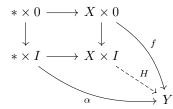
Sheet 10: More homotopy theory FLORIAN KRANHOLD

Topology 2, summer term 2019

1. π_1 -ACTION ON BASED MAPS

Reminder 1.1. Let (X, x) be well-pointed (i. e. $* \hookrightarrow X, * \mapsto x$ is a cofibration) and Y another space. For each path $\alpha : I \longrightarrow Y$ from y to y' and $f : X \longrightarrow Y$ with f(x) = y, we consider the homotopy extension



and define $\alpha_{\#}f := H(-,1)$. Then $\alpha_{\#}f : (X,x) \longrightarrow (Y,\alpha(1))$ is based and the homotopy type $[\alpha_{\#}f] \in [(X,x), (Y,y')]$ only depends on $[\alpha] \in \Pi_1(Y)$ and $[f] \in [(X,x), (Y,y)]_*$. This gives an action

$$\Pi_1(Y)(y,y') \times [(X,x),(Y,y)]_* \longrightarrow [(X,x),(Y,y')]_*$$

which generalises the Π_1 -action on the homotopy groups.

Proposition 1.2. Let (X, x) again be well-pointed, Y connected and choose $y \in Y$. Then the following relaxation is surjective:

$$R: [X,Y]_* \longrightarrow [X,Y], [f]_* \longmapsto [f]$$

Proof. Let $f: X \longrightarrow Y$ and define y' := f(x). Choose a path $\alpha : I \longrightarrow Y$ from y to y'. By construction $\alpha_{\#}^{-}f$ is a based map $(X, x) \longrightarrow (Y, y)$ and the map $H: X \times I \longrightarrow Y$ from above is a (free!) homotopy from f to $\alpha_{\#}^{-}f$, so we get

$$[f] = R\left([\alpha_{\#}^{-}f]_{*}\right).$$

Proposition 1.3. In the same setting, we have a group action of $\pi_1(Y)$ on $[X,Y]_*$ and the relaxation R is precisely the projection to the quotient $[X,Y]_* \longrightarrow [X,Y]_*/\pi_1(Y)$.

Proof. For two based maps $f, g: (X, x) \longrightarrow (Y, y)$, it is enough to show that $f \simeq g$ iff $[g]_* = [\alpha_{\#} f]_*$ for some based $\alpha: I \longrightarrow Y$.

- $(\Rightarrow) \text{ If } [g]_* = [\alpha_\# f]_*, \text{ there is a } H: X \times I \longrightarrow Y \text{ with } H(-,0) = f \text{ and } H(-,1) \simeq g, \text{ so } f \simeq g.$
- (\Leftarrow) Let $H: X \times I \longrightarrow Y$ be a homotopy from f to g, we consider $\alpha := H(x, -): I \longrightarrow Y$. Then $\alpha(0) = \alpha(1) = y$ and $[\alpha_{\#}f]_* = [g]_*$.

2. $\mathbb{R}P^{\infty}$ and a counterexample

Proposition 2.1. $\pi_1(\mathbb{R}P^{\infty}) = \mathbb{Z}_2$ and $\pi_i(\mathbb{R}P^{\infty}) = 0$ for $i \geq 2$.

- *Proof.* Consider $\mathbb{S}^{\infty} := \varinjlim \mathbb{S}^n$. Then $\pi_i(\mathbb{S}^{\infty}) = 0$: Let $f : \mathbb{S}^i \longrightarrow \mathbb{S}^{\infty}$ a based map, then by compactness $\operatorname{im}(f) \subseteq \mathbb{S}^n$ for some $n \in \mathbb{N}$. By cellular approximation, f can be contracted inside \mathbb{S}^{n+1} , in particular $f \simeq 0$ as a map to \mathbb{S}^{∞} .
 - We know that $\mathbb{R}P^{\infty} = \mathbb{S}^{\infty}/\mathbb{Z}^*$ where \mathbb{Z}^* describes the antipodal action. As \mathbb{S}^{∞} is weakly contractible, we get $\pi_1(\mathbb{R}P^{\infty}) = \mathbb{Z}^* = \mathbb{Z}_2$ and $\pi_i(\mathbb{R}P^{\infty}) = \pi_i(\mathbb{S}^{\infty}) = 0$ for $i \geq 2$. \Box

Example 2.2. Consider the spaces $X := \mathbb{R}P^2$ and $Y := \mathbb{R}P^{\infty} \times \mathbb{S}^2$.

- It is not true that $X \simeq Y$: We see by KÜNNETH $H_2(Y; \mathbb{Z}_2) = H_2(\mathbb{R}P^{\infty}; \mathbb{Z}_2) \oplus H_2(\mathbb{S}^2; \mathbb{Z}_2) = \mathbb{Z}_2^2 \neq \mathbb{Z}_2 = H_2(X; \mathbb{Z}_2).$
- We have $\pi_i(Y) = \pi_i(\mathbb{R}P^\infty) \times \pi_i(\mathbb{S}^2) = \pi_i(X)$ for all $i \in \mathbb{N}$.

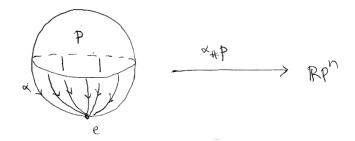
3. π_1 -ACTION ON $\pi_n(\mathbb{R}P^n)$

Remark 3.1. We know $\mathbb{R}P^1 \cong \mathbb{S}^1$ and $\pi_1(\mathbb{R}P^1) = \mathbb{Z}$ acts on itself by conjugation. As $\pi_1(\mathbb{R}P^1)$ is abelian, the action is trivial.

