Naproche: Analyzing Mathematical Language Logically and Linguistically

Marcos Cramer

TU Dresden

1 February 2020

Naproche: Analyzing Mathematical Language , Logically and Linguistically

1 / 31

ndau

Conclusion

1 Introduction

- 2 The Naproche project
- Oynamic Quantification
- 4 Further Linguistic Issues
- 5 Landau in Naproche
- 6 Conclusion

• Formal mathematics: Mathematical proofs are expressed in a formal proof calculus.

- Formal mathematics: Mathematical proofs are expressed in a formal proof calculus.
- Each proof step can be mechanically checked.

Conclusion

Formal mathematics

- Formal mathematics: Mathematical proofs are expressed in a formal proof calculus.
- Each proof step can be mechanically checked.
- Increased trust in complex proofs

Conclusion

Formal mathematics

- Formal mathematics: Mathematical proofs are expressed in a formal proof calculus.
- Each proof step can be mechanically checked.
- Increased trust in complex proofs
- Many further advantages

Formal mathematics

- Formal mathematics: Mathematical proofs are expressed in a formal proof calculus.
- Each proof step can be mechanically checked.
- Increased trust in complex proofs
- Many further advantages
- Increasing interest among mathematicians

Landau C

Conclusion

Input language

Example: Irrationality of $\sqrt{2}$

In natural mathematical language: If $\sqrt{2}$ is rational, then the equation $a^2 = 2b^2$ is soluble in integers *a*, *b* with (a, b) = 1. Hence a^2 is even, and therefore *a* is even. If a = 2c, then $4c^2 = 2b^2$, $2c^2 = b^2$, and *b* is also even, contrary to the hypothesis that (a, b) = 1.

In Mizar (shortened):

theorem
sqrt 2 is irrational
proof
assume sqrt 2 is rational;
then consider i being Integer, n being Nat such that
W1: n<>0 and
W2: sqrt 2=i/n and
W3: for i1 being Integer, n1 being Nat st n1<>0
& sqrt 2=i/n1 holds n<=n1 by RAT_1:25;
A5: i=sqrt 2*n by W1,XCMPLX_1:88,W2;
C: sqrt 2>=0 & n>0 by W1,NAT_1:19,SQUARE_1:93;
then i>=0 by A5,REAL_2:121;
then reconsider m = i as Nat by INT_1:16;

Naproche: Natural input language

Burali-Forti paradox in Naproche

Axiom 1: There is a set \emptyset such that no y is in \emptyset . Axiom 2: There is no x such that $x \in x$.

Define x to be transitive if and only if for all u, v, if $u \in v$ and $v \in x$ then $u \in x$. Define x to be an ordinal if and only if x is transitive and for all y, if $y \in x$ then y is transitive.

Theorem: There is no x such that for all $u, u \in x$ iff u is an ordinal. Proof:

Assume for a contradiction that there is an x such that for all $u, u \in x$ iff u is an ordinal.

Let $u \in v$ and $v \in x$. Then v is an ordinal, i.e. u is an ordinal, i.e. $u \in x$. Thus x is transitive.

Let $v \in x$. Then v is an ordinal, i.e. v is transitive. Thus x is an ordinal. Then $x \in x$. Contradiction by axiom 2. Qed.

Landau

Conclusion

6 / 31

1 Introduction

- **2** The Naproche project
- Oynamic Quantification
- 4 Further Linguistic Issues
- 5 Landau in Naproche
- 6 Conclusion

Conclusion

7 / 31

The Naproche Project

 The Naproche project (Natural language Proof Checking) studies the language and reasoning of mathematics from the perspectives of logic and linguistics.

The Naproche Project

- The Naproche project (Natural language Proof Checking) studies the language and reasoning of mathematics from the perspectives of logic and linguistics.
- Central goals of Naproche:
 - To develop a controlled natural language (CNL) for mathematical texts.

