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Historical background

Hilbert program: complete and contradiction-free
axiomatization of mathematics

1889: Axiomatization of arithmetic by G. Peano
(Peano-Arithmetic)

1908: Axiomatization of set theory by E. Zermelo (ZFC)

1910: Principia Mathematica (Whitehead/Russell)

1929: Gödel's Completeness Theroem

1931: Gödel's Incompleteness Theorems
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The Hilbert program

Assumption: Consistency of the axioms of set theory can be
proven

All of mathematics can be axiomatized

Consistency can be proven (2nd Hilbert problem) using only
�nitary methods
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The Hilbert program

Example of Hilbert's notion of �nitary methods for the equation
x + y = y + x :

�Eine solche Gleichung [...] wird nicht aufgefasst als eine Aussage
über alle Zahlen. Vielmehr wird sie so gedeutet, dass ihr Sinn sich
in einem Beweisverfahren erschöpft, bei welchem jeder Schritt eine
vollständig aufweisbare Handlung ist, die nach festgesetzten Regeln

vollzogen wird.�
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The liar paradoxon

This statement is false.

In a village, the barber shaves everyone who does not shave
himself/herself, but no one else. Who shaves the barber?
B. Russell
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Questions

What is arithmetic and how can it be �formalized�?

Can arithmetic be described in a way such that any property is
either a consequence of the axioms are it can be shown to be
contradictory?

What is truth and can it be formalized?

Is truth and provability the same?

How can one solve the liar paradoxon?
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The natural numbers

What are the natural numbers?

How can we axiomatize them?

Is the set of natural numbers absolute (i.e. unique)?
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What are the natural numbers?

Leopold Kronecker (1823-1891)

God made the natural numbers; all else is the work of man.
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The language of arithmetic

The language LPA of Peano Arithmetic consists of

a constant 0

a unary function symbol s

two binary function symbols +, ·.
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Terms and Formulae

Terms

(T1) 0 is a term

(T2) Every variable x is a term

(T3) If t0, t1 are terms, then so are st0, t0 + t1 and t0 · t1.

Formulae

(F1) If t0, t1 are formulae, then so is t0 = t1

(F2) If ϕ is a formula, then so is ¬ϕ
(F3) If ϕ,ψ are formulae, then so are ϕ ∧ ψ,ϕ ∨ ψ and ϕ→ ψ

(F4) If ϕ is a formula and x is a variable, then ∃xϕ and ∀xϕ are
formulae.
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Logical axioms

For formulae ϕ,ϕ0, ϕ1, ϕ2 and ψ we have the following schemes of logical axioms:

ϕ→ (ψ → ϕ)(L1)

(ψ → (ϕ0 → ϕ1))→ ((ψ → ϕ0)→ (ψ → ϕ1))(L2)

(ϕ ∧ ψ)→ ϕ(L3)

(ϕ ∧ ψ)→ ψ(L4)

ψ → (ϕ→ (ϕ ∧ ψ))(L5)

ϕ→ (ϕ ∨ ψ)(L6)

ψ → (ϕ ∨ ψ)(L7)

(ϕ0 → ϕ2)→ ((ϕ1 → ϕ2)→ ((ϕ0 ∨ ϕ1)→ ϕ2))(L8)

(ϕ→ ψ)→ ((ϕ→ ¬ψ)→ ¬ϕ)(L9)

¬ϕ→ (ϕ→ ψ)(L10)

ϕ ∨ ¬ϕ.(L11)
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Logical Axioms

For a formula ϕ and a term t such that the substitution ϕ(x/t) is admissible
we have

∀xϕ(x)→ ϕ(t)(L12)

ϕ(t)→ ∃xϕ(x).(L13)

If ψ is a formula and t is a term with t /∈ free(ψ), then

∀x(ψ → ϕ(x))→ (ψ → ∀xϕ(x))(L14)

∀x(ϕ(x)→ ψ)→ (∃xϕ(x)→ ψ).(L15)

If t, t0, . . . , tn−1, t
′
0, . . . , t

′
n−1 are terms, R is an n-ary relation symbol and F is

an n-ary function symbol, the following are logical axioms:

t = t(L16)

(t0 = t
′
0 ∧ · · · ∧ tn−1 = t

′
n−1)→ (R(t0, . . . , tn−1)→ R(t′0, . . . , t

′
n−1))(L17)

