Determinacy of Infinite Games

Regula Krapf

University of Bonn

3. November 2014
Contents

1 Introduction

2 Open games

3 Determinacy and the Axiom of Choice

4 Axiom of Determinacy

5 The Perfect Subset Property
What are infinite games?

Player I chooses $x_0 \in \omega$, Player II chooses $x_1 \in \omega$ and so on.

Player I: x_0 x_2 x_4 ...

Player II: x_1 x_3 ...

This yields a sequence of natural numbers $x = \langle x_n \mid n \in \omega \rangle$, i.e. a real.

Alternative: all $x_n \in 2 = \{0, 1\}$.
What are infinite games?

Player I chooses $x_0 \in \omega$, Player II chooses $x_1 \in \omega$ and so on.

Player I: x_0, x_2, x_4, ...
Player II: x_1, x_3, ...

This yields a sequence of natural numbers $x = \langle x_n \mid n \in \omega \rangle$, i.e. a real.
Alternative: all $x_n \in 2 = \{0, 1\}$.
What are infinite games?

Player I chooses \(x_0 \in \omega \), Player II chooses \(x_1 \in \omega \) and so on.

Player I:
\[
\begin{array}{ccc}
& x_0 & \quad x_2 & \quad x_4 & \cdots \\
\end{array}
\]

Player II:
\[
\begin{array}{ccc}
& x_1 & \quad x_3 & \quad \cdots \\
\end{array}
\]

This yields a sequence of natural numbers \(x = \langle x_n \mid n \in \omega \rangle \), i.e. a real.

Alternative: all \(x_n \in 2 = \{0, 1\} \).
How to win an infinite game

- Given a **payoff set** \(A \subseteq \omega \omega \) (resp. \(\omega^2 \)), Player I wins, if \(x \in A \), otherwise Player II wins.

- A winning strategy for Player I is a map

\[
\sigma : \bigcup_{n \in \omega} 2^{n \omega} \rightarrow \omega
\]

such that Player I wins, if he plays as follows:

1. \(x_0 = \sigma(\emptyset) \);
2. Given \(x_0, \ldots, x_{2n+1} \), Player I plays \(x_{2n+2} = \sigma(\langle x_0, \ldots, x_{2n+1} \rangle) \).

Similarly for Player II.
How to win an infinite game

- Given a **payoff set** $A \subseteq \omega \omega$ (resp. $\omega 2$), Player I wins, if $x \in A$, otherwise Player II wins.

- A **winning strategy** for Player I is a map

\[\sigma : \bigcup_{n \in \omega} 2^n \omega \to \omega \]

such that Player I wins, if he plays as follows:

1. $x_0 = \sigma(\emptyset)$;
2. Given x_0, \ldots, x_{2n+1}, Player I plays $x_{2n+2} = \sigma(\langle x_0, \ldots, x_{2n+1} \rangle)$.

Similarly for Player II.
How to win an infinite game

- Given a **payoff set** \(A \subseteq \omega \omega \) (resp. \(\omega^2 \)), Player I wins, if \(x \in A \), otherwise Player II wins.

- A **winning strategy** for Player I is a map

 \[
 \sigma : \bigcup_{n \in \omega} 2^n \omega \to \omega
 \]

 such that Player I wins, if he plays as follows:

 1. \(x_0 = \sigma(\emptyset) \);
 2. Given \(x_0, \ldots, x_{2n+1} \), Player I plays \(x_{2n+2} = \sigma(\langle x_0, \ldots, x_{2n+1} \rangle) \).

 Similarly for Player II.
How to win an infinite game

- Given a payoff set \(A \subseteq \omega^\omega \) (resp. \(\omega^2 \)), Player I wins, if \(x \in A \), otherwise Player II wins.

- A winning strategy for Player I is a map

\[
\sigma : \bigcup_{n \in \omega} 2^n \omega \to \omega
\]

such that Player I wins, if he plays as follows:

1. \(x_0 = \sigma(\emptyset) \);
2. Given \(x_0, \ldots, x_{2n+1} \), Player I plays \(x_{2n+2} = \sigma(\langle x_0, \ldots, x_{2n+1} \rangle) \).

Similarly for Player II.
How to win an infinite game

- Given a payoff set $A \subseteq \omega \omega$ (resp. ω^2), Player I wins, if $x \in A$, otherwise Player II wins.