The Naproche Project

- The Naproche project (Natural language Proof Checking) studies the language and reasoning of mathematics from the perspectives of logic and linguistics.
- Central goals of Naproche:
 - To develop a controlled natural language (CNL) for mathematical texts.
 - To implement a system, the **Naproche system**, which can check texts written in this CNL for logical correctness.

The Naproche Project

- The Naproche project (Natural language Proof Checking) studies the language and reasoning of mathematics from the perspectives of logic and linguistics.
- Central goals of Naproche:
 - To develop a controlled natural language (CNL) for mathematical texts.
 - To implement a system, the Naproche system, which can check texts written in this CNL for logical correctness.
- Advancement and application of theoretical models from logic and linguistics

Naproche proof checking

• The proof checking algorithm keeps track of a list of first-order formulae considered true, called **premises**.

Naproche: Analyzing Mathematical Language , Logically and Linguistically

8 / 31

Naproche proof checking

- The proof checking algorithm keeps track of a list of first-order formulae considered true, called **premises**.
- The premise list gets continuously updated during the verification process.

Naproche proof checking

- The proof checking algorithm keeps track of a list of first-order formulae considered true, called **premises**.
- The premise list gets continuously updated during the verification process.
- Each assertion is checked by an ATP based on the currently active premises.

Example

Suppose *n* is even. Then there is a *k* such that n = 2k. Then $n^2 = 4k^2$, so $4|n^2$.

Naproche proof checking

- The proof checking algorithm keeps track of a list of first-order formulae considered true, called **premises**.
- The premise list gets continuously updated during the verification process.
- Each assertion is checked by an ATP based on the currently active premises.

Example

Suppose *n* is even. Then there is a *k* such that n = 2k. Then $n^2 = 4k^2$, so $4|n^2$.

• Sentence-by-sentence proof verification:

•
$$\Gamma$$
, even $(n) \vdash^? \exists k \ n = 2 \cdot k$

Naproche proof checking

- The proof checking algorithm keeps track of a list of first-order formulae considered true, called **premises**.
- The premise list gets continuously updated during the verification process.
- Each assertion is checked by an ATP based on the currently active premises.

Example

Suppose *n* is even. Then there is a *k* such that n = 2k. Then $n^2 = 4k^2$, so $4|n^2$.

• Sentence-by-sentence proof verification:

•
$$\Gamma$$
, even $(n) \vdash^? \exists k \ n = 2 \cdot k$

• Γ , even(n), $n = 2 \cdot k \vdash^? n^2 = 4 \cdot k^2$

Naproche proof checking

- The proof checking algorithm keeps track of a list of first-order formulae considered true, called **premises**.
- The premise list gets continuously updated during the verification process.
- Each assertion is checked by an ATP based on the currently active premises.

Example

Suppose *n* is even. Then there is a *k* such that n = 2k. Then $n^2 = 4k^2$, so $4|n^2$.

- Sentence-by-sentence proof verification:
 - Γ , even $(n) \vdash^? \exists k \ n = 2 \cdot k$

•
$$\Gamma$$
, even(n), $n = 2 \cdot k \vdash^? n^2 = 4 \cdot k^2$

• Γ , even(n), $n = 2 \cdot k$, $n^2 = 4 \cdot k^2 \vdash^? 4 | n^2$

• An assumption is processed in No-Check Mode.

- An assumption is processed in No-Check Mode.
- The No-Check Mode is also used for φ and ψ in ¬φ, ∃x φ, φ ∨ ψ and φ → χ.

- An assumption is processed in No-Check Mode.
- The No-Check Mode is also used for φ and ψ in ¬φ, ∃x φ, φ ∨ ψ and φ → χ.
- We have proved soundness and completeness theorems for the proof checking algorithm.