(t0 = t
′
0 ∧ · · · ∧ tn−1 = t

′
n−1)→ (F (t0, . . . , tn−1) = F (t′0, . . . , t

′
n−1)).(L18)
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Rules of inference

Modus Ponens (MP):
ϕ→ψ,ϕ
ψ

Generalization (∀): ϕ
∀xϕ .
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Peano Arithmetic

(PA1) ∀x¬(sx = 0)

(PA2) ∀x∀y(sx = sy → x = y)

(PA3) ∀x(x + 0 = x)

(PA4) ∀x∀y(x + sy = s(x + y))

(PA5) ∀x(x · 0 = 0)

(PA6) ∀x∀y(x · sy = (x · y) + x)

(Iϕ) ∀~y[ϕ(0, ~y) ∧ ∀x(ϕ(x , ~y)→ ϕ(sx , ~y))→ ∀xϕ(x , ~y)], where ϕ
is an LPA-formula with free(ϕ) = {x , ~y}.
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Formal proofs

A formal proof is a �nite sequence ϕ0, . . . , ϕn of formulas such
that for every i ≤ n one of the following holds:

ϕi is an axiom

there are j , k < i such that ϕk is ϕj → ϕi

there is j < i such that ϕi is ∀xϕj(x) for some variable x .
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Models of the natural numbers

Let T be a set of formulae, M a set. Let sM ,+M , ·M be unary resp.
binary functions on M, and 0M ∈ M. Let I : Var → M be an
assignment. We extend I to terms as follows:
I (0) = 0M , I (st) = sM(I (t)), I (t0 u t1) = I (t0)u I (t1). Then
de�ne

(M, I ) |= s = t ⇐⇒ I (s) = I (t)

(M, I ) |= ϕ ∧ ψ ⇐⇒ (M, I ) |= ϕ und (M, I ) |= ψ

(M, I ) |= ¬ϕ⇐⇒ (M, I ) 2 ϕ
(M, I ) |= ∃xϕ(x)⇐⇒ there is a ∈ M with (M, I

a

x ) |= ϕ(x),
where I

a

x is the same as I except I (x) = a.

M is a model of T , if for every assignment I and every ϕ ∈ T ,
(M, I ) |= ϕ.
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The standard model N

Put N = {0, s0, ss0, sss0, ..., ssssssssss0, ...}, i.e.
0 is a natural number,

s...s0 is a natural number, where the symbol s occurs only
�nitely many times.

But... what does FINITE mean???

Regula Krapf I am no title.



Introduction
First-order logic and Peano Arithmetic

Models of Peano Arithmetic
The First Incompleteness Theorem

The Second Incompleteness Theorem
Conclusions

The standard model N

Put N = {0, s0, ss0, sss0, ..., ssssssssss0, ...}, i.e.
0 is a natural number,

s...s0 is a natural number, where the symbol s occurs only
�nitely many times.

But... what does FINITE mean???

Regula Krapf I am no title.



Introduction
First-order logic and Peano Arithmetic

Models of Peano Arithmetic
The First Incompleteness Theorem

The Second Incompleteness Theorem
Conclusions

M.C. Escher, Drawing Hands
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Consistency and completeness

De�nition

A set T of formulae is said to be

consistent, if there is no formula ϕ such that T ` ϕ ∧ ¬ϕ
complete, if for every formula ϕ either T ` ϕ or T ` ¬ϕ.
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Gödel's Completeness Theorem

Theorem (Completeness Theorem)

A set T of formulae is consistent if and only if it has a model.

Theorem (Compactness Theorem)

A set T of formulae is consistent if and only if every �nite subset of
T is consistent (resp. has a model).
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Non-standard models

We extend LPA to L+PA = LPA ∪ {c} by adding a new constant
symbol c .
Consider PA+ = PA ∪ {c 6= 0, c 6= s0, c 6= ss0, · · · }.

Compactness Theorem ⇒ PA+ has a model N. Then cN is bigger
than every standard natural number.
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Is PA complete?

PA is complete, if for every LPA-formula ϕ either PA ` ϕ or
PA ` ¬ϕ.

