Tactics in Lean

Floris van Doorn
University of Pittsburgh

February 2, 2020

Mathlib contents

Subdirectory	LOC	Decls		Subdirectory	LOC	Decls
data	41849	10695		linear_algebra	4511	805
topology	17382	2709		computability	4205	575
tactic	12184	1679		group_theory	4191	1094
algebra	9830	2794		category	1770	389
analysis	7962	1237		number_theory	1394	228
order	6526	1542		logic	1195	403
category_theory	6299	1560		field_theory	1002	121
set_theory	6163	1394		geometry	848	70
measure_theory	6113	926		meta	784	135
ring_theory	5683	1080		algebraic_geometry	194	29

Total: 140k LOC (excluding whitespace/comments) and 34k declarations (as of December).

norm_num

Kevin Buzzard (27 Sep 2017) I want to make these sorts of calculations trivial:

```
example :((() : \mathbb{R})/4)-12)<6 := sorry
example : (6 : \mathbb{R})+9 = 15 := sorry
example : (2 : \mathbb{R ) * 2 + 3 = 7 := sorry}
example : (5 : \mathbb{R) \not= 8 := sorry}
example : (6 : \mathbb{R})< 10 := sorry
example : (7 : \mathbb{R})/2 > 3 := sorry
```


norm_num

Mario Carneiro (2 Nov 2017) norm_num now solves all these goals.

```
example : ᄀ(7-2)/(2*3) \geq (1:\mathbb{R}) + 2/(3^2) := by norm_num
example : (6 : \mathbb{R}) + 9 = 15 := by norm_num
example : (2 : \mathbb{R})/4 + 4 = 3*3/2 := by norm_num
example : (((3 : \mathbb{R})/4)-12)<6 := by norm_num
example : (5 : \mathbb{R})\not=8
example : (10 : \mathbb{R}) > 7 := by norm_num
example : (2 : \mathbb{R}) * 2 + 3 = 7 := by norm_num
example : (6 : \mathbb{R}) < 10 := by norm_num
example : (7 : \mathbb{R})/2 > 3 := by norm_num
example : (1103 : \mathbb{Z})\leq (2102 : \mathbb{Z ) := by norm_num}
example : (110474 : \mathbb{Z})\leq (210485 : \mathbb{Z}) := by norm_num
example : (11047462383473829263 : \mathbb{Z})\leq(21048574677772382462 : \mathbb{Z}):=
by norm_num
example : (210485742382937847263 : \mathbb{Z})\leq(1104857462382937847262 : \mathbb{Z) :=}
by norm_num
example : (210485987642382937847263 : NN) \leq(11048512347462382937847262 : NN
    := by norm_num
example :(210485987642382937847263 : \mathbb{Q )}
    := by norm_num
```


norm_num

Kevin Buzzard (11 Nov 2017) I love norm_num, I even use it to prove $0<1$ nowadays. I use it to prove everything. It's perfect. Many thanks for norm_num.

norm_cast

Johan Commelin (13 Mar 2019) It's quite humiliating, but how do I kill:

```
example (p : N ) [p.prime] : (p : \mathbb{R}) > 1 := sorry
```

Paul-Nicolas Madelaine (9 Apr 2019) Here is the first version of the cast tactic l've been working on.


```
example (a b : N ) : (a : \mathbb{Z ) + b = (a + b : N ) := by norm_cast}
```



```
example (a b : N ) : (((a : \mathbb{Z}):\mathbb{Q}) : \mathbb{R}) + b = (a + (b : \mathbb{Z)) :=}
by norm_cast
```


lift

Johan Commelin (9 Aug 2019) Suppose that $\mathrm{n}: \mathbb{Z}$ and $\mathrm{h}: \mathrm{n} \geq 0$. Then every mathematician (and especially if they are new to Lean) wants to say $\mathrm{n}: \mathbb{N}$. But that is not possible.

Floris van Doorn (10 Apr 2019) PR'd the lift tactic.

```
example {P : \mathbb{Z }
begin
    lift n to }\mathbb{N}\mathrm{ using hn,
    /- New goal:
    P:\mathbb{Z}->\mathrm{ Prop,}
    n:\mathbb{N}
    \vdashP\uparrown -/
    sorry
end
```


Other examples

Other useful tactics that have been implemented:

- library_search searches the library to close the current goal.
- suggest searches the library for a lemma that is applicable.
- simpa using h closes the goal by simplifying both the goal and h to the same expression.
- abel, ring, linarith, omega: domain-specific automation.
- tidy, finish, solve_by_elim: general purpose automation .

