Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References

Frames for Mathematical Proofs

Workshop "Mathematical Language and Practical Type Theory"

Marcos Cramer¹ Bernhard Fisseni^{2,3} Deniz Sarikaya⁴ Bernhard Schröder³

¹TU Dresden

²Leibniz-Institut für Deutsche Sprache, Mannheim

³Universität Duisburg-Essen

⁴Universität Hamburg

4th February 2020, Mathematics Center, Hausdorff Center for Mathematics, Universität Bonn

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction ●○○	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion 00	References

Outline

🕨 Frame

Frames for Mathematical Texts

4 Further Frames

5 Frames and Mathematical Understanding

6 Conclusion

Introduction ○●○	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion 00	References
Motivati	on					

- **Assumption:** Different layers of interpretation of a mathematical text are useful at different stages of analysis and in different contexts.
- Immediate Goal: make explicit in the formal representation of information that is implicit in the textual form
- **Theoretical Goal:** bridge gap between formalist and textualist positions regarding mathematical proofs

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Tools: from formal linguistics and artificial intelligence

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion 00	References
Theses						

- FRAMES can serve as the basis for describing mathematical proofs.
- Specifically, using FRAMES it is possible to model how mathematicians understand proofs that conform to proof patterns which have not been executed in a fully explicit way.
- FRAMES can be used to model both (textual) structural properties of proofs and ontological aspects of mathematical knowledge. This distinction is useful.

Introduction	Frames •00000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References

Outline

2 Frames

Frames for Mathematical Texts

4 Further Frames

5 Frames and Mathematical Understanding

6 Conclusion

Introduction	Frames 0●0000	Frames for Mathematical Texts	Further Frames 0000	Frames and Mathematical Understanding	Conclusion	References

What are Frames?

Properties

- a concept in knowledge representation
 - \rightsquigarrow FILLMORE (1968) and MINSKY (1974)
- represent conceptual structure or prototypical situations e.g. *birthday celebration, restaurant.*
- roles and participants (slots and fillers) e.g. waiter, diners, food, ...
- organized in an inheritance hierarchy typed feature structures (CARPENTER, 1992)

Usage

- e.g., in cognitive linguistics and artificial intelligence
- explain how receiver completes information conveyed by sender
- → linguistic project: FrameNet database (1,200 semantic frames)

Introduction 000	Frames 00●000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion 00	References
Framing	g and Fra	imes				

One event can be framed differently, e.g. as buying and as selling

Frame: BUYING

[^{BUYER} John] **bought** [^{GOODS} a beautiful medieval book] [^{TIME} yesterday].

Frame: SELLING

[Seller Petra] sold [Goods a beautiful medieval book] to [BUYER John] for [MONEY twenty Euros].

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction	Frames 000●00	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion OO	References
	• •					

Frames as feature structures

			buy		1
			BUYER!	j	
			GOODS!	b	
buy	-]		[point-in	-time]
BUYER!	[John]]			YEAR	2019
GOODS!	[[a beautiful medieval book]]			молтн	08
Тіме	[[yesterday]]	 	Тіме	DAY	06
Seller	person	-		HOUR	{1,,24}
Money	money			MINUTE	{0,,60}
Purpose	purpose			L	
L			Seller	person	
			Money	money 🔊	▶ 《 문 ▶ 《 문 ▶ _ 문

Introduction	Frames 0000●0	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References

The Commercial Transaction frame from FrameNet

Frame Index

Commercial_transaction

Definition:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Abandonment
Abounding_with
Absorb heat
Abundance
Abusing
Access scenario
Accompaniment
Accomplishment
Accoutrements
Accuracy
Achieving_first
Active substance
Activity
Activity_abandoned_state
Activity_done_state
Activity_finish
Activity_ongoing
Activity_pause
Activity_paused_state
Activity prepare
Activity_ready_state
Activity_resume
Activity_start
Activity_stop
Actually_occurring_entity
Addiction
Adding_up
Adducing
Adjacency
Adjusting
Adopt_selection
Aesthetics

