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Abstract

A formal proof is a mathematical proof that has been checked
by computer. The axioms and primitive rules of logic are
programmed into a computer, and a proof is not regarded as
verified until every step is exhaustively justified by first
principles. Examples of proofs that have been formalized by
various groups include the Kepler conjecture on sphere
packings (2014), the independence of the Continuum Hypothesis
(2019), and the Odd-order theorem in finite group theory
(2012).

Buoyed up by these successful formalization projects, we are
exploring how these tools might bring general benefit to the
mathematical community.



Part |.
Computer-Assisted
Proofs



e My motivation for formalization comes from computer
assisted proofs (mostly in discrete geometry).



This is the densest packing of regular pentagons in the
plane (Kusner-H.-, 2016).
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It is a computer assisted proof.

In the end, the solution of the pentagon-packing problem 1s 60 pages of text and 5000

lines of OCaml computer code that takes about 60 hours to run on a laptop computer.
We use a wonderful interval arithmetic package to control for computer roundoff

errors. The proof is computer-assisted, but is not formally verified in a proof
assistant.



http://www.alliot.fr/papers/oud2012.pdf

Why Pentagons?
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Pyramid of Unas

Patterns of five-pointed stars appear in the Egyptian pyramid of Unas (Fifth dynasty,
24th century BCE). With a little imagination, we can enclose each star in a pentagon to
obtain a periodic packing of reqular pentagons.



In 1525, Albrecht
Diirer described
some pentagon

e

arrangements,
including one
that is relevant to
our work.

Variants of

Diirer's packing Shifted layers in Durer's
packing.

Durer's packing
can be obtained

by translating its
layers. Later, Kepler produced some pentagon arrangements, but they are of
limited interest to us because of their low density.



In 1990, Kuperberg and Kuperberg made a general study of high density packings of
convex bodies in the plane. They showed that any convex body can be placed in a one-
parameter family of double lattice packings and proved that this family always includes
the densest of all double-lattice packings. The Kuperberg family of pentagon packings
undulates between the shifting layers of Diirer’s packing and the pentagonal ice-ray.
Based on these results, they too made the pentagonal ice-ray conjecture.



http://link.springer.com/article/10.1007/BF02187800

This problem is easily fixed by pairing up Delaunay triangles along their longest
edges. We call these pairs of Delaunay triangles dimers. Woden Kusner started
serious calculations on pentagon packings in early 2013. His 2014 thesis contains

a proof of the local optimality of the dimer in the pentagonal ice-ray among all
pentagon packings.




Elliptic Curve Cryptography

The Group Law for Edwards Curves

Thomas C. Hales

Abstract

This article gives an elementary computational proof of the group
law for Edwards elliptic curves following Bernstein, Lange, et al., Ed-
wards, and Friedl. The associative law is expressed as a polynomial
identity over the integers that is directly checked by polynomial di-
vision. No preliminaries such as intersection numbers, Bézout’s the-
orem, projective geometry, divisors, or Riemann Roch are required.
The proofs have been designed to facilitate the formal verification of
elliptic curve cryptography.

This article started with my frustration in teaching the elliptic curve
group law in an undergraduate course in cryptography. I needed a simple



Lemma 2.1. Let A,B,C € E\{O}. If A # +B, B # £C, A+ B # +C and
B+ C # £A, then

(A+B)+C=A+(B+C().
Prooj. Write (z1,y1) := (A+ B) + C and (z2,y2) == A+ (B + C). Let

a = ¥B7YA g ._ yatyc—e(2za+zp—a’®)
T zp—zA’ ' zatzptrc—a?
. YB—yc T i 'yA+’yB-7(2xB+$C__72)

T = rp—xc’ T Ta+Tp+Tc—"7* )

Using Equation () we get

r, = BPHzatazp—ac—0® y1 = —yo+ B(rc— 14— 12— B*+a?),

Ty = T2+1L‘B+$C—:DA —’)’2, Yo = —yA+'r(2a:A—:cB —.’L‘C—T2+’72).
Setting

a = yp—Ta, E = (ya+yc)(zp —z4)° - a((2z4 + zp)(zB - z4)? —a?),

¥ = yp—yo, T = (yatys)zs—zc)’ (25 + zc)(ws — 20)* = F7),

n = Ip—Tp, P = ITp—TcC.

one can show that z; = x5 is equivalent to

(B¥(zp — zc)? + (224 — 22¢) (2B — 7¢)? + 72) (2B — T4)? — & (x5 — 2C)?)
((za +zp +xc)(xp —x4)? — %)) (x4 + 2B + ) (TB — TA)? — F2%)?