😣 🗐 🗉 Naproche-Interface

File Check Results

Undo Redo Axiom 1: There is a set \$\emptyset\$ such that no \$y\$ is in \$\emptyset\$. Check Axiom 2: There is no \$x\$ such that \$x \in x\$. Define \$x\$ to be transitive if and only if for all \$u\$, \$v\$, if \$u \in v\$ and \$v \in x\$ then \$u\in x\$. Show PRS Define \$x\$ to be an ordinal if and only if \$x\$ is transitive and for all \$v\$, if \$v\in x\$ then \$v\$ is transitive. Theorem: There is no \$x\$ such that for all \$u\$, \$u \in x\$ iff \$u\$ is an ordinal. Proof:\\ Assume for a contradiction that there is an \$x\$ such that for all \$u\$, \$u \in x\$ iff \$u\$ is an ordinal. Let \$u \in v\$ and \$v \in x\$. Then \$v\$ is an ordinal, i.e. \$u\$ is an ordinal, i.e. \$u \in x\$. Thus \$x\$ is transitive. Let \$v \in x\$. Then \$v\$ is an ordinal, i.e. \$v\$ is transitive. Thus \$x\$ is an ordinal. Then \$x \in x\$. Contradiction by axiom 2. Oed. \$\emptyset \in \emptyset\$.

Debugmodus off

-				
r				

Exit

Conclusion

11 / 31

1 Introduction

- 2 The Naproche project
- **3** Dynamic Quantification
- 4 Further Linguistic Issues
- 5 Landau in Naproche
- 6 Conclusion

au Con

Dynamic Quantification

Example

Suppose *n* is even. Then there is a *k* such that n = 2k. Then $n^2 = 4k^2$, so $4|n^2$.

Landau Conc

Dynamic Quantification

Example

Suppose *n* is even. Then there is a *k* such that n = 2k. Then $n^2 = 4k^2$, so $4|n^2$.

Example

If a space X retracts onto a subspace A, then the homomorphism $i_* : \pi_1(A, x_0) \to \pi_1(X, x_0)$ induced by the inclusion $i : A \hookrightarrow X$ is injective.

A. Hatcher: Algebraic topology (2002)

lau Co

Conclusion

13 / 31

Dynamic Quantification (2)

Solution: Dynamic Predicate Logic (DPL) by Groenendijk and Stokhof

Dynamic Quantification (2)

Solution: **Dynamic Predicate Logic** (**DPL**) by Groenendijk and Stokhof

Example

If a farmer owns a donkey, he beats it. PL: $\forall x \forall y \ (farmer(x) \land donkey(y) \land owns(x, y) \rightarrow beats(x, y))$ DPL: $\exists x \ (farmer(x) \land \exists y \ (donkey(y) \land owns(x, y))) \rightarrow beats(x, y)$

au Conclu

Implicit dynamic function introduction

Suppose that, for each vertex v of K, there is a vertex g(v) of L such that $f(st_{K}(v)) \subset st_{L}(g(v))$. Then g is a simplicial map $V(K) \rightarrow V(L)$, and $|g| \leq f$.

M. Lackenby: Topology and groups (2008)

Naproche: Analyzing Mathematical Language , Logically and Linguistically

14 / 31

au Conclus

14 / 31

Implicit dynamic function introduction

Suppose that, for each vertex v of K, there is a vertex g(v) of L such that $f(st_{K}(v)) \subset st_{L}(g(v))$. Then g is a simplicial map $V(K) \rightarrow V(L)$, and $|g| \leq f$.

M. Lackenby: Topology and groups (2008)

• Solution: Typed Higher-Order Dynamic Predicate Logic (THODPL)

- There can be a complex term after a quantifier:

• There can be a complex term after a quantifier:

$$2 \forall x \exists y \ R(x,y)$$

$$\exists f \ \forall x \ R(x, f(x))$$

• 1 has the same truth conditions as 2.

- There can be a complex term after a quantifier:

 - $\exists f \ \forall x \ R(x, f(x))$
- 1 has the same truth conditions as 2.
- But unlike 2, 1 dynamically introduces the function symbol *f*, and hence turns out to be equivalent to 3.