These are words that describe b realization patterns. For exampl MONEY. His 520 TRANSACTION	asic commercial transactions involving a Buyer and a Selier who exchange Money and Goods. The individual words vary in the frame element e, the typical patterns for the verbs buy and sell are: BUYER buys GOODS from the SELLER for MONEY. SELLER sells GOODS to the BUYER for with Amazon.com for a new TV had been very smooth.
FEs:	
Core:	
Buyer [Byr]	The Buyer wants the Goods and offers Money to a Seller in exchange for them.
Goods [Gds]	The FE Goods is anything (including labor or time, for example) which is exchanged for Money in a transaction.
Money [Mny]	Money is the thing given in exchange for Goods in a transaction.
Seller [Slr]	The <mark>Seller</mark> has possession of the Goods and exchanges them for Money from a Buyer.
Non-Core:	
Means [Mns] Semantic Type: State, of affairs	The means by which a commercial transaction occurs.
Rate [Rate]	Price or payment per unit of Goods.
Unit [Unit]	The Unit of measure of the Goods according to which the exchange value of the Goods (or services) is set. Generally, it occurs in a by-PP.
Frame-frame Relations:	

▲□▶▲□▶▲□▶▲□▶ □ ● ○○○

Lexical Unit Index

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
	000000					

Frame-to-Frame relations: Multiple Inheritance

Screenshot https://framenet.icsi.berkeley.edu/fndrupal/FrameGrapher

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction	Frames 000000	Frames for Mathematical Texts ●00000000000	Further Frames	Frames and Mathematical Understanding	Conclusion 00	References

Outline

2) Frame

Frames for Mathematical Texts

4 Further Frames

5 Frames and Mathematical Understanding

6 Conclusion

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion 00	References
Frames	in Mathe	ematical Texts				

Goal: Model proofs and proof methods

Types of frames: (define types of slots)

Ontological: type of mathematical object

e.g. Circle, slots: center, radius, diameter, circumference, ...

e.g. Vector Space, slots: zero, unit, field, dimension, ...

Structural: part of proofs

...

e.g. Induction, slots: induction variable, hypothesis, step, domain,

e.g. Extremal Proof, slots: object type, initial object, parameter

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion 00	References

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Frames Example: Induction

Induction Frame (structural)

with slots:

- BASE CASE
- INDUCTION HYPOTHESIS
- INDUCTION STEP
- INDUCTION DOMAIN: Inductive Type (ontological) with
 - BASE CONSTRUCTOR
 - RECURSIVE CONSTRUCTOR
- Induction variable

(see Fisseni, Sarikaya, Schmitt and Schröder, 2019)

troduct 00	on Frames 000000	Frames for Mathematical Texts	Further Frames	Frame 000	es and Mathematical Understa	nding Conclusion	References
	-						-
	induction						
		inductive-type]		
	INDUCTION-DOMAIN	d Base-Constructor	bc base-o	constructo:	r		
		RECURSIVE-CONSTRUC	TOR rc recurs	ve-constru	uctor		
		[variable]					
	Induction-Variable	NAME 🗵 symbolic					
		Түре 🖉					
	ASSERTION	Vx.s					
		[induction-proof				-	
			[induction-sig	nature	1		
			INDUCTION-HY	POTHESIS	ih sentence		
		INDUCTION-SIGNATURE	STEP-FUNCTIO	N	(?!) rc		
			BASE-CONDITI	ОЛ	bcc (?!) x = bc		
			INDUCTION-CO	NDITION	<u>icc</u> (?!) x = rc()		
			[proved-under	·-hypothes	is]	
	DROOF		Hypothesis	bcc			
	PROOF	BASE-CASE	THESIS	s			
			Assertion	bcc ⇒ S			
			PROOF	list(proof-	step v assumption v	definition v goal)	▶ ∃ • ∩
		1					n –