- A winning strategy for Player I is a map

 $\sigma : \bigcup_{n \in \omega} 2^n \omega \to \omega$

 such that Player I wins, if he plays as follows:

 1. $x_0 = \sigma(\emptyset)$;
 2. Given x_0, \ldots, x_{2n+1}, Player I plays $x_{2n+2} = \sigma(\langle x_0, \ldots, x_{2n+1} \rangle)$.

 Similarly for Player II.
Examples:

Is there a winning strategy for the games where $A \subseteq \omega \omega$ is given by...

- all eventually periodic sequences
- the set of all sequences where every natural number occurs at least once
- the set of all sequences where every natural number occurs infinitely often
- a countable set?
Examples:

Is there a winning strategy for the games where $A \subseteq \omega \omega$ is given by...

- all eventually periodic sequences
- the set of all sequences where every natural number occurs at least once
- the set of all sequences where every natural number occurs infinitely often
- a countable set?
So let’s play...

Examples:

Is there a winning strategy for the games where $A \subseteq \omega^\omega$ is given by...

- all eventually periodic sequences
- the set of all sequences where every natural number occurs at least once
- the set of all sequences where every natural number occurs infinitely often
- a countable set?
Examples:

Is there a winning strategy for the games where $A \subseteq \omega^\omega$ is given by...

- all eventually periodic sequences
- the set of all sequences where every natural number occurs at least once
- the set of all sequences where every natural number occurs infinitely often
- a countable set?
What is a winning strategy?

Definition

A *position* according to a strategy \(\sigma \) is a partial play such that the last play was played by the player using \(\sigma \).

Lemma

Let \(A \) be a payoff set. Assume that Player I (II) has a winning strategy \(\sigma \). If \(x \notin A \) (\(x \in A \)), then there is a position \(p \subseteq x \) according to \(\sigma \) such that whatever Player II (I) plays next, the consequent position according to \(\sigma \) is not contained in \(x \).
What is a winning strategy?

Definition

A **position** according to a strategy σ is a partial play such that the last play was played by the player using σ.

Lemma

Let A be a payoff set. Assume that Player I (II) has a winning strategy σ. If $x \notin A$ ($x \in A$), then there is a position $p \subseteq x$ according to σ such that whatever Player II (I) plays next, the consequent position according to σ is not contained in x.
Let’s define a topology on ω^ω, the so-called Baire space.

Basic clopen sets are given by

$$I_s = \{ x \in \omega^\omega | s \subseteq x \}$$

for $s \in <\omega^\omega$.

i.e. all sequences that start with the finite sequence s.
Let’s define a topology on ω^ω, the so-called Baire space.

Basic clopen sets are given by

$$l_s = \{ x \in \omega^\omega \mid s \subseteq x \}$$

for $s \in <\omega^\omega$.

i.e. all sequences that start with the finite sequence s.
Are all open sets determined?

Theorem (Gale-Stewart)

All open sets are determined.

Proof (Sketch).

Let $A \subseteq \omega \omega$ be open. Assume Player I has no winning strategy. Then at the position $\langle x_0 \rangle$ there must be x_1 such that Player I has no winning strategy at position $\langle x_0, x_1 \rangle$ etc. In general, Player II has a strategy τ such that at every position $\langle x_0, \cdots, x_{2n-1} \rangle$ Player I has no winning strategy. Then τ is a winning strategy for Player II: Otherwise let $x \in A$ be a play according to τ. Since A is open, there exists $s \in \omega \omega$ such that $x \in I_s \subseteq A$. But then Player I has a winning strategy at all positions later than s. Contradiction.

This uses the axiom of choice!
Theorem (Gale-Stewart)

All open sets are determined.

Proof (Sketch).

Let $A \subseteq \omega \omega$ be open. Assume Player I has no winning strategy. Then at the position $\langle x_0 \rangle$ there must be x_1 such that Player I has no winning strategy at position $\langle x_0, x_1 \rangle$ etc. In general, Player II has a strategy τ such that at every position $\langle x_0, \cdots, x_{2^n-1} \rangle$ Player I has no winning strategy. Then τ is a winning strategy for Player II: Otherwise let $x \in A$ be a play according to τ. Since A is open, there exists $s \in <\omega \omega$ such that $x \in I_s \subseteq A$. But then Player I has a winning strategy at all positions later than s. Contradiction.