THODPL in proof checking

• Quantification over a complex term is checked in the same way as quantification over a variable:

For each vertex v of K, there is a vertex g(v) of L such that $f(st_{K}(v)) \subset st_{L}(g(v))$. Then g is a simplicial map $V(K) \rightarrow V(L)$. Γ , vertex $(v, K) \vdash^{?} \exists w (vertex(w, K) \land f(st_{K}(v)) \subset st_{L}(w))$

THODPL in proof checking

• Quantification over a complex term is checked in the same way as quantification over a variable:

For each vertex v of K, there is a vertex g(v) of L such that $f(st_{K}(v)) \subset st_{L}(g(v))$. Then g is a simplicial map $V(K) \rightarrow V(L)$.

 $\mathsf{\Gamma}, \mathsf{vertex}(v, \mathcal{K}) \vdash^? \exists w \; (\mathsf{vertex}(w, \mathcal{K}) \land f(st_{\mathcal{K}}(v)) \subset st_L(w))$

- However, it dynamically introduces a new function symbol.
- The premise corresponding to this quantification gets skolemized with this new function symbol:

 $\begin{array}{l} \Gamma, \forall v \; (\operatorname{vertex}(v, K) \to (\operatorname{vertex}(g(v), K) \land f(st_{K}(v)) \subset st_{L}(g(v)))) \\ \vdash^{?} \operatorname{simplicial_map}(g, V(K), V(L)) \end{array}$
lau Co

Conclusion

17 / 31

THODPL in proof checking (2)

• The theorem prover does not need to prove the existence of a function, but its existence may nevertheless be assumed as a premise.

THODPL in proof checking (2)

- The theorem prover does not need to prove the existence of a function, but its existence may nevertheless be assumed as a premise.
- Similarly, ∀x ∃f(x) R(x, f(x)) is proof-checked in the same way as ∀x ∃y R(x, y), but as a premise it has the force of ∃f ∀x R(x, f(x)).

• Definitions dynamically expand the language.

Naproche: Analyzing Mathematical Language , Logically and Linguistically

- Definitions dynamically expand the language.
- Examples:

Naproche: Analyzing Mathematical Language , Logically and Linguistically

- Definitions dynamically expand the language.
- Examples:
 - Define c to be $\sqrt{\frac{\pi}{6}}$.

- Definitions dynamically expand the language.
- Examples:
 - Define c to be √^π/₆.
 Define f(x) to be x².

- Definitions dynamically expand the language.
- Examples:
 - Define c to be $\sqrt{\frac{\pi}{6}}$.
 - Define f(x) to be x^2 .
 - Define $f_x(y, z)$ to be x(2y 5z).

Definitions

- Definitions dynamically expand the language.
- Examples:
 - Define c to be $\sqrt{\frac{\pi}{6}}$.
 - Define f(x) to be x^2 .
 - Define $f_x(y, z)$ to be x(2y 5z).
 - Define *n* to be even if and only if there is some *k* such that n = 2k.

Definitions

- Definitions dynamically expand the language.
- Examples:
 - Define c to be $\sqrt{\frac{\pi}{6}}$.
 - Define f(x) to be x^2 .
 - Define $f_x(y, z)$ to be x(2y 5z).
 - Define *n* to be even if and only if there is some *k* such that n = 2k.
 - Define $m|_k n$ iff there is an l < k such that $m \cdot l = n$.

Definitions

- Definitions dynamically expand the language.
- Examples:
 - Define c to be $\sqrt{\frac{\pi}{6}}$.
 - Define f(x) to be x^2 .
 - Define $f_x(y, z)$ to be x(2y 5z).
 - Define *n* to be even if and only if there is some *k* such that n = 2k.
 - Define $m|_k n$ iff there is an l < k such that $m \cdot l = n$.
- Definitions are treated like dynamic existential quantifiers.

