE
– re-used in Isar, but independent goal statement
– later re-used in SSReflect and Lean

• hence / thus

– origin: Mizar (slightly odd English)
– re-interpreted in HOL-Light Mizar mode and DECLARE
– re-used in Isar (1999), but legacy since 2000

• fix / assume / show

– origin: Isar (central concept)
– note: assume in Mizar and others has different meaning

Introduction 6

History of keywords (2)

• obtain

– origin: Isar (2000)
– re-used in Lean (phased out?)

• sorry

– origin: Mizar-MSE (as output message)
– re-interpreted in Isar
– re-used in Lean

Introduction 7

Examples

Elementary proofs in Isar (1)

lemma iff contradiction:

assumes ∗: ¬ A ←→ A

shows False

proof −
have ∗∗: ¬ A

proof
assume A

with ∗ have ¬ A ..
from this and 〈A〉 show False ..

qed
with ∗ have A ..
with ∗∗ show False ..

qed

Examples 9

Elementary proofs in Isar (2)

theorem — Cantor: @ f :: ′a ⇒ ′a ⇒ bool . ∀A. ∃ x . A = f x

proof
assume ∃ f :: ′a ⇒ ′a ⇒ bool . ∀A. ∃ x . A = f x

then obtain f :: ′a ⇒ ′a ⇒ bool where ∗: ∀A. ∃ x . A = f x ..
let ?D = λx . ¬ f x x

from ∗ have ∃ x . ?D = f x ..
then obtain a where ?D = f a ..
then have ?D a ←→ f a a by (rule arg cong)

then have ¬ f a a ←→ f a a .
then show False by (rule iff contradiction)

qed

Examples 10

Automated proof tools in Isar (3)

theorem — Cantor: @ f :: ′a ⇒ ′a set. ∀A. ∃ x . A = f x

proof
assume ∃ f :: ′a ⇒ ′a set. ∀A. ∃ x . A = f x

then obtain f :: ′a ⇒ ′a set where ∗: ∀A. ∃ x . A = f x ..
let ?D = {x . x /∈ f x}
from ∗ obtain a where ?D = f a by blast

moreover have a ∈ ?D ←→ a /∈ f a by blast

ultimately show False by blast

qed

Notes:

• adequate tools: weaker automation is usually faster, more stable,
more informative

• adequate facts: indicate upper bound of local facts for each step

Examples 11

Proof context without goal statement

notepad
begin

fix A B C :: bool

assume A ∧ B

then obtain B and A ..
then have B ∧ A ..

end

Notes:

• implicit “thesis reduction” does not exist in Isar

• explicit goal refinement works via show
usually in the context of fix / assume

Examples 12

Implicit context for local statements

notepad
begin

have P n for n :: nat

proof (induct n)

show P 0 〈proof 〉
show P (Suc n) if P n for n 〈proof 〉

qed
end

Examples 13

Proof via cases rule

notepad
begin

fix x y :: nat

consider x = 0 | x = 1 | x ≥ 2 and even x | x ≥ 3 and odd x

by (fastforce dest: antisym iff : not less eq eq)

then have C

proof cases

case 1 show ?thesis using 〈x = 0〉 〈proof 〉
next

case 2 show ?thesis using 〈x = 1〉 〈proof 〉
next

case 3 show ?thesis using 〈x ≥ 2〉 and 〈even x 〉 〈proof 〉
next

case 4 show ?thesis using 〈x ≥ 3〉 and 〈odd x 〉 〈proof 〉
qed

end

Examples 14

Structured statements

Structured assumptions

Postfix notation for Horn-clauses:

• assume B if A1 and A2 for a1 a2

– corresponds to assume
∧

a1 a2. A1 =⇒ A2 =⇒ B
– vacuous quantifiers are omitted

• similar for inductive, definition, function etc.