This uses the axiom of choice!
Are all open sets determined?

Theorem (Gale-Stewart)

All open sets are determined.

Proof (Sketch).

Let \(A \subseteq \omega \omega \) be open. Assume Player I has no winning strategy. Then at the position \(\langle x_0 \rangle \) there must be \(x_1 \) such that Player I has no winning strategy at position \(\langle x_0, x_1 \rangle \) etc. In general, Player II has a strategy \(\tau \) such that at every position \(\langle x_0, \cdots, x_{2n-1} \rangle \) Player I has no winning strategy. Then \(\tau \) is a winning strategy for Player II: Otherwise let \(x \in A \) be a play according to \(\tau \). Since \(A \) is open, there exists \(s \in <\omega \omega \) such that \(x \in I_s \subseteq A \). But then Player I has a winning strategy at all positions later than \(s \). Contradiction.

This uses the axiom of choice!
Are all open sets determined?

Theorem (Gale-Stewart)

All open sets are determined.

Proof (Sketch).

Let \(A \subseteq \omega \omega \) be open. Assume Player I has no winning strategy. Then at the position \(\langle x_0 \rangle \) there must be \(x_1 \) such that Player I has no winning strategy at position \(\langle x_0, x_1 \rangle \) etc. In general, Player II has a strategy \(\tau \) such that at every position \(\langle x_0, \cdots, x_{2n-1} \rangle \) Player I has no winning strategy. Then \(\tau \) is a winning strategy for Player II: Otherwise let \(x \in A \) be a play according to \(\tau \). Since \(A \) is open, there exists \(s \in <\omega \omega \) such that \(x \in I_s \subseteq A \). But then Player I has a winning strategy at all positions later than \(s \). Contradiction.

This uses the axiom of choice!
Are all open sets determined?

Theorem (Gale-Stewart)

All open sets are determined.

Proof (Sketch).

Let \(A \subseteq \omega \omega \) be open. Assume Player I has no winning strategy. Then at the position \(\langle x_0 \rangle \) there must be \(x_1 \) such that Player I has no winning strategy at position \(\langle x_0, x_1 \rangle \) etc. In general, Player II has a strategy \(\tau \) such that at every position \(\langle x_0, \cdots, x_{2n-1} \rangle \) Player I has no winning strategy. Then \(\tau \) is a winning strategy for Player II: Otherwise let \(x \in A \) be a play according to \(\tau \). Since \(A \) is open, there exists \(s \in \omega \omega \) such that \(x \in I_s \subseteq A \). But then Player I has a winning strategy at all positions later than \(s \). Contradiction.

This uses the axiom of choice!
Is every set of reals determined?

No...

Theorem

There is a set of reals which is not determined.

Proof.

Idea: There are more sets of reals than strategies...

Enumerate all strategies \(\langle \sigma_\alpha \mid \alpha < 2^{\aleph_0} \rangle\) for Player I and all strategies \(\langle \tau_\alpha \mid \alpha < 2^{\aleph_0} \rangle\) for Player II. At every step choose reals \(a_\alpha, b_\alpha\) such that \(a_\alpha \notin \{b_\beta \mid \beta < \alpha\}\), \(b_\alpha \notin \{a_\beta \mid \beta < \alpha\}\) and \(a_\alpha\) can be obtained using strategy \(\sigma_\alpha\), \(b_\alpha\) using \(\tau_\alpha\) and starting with 0. Then

\[
B = \{b_\alpha \mid \alpha < 2^{\aleph_0}\}
\]

is not determined.
Is every set of reals determined?

No...

Theorem

There is a set of reals which is not determined.

Proof.

Idea: There are more sets of reals than strategies...

Enumerate all strategies \(\langle \sigma_\alpha \mid \alpha < 2^{\aleph_0} \rangle \) for Player I and all strategies \(\langle \tau_\alpha \mid \alpha < 2^{\aleph_0} \rangle \) for Player II. At every step choose reals \(a_\alpha, b_\alpha \) such that
\[
a_\alpha \notin \{ b_\beta \mid \beta < \alpha \}, \quad b_\alpha \notin \{ a_\beta \mid \beta < \alpha \}
\]
and \(a_\alpha \) can be obtained using strategy \(\sigma_\alpha \), \(b_\alpha \) using \(\tau_\alpha \) and starting with 0. Then
\[
B = \{ b_\alpha \mid \alpha < 2^{\aleph_0} \}
\]
is not determined.
Is every set of reals determined?