Theorem (First Incompleteness Theorem)

If PA is consistent, thent it is incomplete. More precisely, there is a
sentence GPA such that PA 0 GPA and PA 0 ¬GPA.
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Basic number theory in PA

In PA one can introduce additional

relations (such as x ≤ y :↔ ∃x(x + r = y))

functions (such as
x − y = z :↔ (y ≤ x ∧ x = z + y) ∨ (x < y ∧ z = 0)).

Furthermore, one can prove elementary number-theoretical results
such as

commutativity of +: PA ` ∀x∀y(x + y = y + x)

every number has a prime divisor: ∀x∃p(prime(p) ∧ p | x)
Chinese Remainder Theorem: f , g unary functions. Then:
PA ` ∀k[[∀i < k(1 < g(i) ∧ f (i) < g(i)) ∧ ∀i∀j(i < j ∧ j <

k → coprime(g(i), g(j))]→ ∃x∀i < k(rest(x , g(i)) = f (i))].
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Standard natural numbers in PA

For n ∈ N de�ne
n = s . . . s︸ ︷︷ ︸

n

0

Then +, ·, s,= and all newly introduced functions and relations are
compatible with n 7→ n, e.g.

PA ` m + n = m + n for all m, n ∈ N
m = n⇔ PA ` m = n.
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Gödel's β function

In PA one can de�ne a binary function β such that for every unary
function f

PA ` ∀k∃x∀i < k(β(x , i) = f (i)),

x encodes the sequence 〈f (0), . . . , f (k − 1)〉, and a pairing
function 〈 , 〉, i.e.

PA ` ∀z∃!x∃!y(〈x , y〉 = z).

�rst(z) = x :↔ ∃y(〈x , y〉 = z),

length(z) = second(z) = y :↔ ∃x(〈x , y〉 = z)

(x)i := β(�rst(x), i)

seq(s) :↔ ∀x < �rst(s)∃i < length(s)(β(x , i) 6= (s)i ).
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Encoding �nite sequences

Example.

One de�nes powers in PA as follows:

xk = y :↔ ∃s(seq(s) ∧ length(s) = sk ∧ (s)0 = 1∧
∀i < sk((s)si = x · (s)i ) ∧ (s)k = y).

e.g. x2 = y :↔ ∃s(seq(s) ∧ length(s) = 3 ∧ (s)0 = 1 ∧
∀i < 3((s)si = x · (s)i ) ∧ (s)2 = y)

(s)0 = 1

(s)1 = x · 1 = x

x2 = y = (s)2 = x · x
s codes the sequence 〈1, x , x · x〉.
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Gödelization

Symbol ζ Gödel number #ζ

0 2
s 4
+ 6
· 8
= 10
¬ 12
∧ 14
∃ 16
∨ 18
∀ 20
→ 22
xn 2n + 1

Term τ Gödel number #τ

0 2
xn 2n + 1
sτ 2#s · 3#τ
τ1 + τ2 2#+ · 3#τ1 · 5#τ2
τ1 · τ2 2#· · 3#τ1 · 5#τ2
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Gödelization

Formula ϕ Gödel number #ϕ

τ1 = τ2 2#= · 3#τ1 · 5#τ2
¬ψ 2#¬ · 3#ϕ
ψ1 ∧ ψ2 2#∧ · 3#ψ1 · 5#ψ2
ψ1 ∨ ψ2 2#∨ · 3#ψ1 · 5#ψ2
ψ1 → ψ2 2#→ · 3#ψ1 · 5#ψ2
∃xψ 2#∃ · 3#x · 5#ψ2
∀xψ 2#∀ · 3#x · 5#ψ2
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Gödelization

Example (Gödelization of s0+ 0)

#(s0) = 2#s · 3#0 = 24 · 32 = 144

#(s0+0) = 2#+·3#s0·5#0 = 26·3144·32 = 8.120460577·1071

Regula Krapf I am no title.



Introduction
First-order logic and Peano Arithmetic

Models of Peano Arithmetic
The First Incompleteness Theorem

The Second Incompleteness Theorem
Conclusions

Gödelization

Example (Gödelization of s0+ 0)

#(s0) = 2#s · 3#0 = 24 · 32 = 144

#(s0+0) = 2#+·3#s0·5#0 = 26·3144·32 = 8.120460577·1071

Regula Krapf I am no title.