Structured statements 16

Example: structured specifications

inductive set star (? [100] 100) for R :: (′a × ′a) set

where
base: (x , x) ∈ R? for x

| step: (x , z) ∈ R? if (x , y) ∈ R and (y, z) ∈ R? for x y z

function gcd :: nat ⇒ nat ⇒ nat

where
gcd x 0 = x

| gcd 0 y = y

| gcd (Suc x) (Suc y) = gcd (Suc x) (y − x) if x < y

| gcd (Suc x) (Suc y) = gcd (x − y) (Suc y) if ¬ x < y

Structured statements 17

Structured conclusions (goals)

Notation for Isar “eigen-context”:

• premises: have B if A1 A2

• parameters: have B for a1 a2

• corresponds to { fix a1 a2 assume that : A1 A2 have B }
• analogous to lemma fixes a1 a2 assumes that : A1 A2 shows B

Structured statements 18

Example: Natural Deduction
with structured conclusions

• conjunction introduction:
have A ∧ B if A and B

• existential introduction:
have ∃ x . B x if B a for a

• disjunction elimination:
from 〈A ∨ B 〉 have C if A =⇒ C and B =⇒ C for C

• existential elimination:
from 〈∃ x . B x 〉 have C if

∧
x . B x =⇒ C for C

Structured statements 19

Elimination statements

consider x where A x | y where B y | . . . ≡
have thesis

if
∧
x. A x =⇒ thesis

and
∧
y. B y =⇒ thesis

for thesis

Examples:

• existential elimination:
from 〈∃ x . B x 〉 consider x where B x

• conjunction elimination:
from 〈A ∧ B 〉 consider A and B

• disjunction elimination:
from 〈A ∨ B 〉 consider A | B

Structured statements 20

Elimination and cases

• method “cases” detects its rule from chained facts

• command “case” allows name and attribute specification

Example:
consider x where A x | y where B y 〈proof 〉
then have something

proof cases

case prems: 1

show ?thesis using prems 〈proof 〉
next

case prems: 2

show ?thesis using prems 〈proof 〉
qed

Structured statements 21

Obtain

obtain x where A x 〈proof 〉 ≡
consider x where A x 〈proof 〉
fix x assume∗ A x

• old meaning is unchanged, but foundation simplified

• is patterns now supported (with λ-lifting over the parameters)

• if / for notation available as well

Structured statements 22

Isar Proof Documents

Common syntax for embedded languages

Outer theory syntax:

• keywords: user-defined commands (e.g. definition, inductive)

• identifiers, numerals etc.

• quoted strings "source": nesting requires backslash-escapes

• cartouches 〈source〉: arbitrary nesting without no escapes

Example:
ML 〈val t = term 〈λx . x ≤ y + z — comment in term〉 — comment in ML〉

Isar Proof Documents 24

Isabelle symbols

• plain-text representation of infinitely many named symbols:
\<NAME> or \<^NAME>, e.g. \<alpha> or \<^bold>

• default rendering of finitely many symbols in LATEX, HTML, GUI

• bundled Isabelle fonts for quality and reliability of display

Notes:

• Isabelle symbols are conceptually closer to LATEX than to Unicode

• Unicode cannot be “trusted”: complexity, confusion, drop-outs

Isar Proof Documents 25

Document text structure

Markup

• section headings (6 levels like in HTML):
chapter, section, subsection, . . . , subparagraph

• text blocks: text, txt, text raw

• raw LATEX macros (rare)

Markdown

• implicit paragraphs and lists: itemize, enumerate, description

Formal comments

• marginal comments: — 〈text 〉

• canceled text: cancel 〈text 〉 e.g.////bad

• raw LATEX: latex 〈text 〉 e.g. limn→∞
∑n
i=0 q

i

Isar Proof Documents 26

Document antiquotations

full form: @{name [options] arguments . . .}
e.g. @{term [show types] 〈Suc n〉} for Suc (n::nat)

short form:

1. cartouche argument: \<^name>〈argument 〉

e.g. term 〈Suc n〉 for Suc n
2. implicit standard name: 〈argument 〉

e.g. 〈Suc n〉 for Suc n (unchecked)
e.g. 〈Suc Suc〉 for Suc Suc (unchecked)

3. no argument: \<^name>

Notable antiquotations:

• bold, emph, verbatim, footnote: text styles (with proper nesting)

• cite: formal BibTEX items

• path, file, dir, url, doc: system resources

Isar Proof Documents 27

Discussion

Good versus Bad Ideas

Good:

• named Isabelle symbols: closer to LATEX than Unicode

• control symbols and text cartouches

• proof methods as parameter to the language

Bad:

• hybrid attributes: joint syntax for

– declaration attributes, e.g. [simp]
– rule attributes, e.g. [rule format]

• instantiation as rule attributes, e.g. [where], [of]

• alternative ASCII syntax, e.g. A −−> B or A −→ B
better: ASCII as input method only

Discussion 29