- Definitions dynamically expand the language.
- Examples:
 - Define c to be $\sqrt{\frac{\pi}{6}}$.
 - Define f(x) to be x^2 .
 - Define $f_x(y, z)$ to be x(2y 5z).
 - Define *n* to be even if and only if there is some *k* such that n = 2k.
 - Define $m|_k n$ iff there is an l < k such that $m \cdot l = n$.
- Definitions are treated like dynamic existential quantifiers.
- The existential proof obligation is trivial.

Landau

Conclusion

1 Introduction

- 2 The Naproche project
- Oynamic Quantification
- **4** Further Linguistic Issues
- 5 Landau in Naproche
- 6 Conclusion

• Mathematical texts can involve potentially undefined terms like $\frac{1}{x}$.

- Mathematical texts can involve potentially undefined terms like $\frac{1}{x}$.
- Such terms arise by applying **partial functions** to ungrounded terms.

Undefined terms

- Mathematical texts can involve **potentially undefined terms** like $\frac{1}{x}$.
- Such terms arise by applying **partial functions** to ungrounded terms.
- First-order logic has no means for handling partial functions and potentially undefined terms.

Undefined terms

- Mathematical texts can involve potentially undefined terms like $\frac{1}{x}$.
- Such terms arise by applying partial functions to ungrounded terms.
- First-order logic has no means for handling partial functions and potentially undefined terms.
- We make use of presupposition theory from formal linguistics for solving this problem.

• A presupposition of some utterance is an implicit assumption that is taken for granted when making the utterance and needed for its interpretation.

- A presupposition of some utterance is an implicit assumption that is taken for granted when making the utterance and needed for its interpretation.
- Presuppositions are triggered by certain lexical items called presupposition triggers, e.g. "the", "to know", "to stop", "still".

Presuppositions

- A presupposition of some utterance is an implicit assumption that is taken for granted when making the utterance and needed for its interpretation.
- Presuppositions are triggered by certain lexical items called presupposition triggers, e.g. "the", "to know", "to stop", "still".

Example

He stopped beating his wife.

Naproche

22 / 31

Presupposition in mathematical texts

• Most presupposistion triggers are rare or absent in mathematical texts, e.g. "to know", "to stop" and "still".

Naproche

Presupposition in mathematical texts

- Most presupposistion triggers are rare or absent in mathematical texts, e.g. "to know", "to stop" and "still".
- Definite descriptions do appear, e.g. "the smallest natural number n such that $n^2 1$ is prime".

Presupposition in mathematical texts

- Most presupposistion triggers are rare or absent in mathematical texts, e.g. "to know", "to stop" and "still".
- Definite descriptions do appear, e.g. "the smallest natural number n such that $n^2 1$ is prime".
- A special mathematical presupposition trigger: Expressions denoting partial functions, e.g. "/" and " \surd "

Naproche

23 / 31

Proof checking algorithm with presuppositions

Presuppositions also have to be checked in No-Check Mode.

Presuppositions also have to be checked in No-Check Mode.

Example 1

Naproche

Assume that *B* contains \sqrt{y} .

Presuppositions also have to be checked in No-Check Mode.

Example 1

Assume that *B* contains \sqrt{y} .

Naproche

 $\Gamma \vdash^{?} y \geq 0$

Presuppositions also have to be checked in No-Check Mode.

Example 2

B does not contain \sqrt{y} .

Naproche

Presuppositions also have to be checked in No-Check Mode.

Example 1

Naproche

Assume that *B* contains \sqrt{y} .

 $\Gamma \vdash^{?} y \geq 0$

Example 2

B does not contain \sqrt{y} .

 $\begin{array}{l} \Gamma \vdash^{?} y \geq 0 \\ \Gamma, y \geq 0 \vdash^{?} \neg \sqrt{y} \in B \end{array}$

Landau Concl

Interpretation of plural expressions

• Distributive and collective interpretation

Examples

2 and 3 are prime numbers.