—"2(':37,4 +xp + xc)(mg — 21,4)2 — ~2)2($B — .’EA)2 =0
and 1) = y9 is equivalent to

(ya —yo)((xa + zB + xo)* — &%) ((wa + zB + zC)1* — F°)° P11
+,B( (2xc — x4 — T n? + a? Tp+ 2T+ To n? —n%)2 — 32

he computer calculations took “several hours” (in 1998).






Bernstein and Lange use Edwards elliptic in cryptography
because they avoid timing-attacks.



The proof of associativity is given by a short Mathematica calculation. (I used
Mathematica, because that is what I use, but other computer algebra systems should
work equally well.) First, we write an explicit formula for the Edwards curve and take
three points on the curve:

e[z, y-] :=2*+y* —1-dz’y* e = e[z, y]; e2 = e[x2,pa]; e3 = e[zs,ys].

Then we create an explicit formula for addition (&) using our description with the
hyperbola. The formula for addition is a rational function (ratio of polynomials) of
{z1.y1} and {zs. y»} (Using Mathematica's curly braces for ordered pairs). We test for
failure of the associative law by setting

{91, 92} = ({z1, 01} ® {22, 92}) & {23, y3} — {z1, 01} © ({2, 42} B {73, y3})

We check associativity with the Mathematica command:

POlynOlnia‘lReduce[{gla g?}e {81, €2, 63}-. {xla Y1, T2, Y2, T3, y3}]



“1 recently finished formalizing your paper on elliptic
curves in Edwards form” -
Rodrigo Raya 10/9/2019

Rodrigo Raya <rodrigo.raya@epfl.ch> 1y

Proof of elliptic Edwards curves

Me %
Dear Prof. Hales,
I recently finished formalizing your paper on elliptic curves in Edwards form. You can see the formalization here:
https://nam@5.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Frjraya%2FIsabelle%2Fblob%2Fmaster%s2F:
data=02%7C01%7Chales%40pitt.edu%7C8419434c02724918e96508d74cd83c07%7(%ef9f489%¢0ald4eeb87¢c3a526112fd0d%7C1%7C1%7C637!
sdata=PY38Mi7R2GPeV6dyPkOigMwcd4qliwwc%s2FfJALT LDng]j8%3D&amp; reserved=0
I assume that it needs some rewriting to be in a more polished form but the argument is there.

I really appreciated the time you invested in this task, which was fundamental to complete it.

Best regards,

Rodrigo Raya
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THE HONEYCOMB CONJECTURE

THoMAS C. HALES

ABSTRACT. This article gives a proof of the classical honeycomb conjecture: any
partition of the plane into regions of equal area has perimeter at least that of the
regular hexagonal honeycomb tiling.

MG] 20 May 2002

The origin of this problem is somewhat obscure. Varro was aware of it long before
Pappus of Alexandria, who mentions it in his fifth book. Much of Book V follows
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% ; 1. INTRODUCTION
- i Around 36 B.C., Marcus Terentius Varro, in his book on agriculture, wrote about
g ; the hexagonal form of the bee’s honeycomb. There were two competing theories of
" the hexagonal structure. One theory held that the hexagons better accommodated
:‘_:, ; the bee’s six feet. The other theory, supported by the mathematicians of the day,
4] ; was that the structure was explained by an isoperimetric property of the hexagonal
E ; honeycomb. Varro wrote, “Does not the chamber in the comb have six angles ...
'>’ ; The geometricians prove that this hexagon inscribed in a circular figure encloses
.- the greatest amount of space.”
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Theorem 1-A (Honeycomb conjecture). Let I' be a locally finite graph in R?,
consisting of smooth curves, and such that R? \ T' has infinitely many bounded

connected components, all of unit area. Let C be the union of these bounded com-
ponents. Then

, perim(C' N B(0,))
llﬁsgp area(C N B(0,r))

Equality s attained for the regular hexagonal tile.

> v/12.