rcases and rintro

cases destructs hypotheses, for example if $\mathrm{p}: \mathrm{A} \times \mathrm{B}$ then cases p with a b gives two new hypothesis $\mathrm{a}: \mathrm{A}$ and $\mathrm{b}: \mathrm{B}$.
rcases and rintro perform these operations recursively. Before:

```
cases h with y y2, cases y2 with yS hy, cases yS with y0 yx,
```

After:

```
rcases h with \langley, \langley0, yx\rangle, hy\rangle,
```

Before:

```
intro p, cases p with p1 p
```

After:

```
rintro \\langlel, hl\rangle, \langleu, hu \rangle\rangle,
```


simps

Before:

```
def yoneda C }=>\mathrm{ (C }\mp@subsup{}{}{\circp}=>\mathrm{ Type v}\mp@subsup{\textrm{v}}{1}{}):
{ obj := \lambda X,
    { obj := \lambda Y, unop Y }\longrightarrow\textrm{X}
            map := \lambda Y Y' f g, f.unop > g,
            /- (two fields omitted for readability) -/ },
    map := \lambda X X' f, { app := \lambda Y g, g > f } }
@[simp] lemma obj_obj (X : C) (Y : C'P) :
    (yoneda.obj X).obj Y = (unop Y \longrightarrow X) := rfl
@[simp] lemma obj_map (X : C) {Y Y' : C Cop (f : Y \longrightarrow Y') :
    (yoneda.obj X).map f = \lambda g, f.unop > g := rfl
@[simp] lemma map_app {X X' : C} (f : X \longrightarrow X') (Y : C 'op) :
    (yoneda.map f).app Y = \lambda g, g > f := rfl
```


After:

©[simps] def yoneda : C \Rightarrow ($\mathrm{C}^{\text {p }} \Rightarrow$ Type v_{1}) := /- (definition is unchanged) -/

\#lint

\#lint is a semantic linter: it looks through the current file and looks for common mistakes in the declarations. Some mistakes that it catches:

- Have a hypothesis in a lemma that is never used;
- A declaration is incorrectly marked as a lemma or definition;
- A definition without documentation string.
- ...

localized notation

In Lean 3 notation is either local (to the current file or section) or global. You often want to use notation repeatedly, without it being global

```
localized "notation ' }\omega\mathrm{ ' := ordinal.omega" in ordinal
```

You can get all notation in the ordinal locale by writing open_locale ordinal.

Writing Tactics: expr

We have reflection of expressions into Lean:

```
meta inductive expr (elaborated : bool := tt)
| var {} : nat }->\mathrm{ expr
| sort {} : level }->\mathrm{ expr
| const {} : name }->\mathrm{ list level }->\mathrm{ expr
| mvar : name }->\mathrm{ name }->\mathrm{ expr }->\mathrm{ expr
| local_const : name }->\mathrm{ name }->\mathrm{ binder_info }->\mathrm{ expr }->\mathrm{ expr
| app : expr }->\mathrm{ expr }->\mathrm{ expr
| lam : name }->\mathrm{ binder_info }->\mathrm{ expr }->\mathrm{ expr }->\mathrm{ expr
| pi : name }->\mathrm{ binder_info }->\mathrm{ expr }->\mathrm{ expr }->\mathrm{ expr
| elet : name }->\mathrm{ expr }->\mathrm{ expr }->\mathrm{ expr }->\mathrm{ expr
| macro : macro_def }->\mathrm{ list expr }->\mathrm{ expr
```

For example,
$\lambda(\mathrm{x}: \mathbb{N})$, nat. add x x
is reflected as
(lam x default (const nat []) (app (app (const nat.add []) (var 0)) (var 0)))

Writing Tactics: tactic

The tactic monad allows us to define custom tactics:

```
meta def tactic := interaction_monad tactic_state
```

A tactic (t : tactic α) takes the current tactic state and runs a program to either

- succeed, and return the new tactic state and an element of α;
- fail with an error message.

There are hooks for tactics implemented in C++:

```
meta constant infer_type : expr }->\mathrm{ tactic expr
```


assumption

This allows us to write our own tactics.

```
/-- 'find_same_type t es' tries to find in 'es' an expression with type
        definitionally equal to 't' -/
meta def find_same_type : expr }->\mathrm{ list expr }->\mathrm{ tactic expr
| e [] := failed
| e (H :: Hs) :=
    do t \leftarrow infer_type H,
    (unify e t >> return H) <|> find_same_type e Hs
/-- 'assumption' closes the goal if there is a hypothesis with the same type as
    the goal. -/
meta def assumption : tactic unit :=
do { ctx }\leftarrow local_context
        t }\leftarrow\mathrm{ target,
    H}\leftarrow\mathrm{ find_same_type t ctx,
        exact H }
<|> fail "assumption tactic failed"
example {p q : Prop} (h}\mp@subsup{h}{1}{}: p \vee q) (h2 : q) : q := by assumptio
```


Demo

Demo