No...

Theorem

There is a set of reals which is not determined.

Proof.

Idea: There are more sets of reals than strategies...

Enumerate all strategies $\langle \sigma_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ for Player I and all strategies $\langle \tau_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ for Player II. At every step choose reals a_α, b_α such that $a_\alpha \notin \{ b_\beta \mid \beta < \alpha \}$, $b_\alpha \notin \{ a_\beta \mid \beta < \alpha \}$ and a_α can be obtained using strategy σ_α, b_α using τ_α and starting with 0. Then

$$B = \{ b_\alpha \mid \alpha < 2^{\aleph_0} \}$$

is not determined.
Is every set of reals determined?

No...

Theorem

There is a set of reals which is not determined.

Proof.

Idea: There are more sets of reals than strategies...

Enumerate all strategies $\langle \sigma_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ for Player I and all strategies $\langle \tau_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ for Player II. At every step choose reals a_α, b_α such that $a_\alpha \notin \{b_\beta \mid \beta < \alpha \}$, $b_\alpha \notin \{a_\beta \mid \beta < \alpha \}$ and a_α can be obtained using strategy σ_α, b_α using τ_α and starting with 0. Then

$$B = \{ b_\alpha \mid \alpha < 2^{\aleph_0} \}$$

is not determined.
Is every set of reals determined?

No...

Theorem

There is a set of reals which is not determined.

Proof.

Idea: There are more sets of reals than strategies...

Enumerate all strategies \(\langle \sigma_\alpha \mid \alpha < 2^{\aleph_0} \rangle \) for Player I and all strategies \(\langle \tau_\alpha \mid \alpha < 2^{\aleph_0} \rangle \) for Player II. At every step choose reals \(a_\alpha, b_\alpha \) such that

\[
 a_\alpha \notin \{ b_\beta \mid \beta < \alpha \}, \quad b_\alpha \notin \{ a_\beta \mid \beta < \alpha \}
\]

and \(a_\alpha \) can be obtained using strategy \(\sigma_\alpha \), \(b_\alpha \) using \(\tau_\alpha \) and starting with 0. Then

\[
 B = \{ b_\alpha \mid \alpha < 2^{\aleph_0} \}
\]

is not determined.
Is every set of reals determined?

No...

Theorem

There is a set of reals which is not determined.

Proof.

Idea: There are more sets of reals than strategies...

Enumerate all strategies $\langle \sigma_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ for Player I and all strategies $\langle \tau_\alpha \mid \alpha < 2^{\aleph_0} \rangle$ for Player II. At every step choose reals a_α, b_α such that $a_\alpha \notin \{b_\beta \mid \beta < \alpha \}$, $b_\alpha \notin \{a_\beta \mid \beta < \alpha \}$ and a_α can be obtained using strategy σ_α, b_α using τ_α and starting with 0. Then

$$B = \{b_\alpha \mid \alpha < 2^{\aleph_0} \}$$

is not determined.
Is every set of reals determined?

... but we have used the axiom of choice (AC)!

What if don’t have AC?

... and replace it by

Axiom of Determinacy (AD)
Every set of reals is determined.
Is every set of reals determined?

... but we have used the **axiom of choice (AC)**!

What if don’t have AC?

... and replace it by

Axiom of Determinacy (AD)

Every set of reals is determined.

?
Is every set of reals determined?

... but we have used the axiom of choice (AC)!

What if don’t have AC?

... and replace it by

Axiom of Determinacy (AD)

Every set of reals is determined.
What is the idea behind AD?

- Player I has a winning strategy means: $\exists x_0 \forall x_1 \exists x_2 \ldots (x \in A)$
- Player II has a winning strategy means: $\forall x_0 \exists x_1 \forall x_2 \ldots (x \notin A)$

AD states:

$$\neg (\exists x_0 \forall x_1 \exists x_2 \ldots (x \in A)) \iff \forall x_0 \exists x_1 \forall x_2 \ldots (x \notin A).$$
What is the idea behind AD?