Introduction
First-order logic and Peano Arithmetic

Models of Peano Arithmetic
The First Incompleteness Theorem

The Second Incompleteness Theorem
Conclusions

Gödelization

Example (Gödelization of s0+ 0)

#(s0) = 2#s · 3#0 = 24 · 32 = 144

#(s0+0) = 2#+·3#s0·5#0 = 26·3144·32 = 8.120460577·1071

Regula Krapf I am no title.



Introduction
First-order logic and Peano Arithmetic

Models of Peano Arithmetic
The First Incompleteness Theorem

The Second Incompleteness Theorem
Conclusions

Gödelization

Gödelization in PA:
pζq := #ζ

for symbols, terms or formulae ζ. Then we can de�ne

var(v) :↔ ∃n(v = 2 · n + 1),

term(t) :↔ ∃c[seq(c) ∧ (c)length(c)−1 = t ∧ ∀k < length(c)

(var((c)k) ∨ (c)k = p0q ∨ ∃i < k∃j < k((c)k = 2psq · 3(c)i
∨ (c)k = 2p+q · 3(c)i · 5(c)j ∨ (c)k = 2p·q · 3(c)i · 5(c)j))].

In a similar way one de�nes predicates
formula(f ), axiom(a), proof(x , y), provable(x) and so on.
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Gödelization

Proposition

Let ϕ be an LPA-formula without free variables.

1 If PA ` ϕ then there is n ∈ N such that
PA ` proof(n, pϕq).

2 If PA 0 ϕ then PA ` ¬proof(n, pϕq) for every n ∈ N.
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The Diagonalization Lemma

Theorem (Diagonalization Lemma)

For every LPA-formula ϕ(x0) with exactly one free variable there is
an LPA-formula σ without free variables such that

σ ≡PA ϕ(x0/pσq).
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The First Incompleteness Theorem

Theorem (First Incompleteness Theorem)

If PA is consistent then it is incomplete.

Idea of the proof: Construct GPA such that GPA says

�I am unprovable�.

If PA ` GPA, then GPA is provable!

If PA ` ¬GPA then ¬GPA is provable, but ¬GPA says �I am
unprovable�!

Thus PA 0 GPA and PA 0 GPA.
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The First Incompleteness Theorem

Sqetch of the proof.

Additional assumption: ω-consistence, i.e. if PA ` ∃xϕ(x), then there is

n ∈ N such that PA 0 ¬ϕ(n).
Diagonalization Lemma ⇒ there is a formula GPA with

GPA ≡PA ¬provable(pGPAq) ≡PA ¬∃c proof(c, pGPAq).

If PA ` GPA then there is n ∈ N with PA ` proof(n, pGPAq).

If PA ` ¬GPA there is m ∈ N with PA ` proof(m, p¬GPAq). But
¬GPA ≡PA ∃c proof(c, pGPAq) i.e. PA ` ∃d proof(d , pGPA ∧ ¬GPAq).

a
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The First Incompleteness Theorem

Question.

If PA 0 GPA could one not just consider instead PA+ GPA?
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Reactions to the First Incompleteness Theorem

However complicated a machine we construct, it will, if it is a
machine, correspond to a formal system, which in turn will be liable
to the Gödel procedure for �nding a formula unprovable in that
system. This formula the machine will be unable to produce as

true, although a mind can see that it is true. And so the machine
will not be an adequate model of the mind.

J.R. Lucas, in �Minds, Machines and Gödel�.
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Reactions to the First Incompleteness Theorem

Either mathematics is incompletable [...], that its evident axioms
can never be comprised in a �nite rule, that is to say, the human
mind (even within the realm of pure mathematics) ini�nitely

surpasses the powers of any �nite machine, or there exist absolutely
unsolvable diophantine equations

K. Gödel.
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Undecidability

De�nition

A theory T is decidable, if there is an algorithm with decides
whether ϕ follows from the axioms of T or not.

Complete theories are always decidable.
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Recursion Theory

De�nition

A predicate P is said to be representable if there is a formula ϕ(x)
such that

1 if N |= P(n) then PA ` ϕ(n)
2 if N |= ¬P(n) then PA ` ¬ϕ(n).

Example

�n is even� can be represented by ∃y(x = 2 · y + 1).

Theorem (Representation Theorem)

All recursive functions and predicates are representable in PA.
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Undecidability

Theorem (Church's Theorem)

PA ist undecidable.