Theorem 1-B (Honeycomb conjecture for disconnected regions). Let K be
a compact set in the plane containing disjoint measurable sets R1, Ra,.... Assume

that each R; has a rectifiable current boundary OR;. Set a; = min(1, area(R;)). Set
I' =U;0R;. Assume a; > 0 for some i. Then

HIT) > V12 o
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The boundary between L (1) and L(N,-) is the curve X3 = 1 — w/ny > 0,
determined by the condition L (1) = L(N,1,X}). (For N = 3, weset X; = 0.177,



Other computer proofs

Fejes-Toth conjecture. In a sphere packing (of congruent balls),
If every sphere touches exactly 12 other spheres, then it consists
of hexagonal layers.

Strong dodecahedral conjecture. Every Voronoi cell of a sphere
packing (of congruent balls) has volume at least that of a regular
dodecahedron (circumscribing a ball).

Sphere packing problem. No packing of congruent balls has
density greater than the cannonball packing.

Reinhardt conjecture local optimality. The smoothed octagon is
a locally optimal for worst-best packing of a centrally symmetric
convex disk in the plane.



Reinhardt Conjecture
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(Graphics by Egan)




Birch-Swinnerton Dyer conjecture, Sato-Tate Conjecture, Lyons-Sims
group of order 28375°71111311371671, original proof of the Calalan
conjecture x™ — x" =1, qWZ proof of the Rogers-Ramunujan identities,
conjectural optimal packings of tetrahedra (Chen-Engel-Glotzer), 4-color
theorem, finite projective plane of order 10, Smale's 14th problem on
strange attractors in the Lorenz oscillator, Mandelbrot's conjectures in
fractal geometry, visualization of sphere eversions and Costa surface
embeddings, the double bubble conjecture, construction of
counterexamples to the Kelvin conjecture, calculation of kissing numbers
(Sloane-Odlyzko), the character table for E® (Atlas project), Cohn-Kumar
proof of the packing optimality of the Leech and E® packings among
lattices, Viazovska's proof of the optimality of E® sphere packing,
classification of fake projective planes, weak Goldbach, twin prime
problem, Rao's classification of convex pentagon tiles, Boolean

pythagorean triples problem, chromatic number of the plane,
Dirac-Schwinger conjecture (Fefferman-Seco).




Why should we doubt
computer proofs?

Software has bugs.

The computer code is generally not refereed as part of the
review process. Math journals generally have no
standards for code review.

The computer code is generally not published. Often it
cannot be found anywhere. Proofs might rely on
proprietary software.

Mathematicians generally do not read and check
computer code.



ANNALS OF MATHEMATICS

Princeton University & Institute for Advanced Study

Statement by the Editors on Computer-Assisted Proofs

Computer-assisted proofs of exceptionally important mathematical theorems will be considered by
the Annals.

The human part of the proof, which reduces the original mathematical problem to one tractable by
the computer, will be refereed for correctness in the traditional manner. The computer part may not
be checked line-by-line, but will be examined for the methods by which the authors have eliminated
or minimized possible sources of error: (e.g., round-off error eliminated by interval arithmetic,
programming error minimized by transparent surveyable code and consistency checks, computer
error minimized by redundant calculations, etc. [Surveyable means that an interested person can
readily check that the code is essentially operating as claimed]).

We will print the human part of the paper in an issue of the Annals. The authors will provide the
computer code, documentation necessary to understand it, and the computer output, all of which
will be maintained on the Annals of Mathematics website online.



Part 2
Formal Proofs



. A formal proof i1s a mathematical proof that has been checked
by computer. The axioms and primitive rules of logic are
programmed into a computer, and a proof is not regarded as
verified until every step 1s exhaustively justified by first
principles.



HOL Light Lean

HOL Light has an exquisite minimal [.ean is ambitious
design. It has the smallest kernel of ’

any system. and 1t will be massive.
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[.ean has a small kernel.

* Its logical foundations are similar to those of Coq.
* Lean 1s its own metalanguage.



arXiv.org > math > arXiv:1501.02155

Mathematics > Metric Geometry

A formal proof of the Kepler conjecture
Thomas Hzles, Mark Adams, Gertrud Bzauer, Dat Tat Dang, John Harrison, Truong Le Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang
Tat Nguyen, Truong Quang Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, An Hoa' Thi Ta, Trung Nam Tran, Diep
Thi Trieu, Josef Urban, Ky Khac Vu, Roland Zumkeller
(Submitted on @ Jan Z2015)
This article describes a formal oroof of the Kepler conjecturs on dense sphere packings in a combination of the HOL Light and Isadelle proof assistants. This paper
constitutes the cfficial puklished account of the now completed Flyspeck prcject.



