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Formal mathematics

Formal mathematics: Mathematical proofs are expressed in a
formal proof calculus.

Each proof step can be mechanically checked.

Increased trust in complex proofs

Many further advantages

Increasing interest among mathematicians
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Input language

Example: Irrationality of
√

2

In natural mathematical language:
If
√

2 is rational, then the equation a2 = 2b2 is soluble in integers a, b
with (a, b) = 1. Hence a2 is even, and therefore a is even. If a = 2c ,
then 4c2 = 2b2, 2c2 = b2, and b is also even, contrary to the hypothesis
that (a, b) = 1.

In Mizar (shortened):
theorem

sqrt 2 is irrational

proof

assume sqrt 2 is rational;

then consider i being Integer, n being Nat such that

W1: n<>0 and

W2: sqrt 2=i/n and

W3: for i1 being Integer, n1 being Nat st n1<>0

& sqrt 2=i1/n1 holds n<=n1 by RAT_1:25;

A5: i=sqrt 2*n by W1,XCMPLX_1:88,W2;

C: sqrt 2>=0 & n>0 by W1,NAT_1:19,SQUARE_1:93;

then i>=0 by A5,REAL_2:121;

then reconsider m = i as Nat by INT_1:16;
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Naproche: Natural input language

Burali-Forti paradox in Naproche

Axiom 1: There is a set ∅ such that no y is in ∅.
Axiom 2: There is no x such that x ∈ x .

Define x to be transitive if and only if for all u, v , if u ∈ v and v ∈ x
then u ∈ x .
Define x to be an ordinal if and only if x is transitive and for all y , if
y ∈ x then y is transitive.

Theorem: There is no x such that for all u, u ∈ x iff u is an ordinal.
Proof:
Assume for a contradiction that there is an x such that for all u, u ∈ x iff
u is an ordinal.
Let u ∈ v and v ∈ x . Then v is an ordinal, i.e. u is an ordinal, i.e. u ∈ x .
Thus x is transitive.
Let v ∈ x . Then v is an ordinal, i.e. v is transitive. Thus x is an ordinal.
Then x ∈ x . Contradiction by axiom 2.
Qed.
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The Naproche Project

The Naproche project (Natural language Proof Checking) studies
the language and reasoning of mathematics from the
perspectives of logic and linguistics.

Central goals of Naproche:

To develop a controlled natural language (CNL) for mathematical
texts.
To implement a system, the Naproche system, which can check
texts written in this CNL for logical correctness.

Advancement and application of theoretical models from logic and
linguistics
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Naproche proof checking

The proof checking algorithm keeps track of a list of first-order
formulae considered true, called premises.

The premise list gets continuously updated during the verification
process.

Each assertion is checked by an ATP based on the currently active
premises.

Example

Suppose n is even. Then there is a k such that n = 2k. Then
n2 = 4k2, so 4|n2.

Sentence-by-sentence proof verification:

Γ, even(n) `? ∃k n = 2 · k
Γ, even(n), n = 2 · k `? n2 = 4 · k2

Γ, even(n), n = 2 · k, n2 = 4 · k2 `? 4|n2
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Naproche proof checking (2)

An assumption is processed in No-Check Mode.

The No-Check Mode is also used for ϕ and ψ in ¬ϕ, ∃x ϕ, ϕ ∨ ψ
and ϕ→ χ.

We have proved soundness and completeness theorems for the proof
checking algorithm.
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Dynamic Quantification

Example

Suppose n is even. Then there is a k such that n = 2k. Then
n2 = 4k2, so 4|n2.