Sqetch of the proof.

If not, then PA ` α is recursive, i.e. there is ϕ(x) such that

1 PA ` α⇒ PA ` ϕ(pαq)
2 PA 0 α⇒ PA ` ¬ϕ(pαq).

Diagonalization Lemma ⇒ there is σ with σ ≡ ¬ϕ(pσq).
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Theorem (Church's Theorem)

PA ist undecidable.

Sqetch of the proof.
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De�nability of truth

Question.

Can truth in N be de�ned?

De�nition

A formula ϕ is true in N if N |= ϕ.

A formula T (x) is a truth predicate for N, if
N |= ϕ ⇔ N |= T (pϕq) for every formula ϕ.
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Unde�nability of truth

Theorem (Tarski)

Truth in N is not de�nable.

Beweis.

Assume that T (x) is a truth predicate. Diagonalization Lemma ⇒
there is a sentence L such that PA ` L↔ ¬T (pLq). Therefore
N |= L↔ ¬T (pLq)↔ ¬L. a

Regula Krapf I am no title.



Introduction
First-order logic and Peano Arithmetic

Models of Peano Arithmetic
The First Incompleteness Theorem

The Second Incompleteness Theorem
Conclusions

Unde�nability of truth

Theorem (Tarski)

Truth in N is not de�nable.

Beweis.

Assume that T (x) is a truth predicate. Diagonalization Lemma ⇒
there is a sentence L such that PA ` L↔ ¬T (pLq). Therefore
N |= L↔ ¬T (pLq)↔ ¬L. a

Regula Krapf I am no title.



Introduction
First-order logic and Peano Arithmetic

Models of Peano Arithmetic
The First Incompleteness Theorem

The Second Incompleteness Theorem
Conclusions

Unde�nability of truth

Theorem (Tarski)

Truth in N is not de�nable.

Beweis.

Assume that T (x) is a truth predicate. Diagonalization Lemma ⇒
there is a sentence L such that PA ` L↔ ¬T (pLq). Therefore
N |= L↔ ¬T (pLq)↔ ¬L. a

Regula Krapf I am no title.



Introduction
First-order logic and Peano Arithmetic

Models of Peano Arithmetic
The First Incompleteness Theorem

The Second Incompleteness Theorem
Conclusions

The Second Incompleteness Theorem

What does consistency PA of mean?

De�nition

De�ne ConPA by ¬provable(p0 = 1q).

Question

Does PA ` ConPA hold?
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Paradoxon

A student asks his theology professor whether God exists and gets
the following answer:
�God exists if and only if you will never believe that God exists."
Can the student believe the professor without becoming
inconsistent?
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The Second Incompleteness Theorem

Theorem (The Second Incompleteness Theorem)

If PA is consistent then PA 0 ConPA.
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The Derivability Conditions

We de�ne for an LPA-formula ϕ

�ϕ :↔ provable(pϕq).

Theorem (Derivability Conditions)

Let ϕ and ψ be LPA-formulas. Then:

(D1) PA ` ϕ⇒ PA ` �ϕ
(D2) PA ` �(ϕ→ ψ)→ (�ϕ→ �ψ)
(D3) PA ` �ϕ→ ��ϕ.
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The Second Incompleteness Theorem

Beweis.

Diagonalization Lemma ⇒ there exists a closed LPA-formula σ
such that σ ≡PA ¬�σ.

Using (D3) we get �σ ≡PA �σ ∧��σ.

ConPA ≡PA ¬�(σ ∧ ¬σ) ≡PA ¬�(σ ∧�σ) ≡PA

¬(�σ ∧��σ) ≡PA ¬�σ ≡PA σ.

If we have PA ` σ, then PA ` �σ by (D1), which is a
contradiction. a
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Consequences

Every axiom system which is powerful enough to prove the
Incompleteness Theorems is either inconsistent or cannot prove its
own consistency.
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Heisenberg, Gödel, and Chomsky walk into a bar. Heisenberg looks
around the bar and says, �Because there are three of us and because
this is a bar, it must be a joke. But the question remains, is it funny
or not?� And Gödel thinks for a moment and says, �Well, because
we're inside the joke, we can't tell whether it is funny. We'd have to
be outside looking at it� And Chomsky looks at both of them and
says, �Of course it's funny. You're just telling it wrong.�
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