Why formalize
mathematics?

e Computer Proofs
e Mathematicians do computer proofs.
e Computer proofs are hard to check.

e Mathematicians do not want to compromise standards
in going from paper to computer.



Other reasons for
formalization

Some mathematicians have discovered errors in their own work, and do not want it to happen
again. (Voevodsky)

Some believe that all mathematics will be formalized mathematics in the future, and do not want
their work to be forgotten. (Grayson)

Some believe that the published record leaves out too many details, and that future generations
will have trouble reconstructing informal proofs from some branches of mathematics. (Buzzard)

Proofs are becoming longer and more complex. Better tools are required for long complex proofs
(Cambridge Big Proofs | 2017, Edinburgh Big Proofs 1l 2019)

Some mathematical techniques (such as zero-knowledge proofs) take a formal proof as input.

Machine-learning projects aimed at learning to construct computer proofs use formal proofs as
training data (Urban, Szegedy)

Processing of mathematics works better on formal content (search, indexing, transformation).

Some day referees might be replaced by computers (H.)



Formalizing Mathematics

e Formal Verification has been a research topic in computer
science for decades.

e |ncreasingly mathematicians are becoming involved.
Especially, in the past two years there has been a surge in
iInterest among mathematicians.



Year Theorem Proof System Formalizer Traditional Proof
1986 First Incompleteness Boyer-Moore Shankar Godel

1990 Quadratic Reciprocity Boyer-Moore Russinoff Eisenstein
1996 Fundamental - of Calculus  HOL Light Harrison Henstock

2000 Fundamental - of Algebra  Mizar Milewski Brynski

2000 Fundamental - of Algebra  Coq Geuvers et al. Kneser

2004 Four Color Coq Gonthier Robertson et al.
2004 Prime Number [sabelle Avigad et al. Selberg-Erdos
2005 Jordan Curve HOL Light Hales Thomassen
2005 Brouwer Fixed Point HOL Light Harrison Kuhn

2006 Flyspeck 1 [sabelle Bauer-Nipkow Hales

2007 Cauchy Residue HOL Light Harrison classical

2008 Prime Number HOL Light Harrison analytic proof
2012 Odd Order Theorem Coq Gonthier Feit-Thompson
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A Formal Proof of the Independence of the
Continuum Hypothesis

Jesse Michael Han
Department of Mathematics
University of Pittsburgh
Pittsburgh, PA, USA
jessemichaelhan@gmail.com

Abstract

We describe a formal proof of the independence of the con-
tinuum hypothesis (CH) in the Lean theorem prover. We use
Boolean-valued models to give forcing arguments for both
directions, using Cohen forcing for the consistency of -~CH
and a o-closed forcing for the consistency of CH.

Keywords continuum hypothesis, forcing, Lean, set theory,
ZFC

1 Introduction

The continuum hypothesis (CH) states that there is no car-
dinality between w, the smallest infinite cardinal and ¢, the
cardinality of the continuum. It was introduced by Cantor
[6] in 1878 and was the first problem on Hilbert’s list of
twenty-three outstanding problems in mathematics. Godel
[14] proved in 1938 that CH was consistent with ZFC, and
later conjectured that CH is independent of ZFC, i.e. neither

provable nor disprovable from the ZFC axioms. In 1963, Paul
(‘n"\an AO‘YQ'I\'\QA rn"l‘l."" [Q 0] “Yl‘\;l‘l“\ 0"(\“70(‘ lv'\;m tn mvrnvao

Floris van Doorn
Department of Mathematics
University of Pittsburgh
Pittsburgh, PA, USA
fpvdoorn@gmail.com

Our formalization® uses the Lean 3 theorem prover, build-
ing on top of mathlib [29]. Lean is an interactive proof assis-
tant under active development at Microsoft Research [10, 44].
It implements the Calculus of Inductive Constructions and
has a similar metatheory to Coq, adding definitional proof
irrelevance, quotient types, and a noncomputable choice
principle. Our formalization makes as much use of the ex-
pressiveness of Lean’s dependent type theory as possible,
using constructions which are impossible or unwieldy to
encode in HOL, let alone ZF. The types of cardinals and ordi-
nals in mathlib, which are defined as equivalence classes of
(well-ordered) types, live one universe level higher than the
types used to construct them, and our models of set theory
require as input an entire universe of types. Our encoding
of first-order logic also uses parameterized inductive types
which ensure that type-correctness implies well-formedness,
eliminating the need for separate well-formedness proofs.