000	00000		0000	Fiames			References
	[] Assertion	۷ ۳. د]
		induction-proof				-	1
		Induction-Signature	induction-signed Induction-H Step-Function Base-Condit Induction-C	gnature YPOTHESIS DN ION ONDITION	<i>iih</i> sentence (?!) rc bcc (?!) x = bc <i>ic</i> c (?!) x = rc()		
	<u>Proof</u>	Base-Case	proved-unde Hypothesis Thesis Assertion Proof	er-hypothes bcc 5 bcc ⇒ 5 list(proof	is ∙step ∨ assumption ∨	definition v goal)	
		INDUCTION-STEP	proved-unde Hypothesis Thesis Assertion Proof	er-hypothes icond: (lico 5 icond ⇒ 5 list(proof	is]∧ ih) step ∨ assumption ∨	definition v goal)	▶ <u>₹</u> ∽Q.(~

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
		00000000000				

An Induction Proof

KOWALSKI (2016, p. 93)

Proof. First, the second statement is indeed more precise than the first: let $k \ge 1$ be such that $f^k = 0$ but $f^{k-1} \ne 0$; there exists $v \ne 0$ such that $f^{k-1}(v) \ne 0$, and we obtain $k \le n$ by applying the second result to this vector v. We now prove the second claim. Assume therefore that $v \ne 0$ and that $f^k(v) = 0$ but $f^{k-1}(v) \ne 0$. Let $t_0, ..., t_{k-1}$ be elements of K such that

$$t_1 v + \dots + t_{k-1} f^{k-1[sic!]}(v) = 0$$

Apply f^{k-1} to this relation; since $f^k(v) = \dots = f^{2k-2[sic!]}(v) = 0$, we get

$$t_1 f^{k-1}(v) = t_1 f^{k-1}(v) + t_2 f^k(v) + \dots + t_{k-1} f^{2k-2[sic!]}(v) = 0,$$

and therefore $t_1 f^{k-1}(v) = 0$. Since $f^{k-1}(v)$ was assumed to be non-zero, it follows that $t_1 = 0$. Now repeating this argument, but applying f^{k-2} to the linear relation (and using the fact that $t_1 = 0$), we get $t_2 = 0$.

Then similarly we derive **by induction** that $t_i = 0$ for all *i*, proving the linear independence stated.

in the first equation, the exponent k - 1 has to be replaced by k - 2; in the line below and the second equation, 2k - 2 by 2k - 3.

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへ⊙

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
		0000000000				

Inheritance hierarchy of proof frames

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion 00	References

Outline

2) Frame

4 Further Frames

5 Frames and Mathematical Understanding

6 Conclusion

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames O●OO	Frames and Mathematical Understanding	Conclusion	References

Further Frames

Kinds of frames and sources of information

- Structural: Proof Techniques, e.g. ENGEL's, 1999
- Ontological: Domains, e.g. MMT theories (RABE, 2016)

Another proof frame: extremal proof.

"We are trying to prove the existence of an object with certain properties. The **extremal principle** tells us to pick an object which **maximizes** or **minimizes** some function. The **resulting object** is then shown to have the desired property by showing a slight perturbation (variation) would further increase or decrease the given function. [...]

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames ○●○○	Frames and Mathematical Understanding	Conclusion	References

Further Frames

Kinds of frames and sources of information

- Structural: Proof Techniques, e.g. ENGEL's, 1999
- Ontological: Domains, e.g. MMT theories (RABE, 2016)

Another proof frame: extremal proof.