- Player I has a winning strategy means: \(\exists x_0 \forall x_1 \exists x_2 \ldots (x \in A) \)
- Player II has a winning strategy means: \(\forall x_0 \exists x_1 \forall x_2 \ldots (x \not\in A) \)

AD states:

\[\neg (\exists x_0 \forall x_1 \exists x_2 \ldots (x \in A)) \leftrightarrow \forall x_0 \exists x_1 \forall x_2 \ldots (x \not\in A). \]
The Axiom of Determinacy

What is the idea behind AD?

- Player I has a winning strategy means: $\exists x_0 \forall x_1 \exists x_2 \ldots (x \in A)$
- Player II has a winning strategy means: $\forall x_0 \exists x_1 \forall x_2 \ldots (x \notin A)$

AD states:

$\neg (\exists x_0 \forall x_1 \exists x_2 \ldots (x \in A)) \iff \forall x_0 \exists x_1 \forall x_2 \ldots (x \notin A)$.
The Axiom of Determinacy

What is the idea behind AD?

- Player I has a winning strategy means: $\exists x_0 \forall x_1 \exists x_2 \ldots (x \in A)$
- Player II has a winning strategy means: $\forall x_0 \exists x_1 \forall x_2 \ldots (x \notin A)$

AD states:

$$\neg (\exists x_0 \forall x_1 \exists x_2 \ldots (x \in A)) \leftrightarrow \forall x_0 \exists x_1 \forall x_2 \ldots (x \notin A).$$
Consequences of AD

$\text{ZF}+\text{AD}$ has some very nice consequences:

- Every set of reals is Lebesgue measurable
- Every set of reals has the Baire property
- Every set of reals has the perfect subset property
- $\text{AC}_\omega(\mathbb{R})$ (every countable set of nonempty sets of reals has a choice function).
Consequences of AD

ZF+AD has some very nice consequences:

- Every set of reals is Lebesgue measurable
- Every set of reals has the Baire property
- Every set of reals has the perfect subset property
- $\text{AC}_\omega(\mathbb{R})$ (every countable set of nonempty sets of reals has a choice function).
Consequences of AD

ZF+AD has some very nice consequences:

- Every set of reals is Lebesgue measurable
- Every set of reals has the Baire property
- Every set of reals has the perfect subset property
- $\text{AC}_\omega(\mathbb{R})$ (every countable set of nonempty sets of reals has a choice function).
Consequences of AD

ZF+AD has some very nice consequences:

- Every set of reals is Lebesgue measurable
- Every set of reals has the Baire property
- Every set of reals has the perfect subset property
- \(AC_{\omega}(\mathbb{R}) \) (every countable set of nonempty sets of reals has a choice function).
Consequences of AD

$\text{ZF}+\text{AD}$ has some very nice consequences:

- Every set of reals is Lebesgue measurable
- Every set of reals has the Baire property
- Every set of reals has the perfect subset property
- $\text{AC}_\omega(\mathbb{R})$ (every countable set of nonempty sets of reals has a choice function).
1878, Georg Cantor formulated the Continuum Hypothesis (CH)

\[\aleph_1 = 2^{\aleph_0}, \text{ i.e. every uncountable set has cardinality at least } 2^{\aleph_0}. \]

- \(\aleph_0 = \) cardinality of \(\omega \)
- \(\aleph_1 = \) the least uncountable cardinal number
- \(2^{\aleph_0} = \) cardinality of \(\mathbb{R} = \mathcal{P}(\omega) \) (the continuum)
1878, Georg Cantor formulated the

The Continuum Hypothesis (CH)

\[\mathcal{N}_1 = 2^{\mathcal{N}_0}, \text{ i.e. every uncountable set has cardinality at least } 2^{\mathcal{N}_0}. \]

- \(\mathcal{N}_0 = \) cardinality of \(\omega \)
- \(\mathcal{N}_1 = \) the least uncountable cardinal number
- \(2^{\mathcal{N}_0} = \) cardinality of \(\mathbb{R} = \mathcal{P}(\omega) \) (the continuum)
The Perfect Subset Property

Definition

A set of reals is said to be **perfect**, if it is closed, non-empty and has no isolated points.