The method of forcing with Boolean-valued models was
developed by Solovay and Scott [38, 40] as a simplification of

Cohen’s method Some of these simnlifications were incorno-

S0
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A concrete proposal: mathematical FABSTRACTS
(formal abstracts)

Given today’s technology, it is not reasonable to ask for all
proofs to be formalized. But with today’s technology, it seems
that it should be possible to create a formal abstract service
that

e Gives a statement of the main theorem(s) of each
published mathematical paper in a language that 1s both
human and machine readable,

e Links each term in theorem statements to a precise
definition of that term (again in human/machine readable
form), and

e Grounds every statement and definition is the system in
some foundational system for doing mathematics.

Wednesday, January 6, 2016



Capturing Definitions

The definitions of mathematics

The Oxford English dictionary (2nd edition) has 273,000
headwords and over 600,000 word forms. (The longest entry
1s for the word set, which continues for 25 pages).

Medicine has a specialized terminology of approximately
250,000 1tems [Kucharz].

The Math Subject Classification (MSC) lists over 6000

subfields of mathematics.

LOY

Of Mathematics

Main page | Discussion

Main Page

The Encyclopedia of Mathematics wiki is an open access resource designed specifically for the mathematics community. The
Mathematics, published by Kluwer Academic Publishers in 2002. With more than 8,000 entries, illuminating nearly 50,000 noti

was the most up-to-date graduate-level reference work in the field of mathematics.



Sylvester, "On a theory of Syzygetic

Relations™
allotrious, apocapated, Bezoutic, Bezoutoid, co-bezoutiant,
cogredient, contragredient, combinant, concomitant,
conjunctive, contravariant, covariant, cumulant, determinant,
dialytic, discriminant, disjunctive, effluent, emanant,
endoscopic, exoscopic, Hessian, hyperdeterminant,
iInertia, intercalation, invariance, invariant, Jacobian,
kenotheme, matrix, minor determinant, monotheme,
persymmetrical, quadrinvariant, resultant, rhizoristic,
signaletic, semaphoretic, substitution, syrrhizoristic,
syzygetic, transform, umbral.




VOCABULARY OF THE KEPLER CONJECTURE

* quoin, negligible, fcc-compatible, decomposition star, score,

score

adjustment, quasi-regular tetrahedron, contravening, tame graph,

pentahedral prism, crown, quarter, upright, flat, quartered octahedron,

strict quarter, enclosed vertex, central vertex, corners, isolated quarter,

isolated pair, conflicting diagonals, Q-system, S-system, V-ce
obstructed, face with negative orientation, Delaunay star, co

spaces, compression, quad cluster, mixed quad cluster, stanc

|s, barrier,
ored
ard cluster,

standard region, vertex type, quad cluster, Rogers simplex, anchor,
anchored simplex, erasing, loops, subcluster, corner cell, truncated

corner cell , tame graph, weight assignment, contravening circuit,

crowded diagonal, n-crowded, masked, confined, penalties, penalty-free
score, exceptional region, special simplex, distinguished edge,
nonexternal edge, concave corner, concave vertex, t-cone, partial plane

graph, patch, aggregated face,




Lemma 2.73 (Euler triangle) [JLPSDHF] Let vo, vy, V2, V3 be points in B2 .0
_ Lecture Note Series 11,

Let
(V1.2 96) = (Yo1. Y02, Y03, V23, V13, Y12), Where yij = |v; — vj].
Set x; = y,.z. and
P =Y1y2y3 + yi(Wa - W3) + y2(Wq - W3) + ya(Wy - Wa).
where w; = v; — vq. Lel

a; = dihy({vg, vi}, 1V}, vi})

where (i, .k} ={1,2,3}. Assume that A(x,,....xe) > 0. Then

ay +ar + 3 —m=m—2arctan>(A(x, ... ,Xf,)l/z, 2p).