"We are trying to prove the existence of an object with certain properties. The **extremal principle** tells us to pick an object which **maximizes** or **minimizes** some function. The **resulting object** is then shown to have the desired property by showing a slight perturbation (variation) would further increase or decrease the given function. [...] We will learn the use of the **extremal principle** by solving 17 examples from geometry, graph theory, combinatorics, and number theory, but first we will remind the reader of three well known facts[...]." (ENGEL, 1999, **Problem-Solving Strategies**, p. 39)

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
			0000			

"Das Extremalprinzip setzt also einen Kontext voraus, in dem minimale oder maximale Objekte existieren." (CARL, 2017, p. 75)

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
			0000			

"Das Extremalprinzip setzt also einen Kontext voraus, in dem minimale oder maximale Objekte existieren." (CARL, 2017, p. 75)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Variations of extremal proofs

CARL: variation triggered by ENGEL's "three well-known facts"

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
			0000			

"Das Extremalprinzip setzt also einen Kontext voraus, in dem minimale oder maximale Objekte existieren." (CARL, 2017, p. 75)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Variations of extremal proofs

CARL: variation triggered by ENGEL's "three well-known facts", e.g.

domain natural numbers: triggers least number principle

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
			0000			

"Das Extremalprinzip setzt also einen Kontext voraus, in dem minimale oder maximale Objekte existieren." (CARL, 2017, p. 75)

Variations of extremal proofs

CARL: variation triggered by ENGEL's "three well-known facts", e.g.

domain natural numbers: triggers least number principle

domain subset of reals: triggers least upper bound principle or largest lower bound principle

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
			0000			

Context and extremal proofs – interaction by hypothesis/goal

CARL (2017, p. 75): prototypical extremal arguments are different depending on the hypothesis:

Context and extremal proofs – interaction by hypothesis/goal

CARL (2017, p. 75): prototypical extremal arguments are different depending on the hypothesis:

Beweise mithilfe des Extremalprinzips funktionieren meist auf eine der beiden folgenden Weisen (two ways):

- Zu zeigen ist eine Existenzaussage (existence statement). Das extremale Objekt ist ein Beispiel (example) für ein Objekt der gesuchten Art oder hilft bei dessen Konstruktion (construction).
- Zu zeigen ist eine Allaussage (universal statement). Man nimmt das Gegenteil (opposite) an, betrachtet ein extremales Gegenbeispiel (counterexample) und arbeitet auf einen Widerspruch (contradiction) (meist zur Maximalität oder Minimalität) hin.

CARL (2017, S. 75)

Introduction 000	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding ●OO	Conclusion	References
Outline						

1 Introduction

2) Frame

Frames for Mathematical Texts

4 Further Frames

5 Frames and Mathematical Understanding

6 Conclusion

<□> <@> < E> < E> E のQ@

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding ○●○	Conclusion 00	References
Frames	and Mat	hematical Under	standing			

Frames may (help) explain other phenomena in mathematical communication:

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding ○●○	Conclusion 00	References
Frames	and Mat	hematical Under	standing			

Frames may (help) explain other phenomena in mathematical communication: granularity: more experience mathematicians communicate more concisely.

Introduction 000	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding ○●○	Conclusion 00	References
Гирирос	and Mat	homotical lindor	atanding			

Frames may (help) explain other phenomena in mathematical communication: granularity: more experience mathematicians communicate more concisely. ~~ assume more frames in the background knowledge of the recipients?

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames 0000	Frames and Mathematical Understanding ○●○	Conclusion 00	References

Frames may (help) explain other phenomena in mathematical communication: granularity: more experience mathematicians communicate more concisely. ~→ assume more frames in the background knowledge of the recipients? gaps: we mentioned already, that frames might help to fill in some gaps in proofs.