In order to prove CH, Cantor postulated

The Perfect Subset Property (PSP)

Every set of reals is either countable or contains a perfect subset.
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A set of reals is said to be perfect, if it is closed, non-empty and has no isolated points.</td>
</tr>
</tbody>
</table>

In order to prove CH, Cantor postulated

<table>
<thead>
<tr>
<th>The Perfect Subset Property (PSP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every set of reals is either countable or contains a perfect subset.</td>
</tr>
</tbody>
</table>
The Perfect Subset Property

Theorem (Cantor-Bendixson)

Every closed set of reals satisfies the PSP.

Sketch of the proof.

For $C \subseteq \omega^\omega$, let C' be the set of limit points of C. Define iteratively,

- $C_0 = C$.
- $C_{\alpha+1} = C'$.
- $C_\alpha = \bigcap_{\beta < \alpha} C_\beta$, if α is a limit ordinal.

Then $\bigcup_{\alpha < \omega_1} C_\alpha \setminus C_{\alpha+1}$ is countable, so the sequence $\langle C_\alpha | \alpha < \omega_1 \rangle$ stabilizes after countably many steps. Then $P = \bigcap_{\alpha < \omega_1} C_\alpha$ is perfect.
The Perfect Subset Property

Theorem (Cantor-Bendixson)

Every closed set of reals satisfies the PSP.

Sketch of the proof.

For $C \subseteq \omega^\omega$, let C' be the set of limit points of C. Define iteratively,

- $C_0 = C$.
- $C_{\alpha+1} = C'$.
- $C_\alpha = \bigcap_{\beta < \alpha} C_\beta$, if α is a limit ordinal.

Then $\bigcup_{\alpha < \omega_1} C_\alpha \setminus C_{\alpha+1}$ is countable, so the sequence $\langle C_\alpha \mid \alpha < \omega_1 \rangle$ stabilizes after countably many steps. Then $P = \bigcap_{\alpha < \omega_1} C_\alpha$ is perfect.
The Perfect Subset Property

Theorem (Cantor-Bendixson)

Every closed set of reals satisfies the PSP.

Sketch of the proof.

For $C \subseteq \omega^\omega$, let C' be the set of limit points of C. Define iteratively,

- $C_0 = C$.
- $C_{\alpha+1} = C'_\alpha$.
- $C_\alpha = \bigcap_{\beta < \alpha} C_\beta$, if α is a limit ordinal.

Then $\bigcup_{\alpha < \omega_1} C_\alpha \setminus C_{\alpha+1}$ is countable, so the sequence $\langle C_\alpha \mid \alpha < \omega_1 \rangle$ stabilizes after countably many steps. Then $P = \bigcap_{\alpha < \omega_1} C_\alpha$ is perfect.
The Perfect Subset Property

Theorem (Cantor-Bendixson)

Every closed set of reals satisfies the PSP.

Sketch of the proof.

For $C \subseteq \omega^2$, let C' be the set of limit points of C. Define iteratively,

- $C_0 = C$.
- $C_{\alpha+1} = C'_{\alpha}$.
- $C_\alpha = \bigcap_{\beta < \alpha} C_\beta$, if α is a limit ordinal.

Then $\bigcup_{\alpha < \omega_1} C_\alpha \setminus C_{\alpha+1}$ is countable, so the sequence $\langle C_\alpha \mid \alpha < \omega_1 \rangle$ stabilizes after countably many steps. Then $P = \bigcap_{\alpha < \omega_1} C_\alpha$ is perfect.
The Perfect Subset Property

Theorem (Cantor-Bendixson)

Every closed set of reals satisfies the PSP.

Sketch of the proof.

For $C \subseteq \omega_\omega$, let C' be the set of limit points of C. Define iteratively,

- $C_0 = C$.
- $C_{\alpha+1} = C'$.
- $C_\alpha = \bigcap_{\beta<\alpha} C_\beta$, if α is a limit ordinal.

Then $\bigcup_{\alpha<\omega_1} C_\alpha \setminus C_{\alpha+1}$ is countable, so the sequence $\langle C_\alpha \mid \alpha < \omega_1 \rangle$ stabilizes after countably many steps. Then $P = \bigcap_{\alpha<\omega_1} C_\alpha$ is perfect.
The Perfect Subset Property

Theorem (Cantor-Bendixson)

Every closed set of reals satisfies the PSP.