Example

If a space X retracts onto a subspace A, then the homomorphism
i∗ : π1(A, x0)→ π1(X , x0) induced by the inclusion i : A ↪→ X is
injective.
A. Hatcher: Algebraic topology (2002)
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Dynamic Quantification (2)

Solution: Dynamic Predicate Logic (DPL) by Groenendijk and
Stokhof

Example

If a farmer owns a donkey, he beats it.
PL: ∀x∀y (farmer(x) ∧ donkey(y) ∧ owns(x , y)→ beats(x , y))
DPL: ∃x (farmer(x) ∧ ∃y (donkey(y) ∧ owns(x , y)))→ beats(x , y)
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Implicit dynamic function introduction

Suppose that, for each vertex v of K , there is a vertex g(v) of L
such that f (stK (v)) ⊂ stL(g(v)). Then g is a simplicial map
V (K )→ V (L), and |g | w f .
M. Lackenby: Topology and groups (2008)

Solution: Typed Higher-Order Dynamic Predicate Logic
(THODPL)
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THODPL

There can be a complex term after a quantifier:

1 ∀x ∃f (x) R(x , f (x))

2 ∀x ∃y R(x , y)

3 ∃f ∀x R(x , f (x))

1 has the same truth conditions as 2.

But unlike 2, 1 dynamically introduces the function symbol f , and
hence turns out to be equivalent to 3.
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THODPL in proof checking

Quantification over a complex term is checked in the same way as
quantification over a variable:

For each vertex v of K , there is a vertex g(v) of L such that
f (stK (v)) ⊂ stL(g(v)). Then g is a simplicial map V (K )→ V (L).

Γ, vertex(v ,K ) `? ∃w (vertex(w ,K ) ∧ f (stK (v)) ⊂ stL(w))

However, it dynamically introduces a new function symbol.

The premise corresponding to this quantification gets skolemized
with this new function symbol:

Γ, ∀v (vertex(v ,K )→ (vertex(g(v),K ) ∧ f (stK (v)) ⊂ stL(g(v))))
`? simplicial map(g ,V (K ),V (L))

16 / 31
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THODPL in proof checking (2)

The theorem prover does not need to prove the existence of a
function, but its existence may nevertheless be assumed as a
premise.

Similarly, ∀x ∃f (x) R(x , f (x)) is proof-checked in the same way as
∀x ∃y R(x , y), but as a premise it has the force of ∃f ∀x R(x , f (x)).
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Definitions

Definitions dynamically expand the language.

Examples:

Define c to be
√

π
6

.

Define f (x) to be x2.
Define fx(y , z) to be x(2y − 5z).
Define n to be even if and only if there is some k such that n = 2k.
Define m|kn iff there is an l < k such that m · l = n.

Definitions are treated like dynamic existential quantifiers.

The existential proof obligation is trivial.
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Undefined terms

Mathematical texts can involve potentially undefined terms like
1
x .

Such terms arise by applying partial functions to ungrounded
terms.

First-order logic has no means for handling partial functions and
potentially undefined terms.

We make use of presupposition theory from formal linguistics for
solving this problem.

20 / 31
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Presuppositions

A presupposition of some utterance is an implicit assumption that
is taken for granted when making the utterance and needed for its
interpretation.

Presuppositions are triggered by certain lexical items called
presupposition triggers, e.g. “the”, “to know”, “to stop”, “still”.

Example

He stopped beating his wife.
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Presupposition in mathematical texts

Most presupposistion triggers are rare or absent in mathematical
texts, e.g. “to know”, “to stop” and “still”.

Definite descriptions do appear, e.g. “the smallest natural number n
such that n2 − 1 is prime”.

A special mathematical presupposition trigger: Expressions denoting
partial functions, e.g. “/” and “

√
”
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Proof checking algorithm with presuppositions

Presuppositions also have to be checked in No-Check Mode.

Example 1

Assume that B contains
√
y .

Γ `? y ≥ 0

Example 2

B does not contain
√
y .

Γ `? y ≥ 0
Γ, y ≥ 0 `? ¬√y ∈ B
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Interpretation of plural expressions

Distributive and collective interpretation

Examples

2 and 3 are prime numbers.

12 and 25 are coprime.

x and y are distinct integers such that some odd prime number
divides x + y .

x and y are prime numbers p such that some odd prime number q
divides p + 1.