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
				000		

Frames may (help) explain other phenomena in mathematical communication:
granularity: more experience mathematicians communicate more concisely.
~→ assume more frames in the background knowledge of the recipients?
gaps: we mentioned already, that frames might help to fill in some gaps in proofs.
~→ related phenomenon: grasping a proof often linked to some figure of speech of zooming out,

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding ○●○	Conclusion	References

Frames may (help) explain other phenomena in mathematical communication:
granularity: more experience mathematicians communicate more concisely.
~→ assume more frames in the background knowledge of the recipients?
gaps: we mentioned already, that frames might help to fill in some gaps in proofs.
~→ related phenomenon: grasping a proof often linked to some figure of speech of zooming out,
~→ understanding needs knowing which frames were actually involved.

creativity: POINCARÉ saw creativity as (some fruitful) combination of old ideas or as choice among the manifold of all possible combinations.

proof identity: despite different surface stucture

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
				000		

Advantages of frame approach to mathematical texts

Frames can serve as the basis for describing mathematical proofs:

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
				000		

Advantages of frame approach to mathematical texts

Frames can serve as the basis for describing mathematical proofs:

• Frames may be cognitively real.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
				000		

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Advantages of frame approach to mathematical texts

Frames can serve as the basis for describing mathematical proofs:

- Frames may be cognitively real.
- Frames offer a new way to model gaps in proofs.

Introduction	Frames	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
				000		

Advantages of frame approach to mathematical texts

Frames can serve as the basis for describing mathematical proofs:

- Frames may be cognitively real.
- Frames offer a new way to model gaps in proofs.
- Remark: Tactics as used in proof assistants can be modeled as frames.

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion ●○	References
Outline						

2) Frame

Frames for Mathematical Texts

4 Further Frames

5 Frames and Mathematical Understanding

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion ○●	References
Theses						

- Frames can serve as the basis for describing mathematical proofs.
- Specifically, using frames it is possible to model how mathematicians understand proofs that conform to proof patterns which have not been executed in a fully explicit way.
- Frames can be used to model both (textual) structural properties of proofs and ontological aspects of mathematical knowledge. This distinction is useful.

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion OO	References
Theses						

- Frames can serve as the basis for describing mathematical proofs.
- Specifically, using frames it is possible to model how mathematicians understand proofs that conform to proof patterns which have not been executed in a fully explicit way.
- Frames can be used to model both (textual) structural properties of proofs and ontological aspects of mathematical knowledge. This distinction is useful.

Outlook

- more frames and more texts
- corpus-based annotation workflow
- didactic experiments

Introduction	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion 00	References
Referenc	es l					

- CARL, Merlin (2017). Wie kommt man drauf? Einführung in das mathematische Aufgabenlösen. Wiesbaden: Springer Spektrum. DOI: 10.1007/978-3-658-18250-2.
- **CARPENTER, Bob (1992).** The Logic of Typed Feature Structures. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.
- **ENGEL, Arthur (1999).** *Problem-Solving Strategies.* Problem Books in Mathematics. New York: Springer. ISBN: 9780387982199.
- **FILLMORE, Charles (1968). 'The Case for Case'.** Universals in Linguistic Theory. Ed. by Emmon BACH and Robert T. HARMS. London: Holt, Rinehart, and Winston, pp. 1–88.
- FISSENI, Bernhard, Deniz SARIKAYA, Martin SCHMITT and Bernhard SCHRÖDER (2019). 'How to frame a mathematician. Modelling the cognitive background of proofs'. *Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts.* Ed. by Stefania CENTRONE, Deborah KANT and Deniz SARIKAYA. Synthese Library. Berlin, Heidelberg: Springer.
 - KOWALSKI, Emmanuel (15th Sept. 2016). *Linear Algebra*. Lecture Notes, ETH Zurich, published at https://people.math.ethz.ch/~kowalski/script-la.pdf.

Introduction 000	Frames 000000	Frames for Mathematical Texts	Further Frames	Frames and Mathematical Understanding	Conclusion	References
Referen	ices II					

- MINSKY, Marvin (1974). A Framework for Representing Knowledge. Tech. rep. Cambridge, MA, USA: MIT.
- RABE, Florian (2016). MMT: A Foundation-Independent Approach to Formal Knowledge. Tech. rep. Florian Rabe. URL:

https://uniformal.github.io/doc/philosophy/articles/mmt.pdf.