Sketch of the proof.

For $C \subseteq \omega\omega$, let C' be the set of limit points of C. Define iteratively,

- $C_0 = C$.
- $C_{\alpha+1} = C'_\alpha$.
- $C_\alpha = \bigcap_{\beta < \alpha} C_\beta$, if α is a limit ordinal.

Then $\bigcup_{\alpha < \omega_1} C_\alpha \setminus C_{\alpha+1}$ is countable, so the sequence $\langle C_\alpha \mid \alpha < \omega_1 \rangle$ stabilizes after countably many steps. Then $P = \bigcap_{\alpha < \omega_1} C_\alpha$ is perfect.
The Perfect Subset Property

Theorem (Cantor-Bendixson)

Every closed set of reals satisfies the PSP.

Sketch of the proof.

For \(C \subseteq \omega_\omega \), let \(C' \) be the set of limit points of \(C \). Define iteratively,

- \(C_0 = C \).
- \(C_{\alpha + 1} = C' \).
- \(C_\alpha = \bigcap_{\beta < \alpha} C_\beta \), if \(\alpha \) is a limit ordinal.

Then \(\bigcup_{\alpha < \omega_1} C_\alpha \setminus C_{\alpha + 1} \) is countable, so the sequence \(\langle C_\alpha \mid \alpha < \omega_1 \rangle \) stabilizes after countably many steps. Then \(P = \bigcap_{\alpha < \omega_1} C_\alpha \) is perfect.

\[\]
Does every set of reals satisfy the PSP?

No...

Bernstein (1908) proved under AC

Theorem

There exists a set of reals A of cardinality 2^{\aleph_0} such that for every perfect set of reals P, $P \cap A \neq \emptyset$ and $P \setminus A \neq \emptyset$.
Does every set of reals satisfy the PSP?

No...

Bernstein (1908) proved under AC

Theorem

There exists a set of reals A of cardinality 2^{\aleph_0} such that for every perfect set of reals P, $P \cap A \neq \emptyset$ and $P \setminus A \neq \emptyset$.
The perfect set game

Player I chooses $s_0 \in <\omega^2$, Player II chooses $k_1 \in 2$ and so on.

For $A \subseteq \omega^2$, Player I wins iff

$$s_0 \sim \langle k_1 \rangle \sim s_2 \sim \langle k_3 \rangle \ldots \in A.$$
The perfect set game

Player I chooses $s_0 \in \omega^2$, Player II chooses $k_1 \in 2$ and so on.

Player I: $s_0 \quad s_2 \quad s_4 \quad \ldots$

Player II: $k_1 \quad k_3 \quad \ldots$

For $A \subseteq \omega^2$, Player I wins iff

$$s_0 \upharpoonright \langle k_1 \rangle \upharpoonright s_2 \upharpoonright \langle k_3 \rangle \ldots \in A.$$
The perfect set game

Player I chooses $s_0 \in \omega^\omega$, Player II chooses $k_1 \in 2$ and so on.

Player I:
\[s_0 \quad s_2 \quad s_4 \quad \ldots\]

Player II:
\[k_1 \quad k_3 \quad \ldots\]

For $A \subseteq \omega^\omega$, Player I wins iff

\[s_0 \bowtie \langle k_1 \rangle \bowtie s_2 \bowtie \langle k_3 \rangle \ldots \in A.\]
The perfect set game

Theorem (Davis, 1964)

For any set $A \subseteq \omega^2$,

1. A is countable iff Player II has a winning strategy.
2. A has a perfect subset iff Player I has a winning strategy.

Proof (Sketch).

1. Assume τ is a winning strategy for II. Then for any $x \in A$ there is a position p_x according to τ such that every consequent position is not contained in x. Then for any $x \neq y$ in A, $p_x \neq p_y$. Since there are only countably many positions, A is countable.
The perfect set game

Theorem (Davis, 1964)

For any set $A \subseteq \omega^2$,

1. *A is countable iff Player II has a winning strategy.*
2. *A has a perfect subset iff Player I has a winning strategy.*

Proof (Sketch).