12 and 25 are coprime.

Landau Concl

Interpretation of plural expressions

• Distributive and collective interpretation

Examples

2 and 3 are prime numbers.

12 and 25 are coprime.

x and y are distinct integers such that some odd prime number divides x + y.

Landau Concl

Interpretation of plural expressions

• Distributive and collective interpretation

Examples

2 and 3 are prime numbers.

12 and 25 are coprime.

x and y are distinct integers such that some odd prime number divides x + y.

x and y are prime numbers p such that some odd prime number q divides p + 1.

Interpretation of plural expressions

• Distributive and collective interpretation

Examples

2 and 3 are prime numbers.

12 and 25 are coprime.

x and y are distinct integers such that some odd prime number divides x + y.

x and y are prime numbers p such that some odd prime number q divides p + 1.

• The **plural interpretation algorithm** of the Naproche system interprets all of these sentences correctly.

• The symbolic part of mathematical language has a rich variety of syntactic forms.

- The symbolic part of mathematical language has a rich variety of syntactic forms.
- Syntactic forms of function application:

- The symbolic part of mathematical language has a rich variety of syntactic forms.
- Syntactic forms of function application:

f(x)	m + n	mn	<i>n</i> !	
sin x	[K:k]	<u>m</u> n	a* _G b	

- The symbolic part of mathematical language has a rich variety of syntactic forms.
- Syntactic forms of function application:

f(x)	m + n	mn	<i>n</i> !
sin x	[K : k]	<u>m</u> n	a* _G b

• All of these are supported by Naproche.

- The symbolic part of mathematical language has a rich variety of syntactic forms.
- Syntactic forms of function application:

f(x)	m + n	mn	<i>n</i> !
sin x	[K:k]	<u>m</u> n	a* _G b

- All of these are supported by Naproche.
- A definition of a function introduces the syntax for that function.
Symbolic mathematics

- The symbolic part of mathematical language has a rich variety of syntactic forms.
- Syntactic forms of function application:

f(x)	m + n	mn	n!	
sin x	[K:k]	<u>m</u> n	a* _G b	

- All of these are supported by Naproche.
- A definition of a function introduces the syntax for that function.
- Symbolic expressions are also a potential source of ambiguities:

Naproche: Analyzing Mathematical Language , Logically and Linguistically

Symbolic mathematics

- The symbolic part of mathematical language has a rich variety of syntactic forms.
- Syntactic forms of function application:

f(x)	m + n	mn	n!	
sin x	[K:k]	<u>m</u> n	a* _G b	

- All of these are supported by Naproche.
- A definition of a function introduces the syntax for that function.
- Symbolic expressions are also a potential source of ambiguities:

● *a*(*b* + *c*)

Symbolic mathematics

- The symbolic part of mathematical language has a rich variety of syntactic forms.
- Syntactic forms of function application:

f(x)	m + n	mn	<i>n</i> !	
sin x	[K:k]	<u>m</u> n	a* _G b	

- All of these are supported by Naproche.
- A definition of a function introduces the syntax for that function.
- Symbolic expressions are also a potential source of ambiguities:

● a(b + c)

• Naproche disambiguates symbolic expressions by a combination of a type system, presupposition checking and preference for more recently introduced notation.

Conclusion

Introduction

- 2 The Naproche project
- Oynamic Quantification
- In the second second
- **5** Landau in Naproche

6 Conclusion

Naproche: Analyzing Mathematical Language , Logically and Linguistically

• The main test case was the book **Einführung in die Analysis** by Edmund Landau.

- The main test case was the book **Einführung in die Analysis** by Edmund Landau.
- We translated the first chapter of this book to the Naproche CNL.

- The main test case was the book **Einführung in die Analysis** by Edmund Landau.
- We translated the first chapter of this book to the Naproche CNL.
- We left the same proof gaps as in the original text.