_
let JLPSDHF = Euler_main_theorem.EULER_TRIANGLE;; (* euler_triangle ;; )

_
let euler_triangle_t = "!'v@ vl v2 v3:real”3.
let p = euler_p v@ vl v2 v3 in
let (x1,x2,x3,x4,x5,x6) = xlist v@ vl v2 v3 in
let alphal = dihV v@ v1 v2 v3 in
let alpha2 = dihV v@ v2 v3 vl in
let alpha3 = dihV v@ v3 v1 v2 in
let d = delta_x x1 x2 x3 x4 x5 x6 in
((&0 < d) ==>
(alphal + alpha2 + alpha3 - pi = pi — &2 * atn2(sqrt(d), (& * p)))) ;;

let EULER_TRIANGLE = prove_by_refinement (euler_triangle_t ,

Lemma 2.73 (Euler triangle) [JLPSDHF] Let v, vy, V2, V3 be poinis in R},
Let

Visee s v6) = (Yo1. Y02, Y03, Y23, Y13, Y12), where yij = |v; — v,].

9
Set x; = y:. and

— ——
= -~

P =VyiVavs + vi(Wa - W3) + va(Wy - W3) + y3(wy - Wa). /
Al
N
where w; = v; — vq. Lel S
e~‘ ;'\:..'s
¥; = dihv({\’g, V,'}, {Vj, VA-}) \\ ST
where (i, J.k} =1{1,2,3}. Assume that A(x,, ..., xq) > 0. Then \\

’I",
) + >+ vy — =1 — 2arctanr(A(xy, ..., o), 2p).



III(‘
Praomatic

Proerammer

Don't repeat yourself

From Wikipedia, the free encyclopedia
Don't repeat yourself (DRY, or sometimes do not repeat yourself) is a principle of software development aimed at
reducing repetition of software patterns,!'! replacing it with abstractions or using data normalization to avoid redundancy.

The DRY principle is stated as "Every piece of knowledge must have a single, unambiguous, authoritative representation
within a system". The principle has been formulated by Andy Hunt and Dave Thomas in their book The Pragmatic
Programmer.[?] They apply it quite broadly to include "database schemas, test plans, the build system, even

Andrew Hunt

David T homas

DRY vs WET solutions [edit]

Violations of DRY are typically referred to as WET solutions, which is commonly taken to stand for "write every time",
everything twice", "we enjoy typing" or "waste everyone's time". WET solutions are common in multi-tiered architectures

write
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A concrete proposal: mathematical FABSTRACTS
(formal abstracts)

Given today’s technology, it is not reasonable to ask for all
proofs to be formalized. But with today’s technology, it seems
that it should be possible to create a formal abstract service
that

e Gives a statement of the main theorem(s) of each
published mathematical paper in a language that 1s both
human and machine readable,

e Links each term in theorem statements to a precise
definition of that term (again in human/machine readable
form), and

e Grounds every statement and definition is the system in
some foundational system for doing mathematics.

Wednesday, January 6, 2016



Jordan Curve Theorem

‘YC. simple_closed_curve top2 C =
(3AB. top2 A A top2 B A
connected top2 A A connected top2 B N
(A#0W) AN (B#EWD) A
(ANB=0W) A (ANC=0¥) A (BNC=®) A
(AUBUC = euclid 2)) °

A rather literal translation of this HOL Light code into English is as follows: [Here,
top2 is the standard metric space topology on R%.] Let C be a simple closed curve, with
respect to fop2. Then there exist sets A and B with the following properties: A and B
are open in the topology top2; A and B are connected with respect to the topology
top2; A and B are nonempty; the sets A, B, and C are pairwise disjoint; and the union
of A, B, and C is R?. Or more idiomatically, a Jordan curve C partitions the plane into
the three sets A, B, and C itself,/where A and B are nonempty, connected, and open.



Recent and Current

Controlled Natural Projects
Language (CNL)
* |t is based on a single natural language (such as English).

* |t has restricted syntax and semantics. Its design is
deliberate and explicit.

 Speakers of the natural language can largely understand the
controlled language at least intuitively. (see Tobias Kuhn)

* The definition is intended to exclude artificial languages
such as Esperanto and programming languages.



The argument for a controlled natural language for mathematics

(1) Technology is still far from being able to make a semantic read-
ing of mathematics as it is currently written.

(a) Machine learning techniques (in particular, deep neural
networks) are still far from a semantic reading of math-
cmatics.

(b) Linguistic approaches are still far from a semantic reading
of mathematics as it is currently written.

(2) Mathematicians arc still far from the mass adoption of proof
assistants.