1. Assume τ is a winning strategy for II. Then for any $x \in A$ there is a position p_x according to τ such that every consequent position is not contained in x. Then for any $x \neq y$ in A, $p_x \neq p_y$. Since there are only countably many positions, A is countable.
The perfect set game

Proof (continued).

Let \(P \subseteq A \) be perfect. Let

\[
T = \{ x \mid n \mid x \in P \land n \in \omega \}.
\]

Then define a strategy \(\sigma \) by

- \(\sigma(\emptyset) = s \in T \) such that \(s \upharpoonright \langle 0 \rangle, s \upharpoonright \langle 1 \rangle \in T \).
- Given a position \(p \) according to \(\sigma \) and \(q = p \upharpoonright \langle k \rangle \) where Player II plays \(k \), choose \(\sigma(q) \) to be some \(s \) such that
 \(q \upharpoonright s \upharpoonright \langle 0 \rangle, q \upharpoonright s \upharpoonright \langle 1 \rangle \in T \).

Conversely, if \(\sigma \) is a winning strategy, then the set of all reals resulting from plays according to \(\sigma \) is perfect.

\(\sqcup \)
Proof (continued).

Let $P \subseteq A$ be perfect. Let

$$T = \{ x \upharpoonright n \mid x \in P \land n \in \omega \}.$$

Then define a strategy σ by

1. $\sigma(\emptyset) = s \in T$ such that $s \upharpoonright \langle 0 \rangle, s \upharpoonright \langle 1 \rangle \in T$.
2. Given a position p according to σ and $q = p \upharpoonright \langle k \rangle$ where Player II plays k, choose $\sigma(q)$ to be some s such that $q \upharpoonright s \upharpoonright \langle 0 \rangle, q \upharpoonright s \upharpoonright \langle 1 \rangle \in T$.

Conversely, if σ is a winning strategy, then the set of all reals resulting from plays according to σ is perfect.
Let $P \subseteq A$ be perfect. Let

$$T = \{ x \upharpoonright n \mid x \in P \land n \in \omega \}. $$

Then define a strategy σ by

- $\sigma(\emptyset) = s \in T$ such that $s \upharpoonright \langle 0 \rangle, s \upharpoonright \langle 1 \rangle \in T$.
- Given a position p according to σ and $q = p \upharpoonright \langle k \rangle$ where Player II plays k, choose $\sigma(q)$ to be some s such that $q \upharpoonright s \upharpoonright \langle 0 \rangle, q \upharpoonright s \upharpoonright \langle 1 \rangle \in T$.

Conversely, if σ is a winning strategy, then the set of all reals resulting from plays according to σ is perfect.
Proof (continued).

Let $P \subseteq A$ be perfect. Let

$$T = \{ x \upharpoonright n \mid x \in P \land n \in \omega \}.$$

Then define a strategy σ by

- $\sigma(\emptyset) = s \in T$ such that $s \upharpoonright \langle 0 \rangle, s \upharpoonright \langle 1 \rangle \in T$.
- Given a position p according to σ and $q = p \upharpoonright \langle k \rangle$ where Player II plays k, choose $\sigma(q)$ to be some s such that $q \upharpoonright s \upharpoonright \langle 0 \rangle, q \upharpoonright s \upharpoonright \langle 1 \rangle \in T$.

Conversely, if σ is a winning strategy, then the set of all reals resulting from plays according to σ is perfect.
Corollary

Under AD, every set of reals satisfies the PSP.

Theorem (Cantor, 1884)

Every perfect set of reals has cardinality 2^\aleph_0.

AD implies a weak form of CH:

Every uncountable set of reals has the cardinality of the continuum.
Corollary

Under AD, every set of reals satisfies the PSP.

Theorem (Cantor, 1884)

Every perfect set of reals has cardinality \(2^{\aleph_0}\).

AD implies a weak form of CH:

Every uncountable set of reals has the cardinality of the continuum.
Corollary

Under AD, every set of reals satisfies the PSP.

Theorem (Cantor, 1884)

Every perfect set of reals has cardinality 2^{\aleph_0}.

AD implies a weak form of CH:

Every uncountable set of reals has the cardinality of the continuum.
Conclusion:

A set theorist is a mathematician who doesn’t know what the real numbers are.

Thank you for your attention!
Conclusion:

A set theorist is a mathematician who doesn’t know what the real numbers are.

Thank you for your attention!