The plural interpretation algorithm of the Naproche system
interprets all of these sentences correctly.
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Symbolic mathematics

The symbolic part of mathematical language has a rich variety of
syntactic forms.

Syntactic forms of function application:

f (x) m + n mn n!

sin x [K : k] m
n a ∗G b

All of these are supported by Naproche.

A definition of a function introduces the syntax for that function.

Symbolic expressions are also a potential source of ambiguities:

a(b + c)

Naproche disambiguates symbolic expressions by a combination of a
type system, presupposition checking and preference for more
recently introduced notation.
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Main text case

The main test case was the book Einführung in die Analysis by
Edmund Landau.

We translated the first chapter of this book to the Naproche CNL.

We left the same proof gaps as in the original text.

Most proof steps could be automatically verified by ATPs.
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Edmund Landau.

We translated the first chapter of this book to the Naproche CNL.

We left the same proof gaps as in the original text.

Most proof steps could be automatically verified by ATPs.

27 / 31

Naproche: Analyzing Mathematical Language , Logically and Linguistically



Introduction Naproche Dynamic Quantification Further Linguistic Issues Landau Conclusion

Main text case

The main test case was the book Einführung in die Analysis by
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Landau’s axioms

Assume that there is a set of objects called natural numbers.
Small latin letters will stand throughout for natural numbers.
Axiom 1: 1 is a natural number.
Axiom 2: For every x , there is a natural number x ′.
Axiom 3: For every x , x ′ 6= 1.
Axiom 4: If x ′ = y ′, then x = y .
Axiom 5: Suppose M is a set of natural numbers satisfying the
following properties:
Property 1: 1 belongs to M.
Property 2: If x belongs to M, then x ′ belongs to M.
Then M contains all natural numbers.
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Existence of addition function
Theorem 4: There is precisely one function x , y 7→ x + y such that for all x , y ,
x + y is a natural number and x + 1 = x ′ and x + y ′ = (x + y)′.
Proof:
A) Fix x . Suppose that there are functions y 7→ ay and y 7→ by such that
a1 = x ′ and b1 = x ′ and for all y , ay′ = (ay )′ and by′ = (by )′. Let M be the
set of y such that ay = by . a1 = x ′ = b1, so 1 belongs to M. If y belongs to
M, then ay = by , i.e. by axiom 2 (ay )′ = (by )′, i.e. ay′ = (ay )′ = (by )′ = by′ ,
i.e. y ′ belongs to M. So M contains all natural numbers. Thus for all y ,
ay = by . Thus there is at most one function y 7→ x + y such that x + 1 = x ′

and for all y , x + y ′ = (x + y)′.
B) Now let M be the set of x such that there is a function y 7→ x + y such
that for all y , x + y is a natural number and x + 1 = x ′ and x + y ′ = (x + y)′.
Suppose x = 1. Define x + y to be y ′. Then x + 1 = 1′ = x ′, and for all
y ,x + y ′ = (y ′)′ = (x + y)′. Thus 1 belongs to M. Let x belong to M. Then
there is a function y 7→ x + y such that for all y , x + y is a natural number and
x + 1 = x ′ and x + y ′ = (x + y)′. For defining + at x ′, define x ′ + y to be
(x + y)′. Then x ′ + 1 = (x + 1)′ = (x ′)′ and for all y ,
x ′ + y ′ = (x + y ′)′ = ((x + y)′)′ = (x ′ + y)′. So x ′ belongs to M.
Thus M contains all x . So for every x , there is a function y 7→ x + y such that
for all y , x + y is a natural number and x + 1 = x ′ and x + y ′ = (x + y)′. Qed.
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Conclusion

We have developed a controlled natural language for mathematical
texts.

The Naproche system can check the correctness of texts written in
this language.

Bridge between formal proofs and informal proofs

Interesting theoretical work linking mathematical logic and formal
linguistics
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