Lennart Meier

Mathematisches Institut, Universität Bonn
Endenicher Allee 60
Office 4.014
53115 Bonn, Germany
E-Mail: lmeier at math.uni-bonn.de

CV

Teaching

Work Group Seminar Homotopy Theory



Research interests

I am an algebraic topologist with a special interest in the spectrum of topological modular forms TMF. I am also interested in several related and unrelated questions in abstract homotopy theory, stable homotopy theory and (derived) algebraic geometry.

Preprints and Publications

  • The Brauer group of the moduli stack of elliptic curves, arXiv:1608.00851 (joint with Ben Antieau)

  • Gorenstein duality for Real spectra, arXiv:1607.02332 (joint with John Greenlees)

  • Appendix B: 'Descent for higher real K-theories' to 'Descent in algebraic $K$-theory and a conjecture of Ausoni-Rognes', arXiv:1606.03328 (joint with Niko Naumann and Justin Noel, 2016)

  • All about Tmf1(3), arXiv:1507.08115 (joint with Mike Hill, 2015)

  • Fibration Categories are Fibrant Relative Categories, arXiv:1503.02036 (2015), accepted in Algebraic and Geometric Topology

  • Fibrancy of Partial Model Categories (joint with Viktoriya Ozornova, 2015) Homology, Homotopy and Appl Volume 17.2 (2015), 53-80 (arXiv)

  • Affineness and Chromatic Homotopy Theory (joint with Akhil Mathew) J Topology (2015) 8 (2): 476-528 (arXiv, Erratum to published version)

  • Vector Bundles on the Moduli Stack of Elliptic Curves, Journal of Algebra Volume 428 (2015), 425–456. (arXiv)

  • Hilbert Manifolds, Bulletin of the Manifold Atlas (2014, expository)

  • Spectral Sequences in String Topology, Algebraic & Geometric Topology 11 (2011), 2829-2860. (arXiv)


  • Talks

  • Fibrancy of (Relative) Categories (YTM 2014, Copenhagen)

  • Modules over Real K-Theory and TMF (YTM 2012, Copenhagen)

  • Vereinigte elliptische Homologie (Verteidigungsvortrag)


  • Other Documents

  • Homotopy Colimits of Relative Categories (2014) (Notes)

  • My Thesis - United Elliptic Homology (2012)

  • My Diploma Thesis - A Geometric View on String Topology (2009)

  • Hilbert Manifold Models for Mapping Spaces (2009)


  •      Zentralblatt Reviews   MathSciNet Reviews