(a) Adoption has been gradual.

(b) Structural reasons hinder the adoption of proof assistants.

(3) There is value in bridging the gap between (1) and (2).
(4) CNL technology works now and can help to bridge the gap.



Recent and Current

Examples of CNLs Projects
for Mathematics

e Naproche-SAD (and variants Forthel, Naproche, EA,...).
(Paskevich, 2007) (Koepke, Cramer, Frerix, 2018) The
target is first-order logic.

e MathNat (and variants CLM controlled language of
mathematics). (Humayoun’s thesis) The target is first-

order logic.

e FMathL (formal mathematical language, CONCISE). The
target is a graphical representation (sems).



Recent and Current
Projects

Peter Koepke’s example

Theorem 1 (text in Naproche-SAD system). If v € R and y € R and
x > 0 then there is a positive integer n such that n-x > y.

Proof. Define A = {n-x | nis a positive integer}. Assume the contrary.
Then y is an upper bound of A. Take a least upper bound a of A.
o —x < aand o — x is not an upper bound of A. Take an clement
z of A such that not z < a — x. Take a positive integer m such that
z=m-x. Then a« —x < m -z (by 15b).

a=a—-x)+z<(m-x)+x=m+1)- 2.

(m + 1) -« is an element of A. Contradiction. Indeed « is an upper

bound of A.




Adapting CNLs to
Type Theory

The basic idea of the controlled natural language

@ Take all the syntax of Lean.

@ Take all the syntax of TEX.

@ Take all the syntax of ForTheL CNL.

@ Throw it all together and identify all the common parts.

o Translate to Lean by expanding TeEXand CNL (remove syntactic
sugar).




CNL as PDF

Definition 6.11 (greatest element). We say that y is a greatest element
in R iff for all x, © < y.

We introduce synonyms least /minimum /bottom.

Definition 6.12 (least element). We say that y is a least element in R iff
forall x, y < x.

Let © < y stand for x < y and x # v.

Definition 6.13 (maximal element). We say that y is a maximal element
in R iff there exists no x such that y < .

Definition 6.14 (minimal element). We say that y is a minimal element
in R iff there exists no x such that x < y.

Definition 6.15 (irreflexive). We say that R is irreflexive iff there exists
no x such that r < x.

Definition 6.16 (asymmetric). We say that R is asymmetric iff for all
ry, r<y ‘i'm.pli(fs not y < x.



CNL as TeX

\df{greatest\~element} in $R$ iff for all\ $x,\ x \le y$.
\end{definition}

We introduce synonyms least/minimum/bottom.

$R$ iff for all\ $x,\y \le x$.
\end{definition}

Let $x < y$ stand for $x \le y$ and $x \ne y$.

in $R$ iff there exists no $x$ such that $y < x$.
\end{definition}

in $R$ iff there exists no $x$ such that $x < y$.
\end{definition}



CNL as converted TeX

Definition Label_greatest_element . We say that y 1s a
greatestelement 1in R iff for all X , X \ley

We 1introduce synonyms least / minimum / Dbottom
Definition Label_least_element . We say that Y is a leastelement 1in

R iff for all x , Yy \lex

Let X <y stand for x \ley and X \ney

Definition Label_maximal_element . We say that y is a maximalelement
in R iff there exists no X such that y < X

Definition Label_minimal_element . We say that y is a minimalelement
in R iff there exists no X such that X < Yy

Definition Label_irreflexive . We say that R is irreflexive 1iff there

exists no X such that X < X



We believe that some complexity is justified (and even required) to capture widespread mathe-
matical idioms and formulas, the syntax of type theorv, and their interactions. Our grammar is
recursive to an extraordinary degree. The grammar has about 350 nonterminals and about 550
production rules. The grammar contains about 150 English words (such as all, any. are, case,
define, exists, if, iff, is, no, not, of, or, over, proof, the, theorem, etc.) with a fixed grammatical
function. User syntax extensions build on that base.

We keep most features of Forthel, such as its handling of synonyms, noun phrases, verbs, and
adjectives; and its grammar extension mechanisms. We have added many additional features
such as plural formation for nouns and verbs, operator precedence parsing (with user-specified
precedence levels and associativities); scoping of variables; syntax for IX1jnX macros; and de-
pendent type theorv including inductive and mutual inductive types, structures, and lambda
ferms.