- The main test case was the book **Einführung in die Analysis** by Edmund Landau.
- We translated the first chapter of this book to the Naproche CNL.
- We left the same proof gaps as in the original text.
- Most proof steps could be automatically verified by ATPs.

(Landau)

Conclusion

28 / 31

Landau's axioms

Assume that there is a set of objects called natural numbers.

Small latin letters will stand throughout for natural numbers.

Axiom 1: 1 is a natural number.

Axiom 2: For every x, there is a natural number x'.

Axiom 3: For every x,
$$x' \neq 1$$
.

Axiom 4: If x' = y', then x = y.

Axiom 5: Suppose \mathfrak{M} is a set of natural numbers satisfying the following properties:

Property 1: 1 belongs to \mathfrak{M} .

Property 2: If x belongs to \mathfrak{M} , then x' belongs to \mathfrak{M} .

Then \mathfrak{M} contains all natural numbers.

Existence of addition function

Theorem 4: There is precisely one function $x, y \mapsto x + y$ such that for all x, y, x + y is a natural number and x + 1 = x' and x + y' = (x + y)'. Proof:

A) Fix x. Suppose that there are functions $y \mapsto a_y$ and $y \mapsto b_y$ such that $a_1 = x'$ and $b_1 = x'$ and for all y, $a_{y'} = (a_y)'$ and $b_{y'} = (b_y)'$. Let \mathfrak{M} be the set of y such that $a_y = b_y$. $a_1 = x' = b_1$, so 1 belongs to \mathfrak{M} . If y belongs to \mathfrak{M} , then $a_y = b_y$, i.e. by axiom 2 $(a_y)' = (b_y)'$, i.e. $a_{y'} = (a_y)' = (b_y)' = b_{y'}$, i.e. y' belongs to \mathfrak{M} . So \mathfrak{M} contains all natural numbers. Thus for all y, $a_y = b_y$. Thus there is at most one function $y \mapsto x + y$ such that x + 1 = x' and for all y, x + y' = (x + y)'.

B) Now let \mathfrak{M} be the set of x such that there is a function $y \mapsto x + y$ such that for all y, x + y is a natural number and x + 1 = x' and x + y' = (x + y)'. Suppose x = 1. Define x + y to be y'. Then x + 1 = 1' = x', and for all y, x + y' = (y')' = (x + y)'. Thus 1 belongs to \mathfrak{M} . Let x belong to \mathfrak{M} . Then there is a function $y \mapsto x + y$ such that for all y, x + y is a natural number and x + 1 = x' and x + y' = (x + y)'. For defining + at x', define x' + y to be (x + y)'. Then x' + 1 = (x + 1)' = (x')' and for all y, x' + y' = (x + y')' = ((x + y)')' = (x' + y)'. So x' belongs to \mathfrak{M} . Thus \mathfrak{M} contains all x. So for every x, there is a function $y \mapsto x + y$ such that for all y, x + y is a natural number and x + 1 = x' and x + y' = (x + y)'. Qed.

Landau

Introduction

- 2 The Naproche project
- Oynamic Quantification
- In Further Linguistic Issues
- 5 Landau in Naproche

Naproche: Analyzing Mathematical Language , Logically and Linguistically

• We have developed a controlled natural language for mathematical texts.

- We have developed a controlled natural language for mathematical texts.
- The Naproche system can check the correctness of texts written in this language.

Naproche: Analyzing Mathematical Language , Logically and Linguistically

- We have developed a controlled natural language for mathematical texts.
- The Naproche system can check the correctness of texts written in this language.
- Bridge between formal proofs and informal proofs

- We have developed a controlled natural language for mathematical texts.
- The Naproche system can check the correctness of texts written in this language.
- Bridge between formal proofs and informal proofs
- Interesting theoretical work linking mathematical logic and formal linguistics