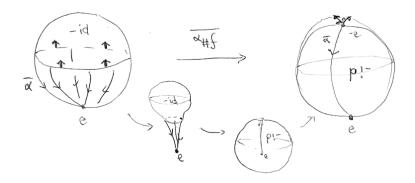
Proposition 3.2. Let $n \ge 2$. Then $\pi_1(\mathbb{R}P^n) = \mathbb{Z}^*$ acts on $\pi_n(\mathbb{R}P^n)$ by $(\pm 1)^{n+1}$.

Proof. For technical reasons, let $e = (0, \ldots, 0, -1) \in \mathbb{S}^n$ and $\mathbb{S}^n_{\pm} := \{\pm x_n \ge 1\} \subseteq \mathbb{S}^n$.

- Consider $p : (\mathbb{S}^n, e) \longrightarrow (\mathbb{R}P^n, *)$ and recall that $p_* : \pi_1(\mathbb{S}^n, e) \longrightarrow \pi_n(\mathbb{R}P^n, *)$ is an isomorphism with the following inverse: Given $f : (\mathbb{S}^n, e) \longrightarrow (\mathbb{R}P^n, *)$, we have a unique lift $\overline{f} : (\mathbb{S}^n, e) \longrightarrow (\mathbb{S}^n, e)$. We have isomorphism deg : $\pi_n(\mathbb{R}P^n, *) = \pi_n(\mathbb{S}^n, e) = [\mathbb{S}^n, \mathbb{S}^n] \longrightarrow \mathbb{Z}$.
- Consider the generator $\alpha: I \longrightarrow \mathbb{R}P^n$. As $\deg([p]) = 1$, it is enough to show $\deg([\alpha_{\#}p]) = (-1)^{n+1}$. First, we see that α^- lifts to $\overline{\alpha}^-: I \longrightarrow \mathbb{S}^n$ from e to -e. By definition, $\alpha_{\#}p:(\mathbb{S}^n, e) \longrightarrow (\mathbb{R}P^n, *)$ is (up to relative homotopy) of the following form: On \mathbb{S}^n_- we have $(x_0, \ldots, x_n) \longmapsto \alpha(-x_n)$, the arcwise realisation of α^- , and on \mathbb{S}^n_+ , we have the rescaled p.



• The lift $\overline{\alpha_{\#}p}$ of $\alpha_{\#}p$ is of the following form: On \mathbb{S}^n_- , we have the arcwise realisation of $\overline{\alpha}^-$, so we go from e to -e, and \mathbb{S}^n_+ , we have the (rescaled) lift of p, now at the *different* point -e at the fibre, which is given by -id.



• As the degree factors over the unbsed homotopy classes, we can contract the path and get that $\overline{\alpha_{\#}p} \simeq -id$ and as desired $\deg[\alpha_{\#}p] = \deg(-id) = (-1)^{n+1}$.

4. Freudenthal

Reminder 4.1. (I) A based space (X, x) is called *n*-connected, if $\pi_i(X, x) = 0$ for $i \leq n$.

(II) A based map $f: (X, x) \longrightarrow (Y, y)$ is called *n*-equivalence if $\pi_i(f)$ is an isomorphism for $i \leq n$ and $\pi_{n+1}(f)$ is an epimorphism.

Proposition 4.2. Let Y be well-based and n-connected. Then the unit $\eta : Y \longrightarrow \Omega \Sigma Y$ is a 2n-equivalence.

Proof. Using the $\Omega\Sigma$ -adjunction, we get a diagram

$$\begin{array}{ccc} [f] & \longmapsto & [\Sigma f] \\ \pi_k(Y) & \xrightarrow{\Sigma} & \pi_{k+1}(\Sigma Y) \\ & & & & \|_{\Phi} \\ & & & & \pi_k(\Omega \Sigma X), \end{array}$$

so it is enough to show that $\Sigma : \pi_k(Y) \longrightarrow \pi_{k+1}(\Sigma Y)$ is an isomorphism for $k \leq 2n$ and an epimorphism for k = 2n + 1, which is exactly the FREUDENTHAL SUSPENSION THEOREM. \Box

Corollary 4.3. Let (X, x) be a based cell-complex and Y as before. Consider

$$\Sigma : [X, Y]_* \longrightarrow [\Sigma X, \Sigma Y]_*$$

If $\dim(X) \leq 2n$, then Σ is an isomorphism, and if $\dim(X) \leq 2n + 1$, Σ is epic.

Proof. This is an immediate consequence from WHITEHEAD'S THEOREM in the first version:

Let $e: Y \longrightarrow Z$ be an *m*-equivalence. If $\dim(X) \leq m$, then $e_*: [X,Y]_* \longrightarrow [X,Z]_*$ is an isomorphism and if $\dim(X) \leq m+1$, then e_* is epic.

Applying this to m = 2n and $e = \eta$, we get that η_* has the desired properties, so we use the adjunction $[X, \Omega \Sigma Y]_* = [\Sigma X, \Sigma Y]_*$ once more to get the statement for $\Sigma = \Phi^{-1} \circ \eta_*$. \Box