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FLORIAN KRANHOLD

Topology 2, summer term 2019

1. MONOID OBJECTS

Definition 1.1. Let C be a category with finite products (in particular, a terminal object x). A
monoid object is a triple (X, u,e) where X € ob(C') and pp: X x X — X and e : * — X with

1x X 1x X x1
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A homomorphism ¢ : (X, p,e) — (X', 1/, €') is a morphism ¢ : X — X’ such that poe =€’ and
1 o (¢ X ) = @opu. This defines a category Mon(C).

Remark 1.2. Dually, if C has finite coproducts (in particular, an initial object &), a comonoid
object is (Y,v,¢) withv: Y — YUY and ¢: Y — @. Homomorphisms ¢ : (Y,v,¢) — (Y, v/, )
are maps ¢ : Y — Y’ with ¢ 09) = c and (¢ + ) ov = v/ 01p. This defines a category Comon(C).

Proposition 1.3.

o A monoid structure on X is the same as a functor F : C°? — Mon which lifts the functor
C(—,X):C° — Set over U : Mon — Set.

o A comonoid structure on X is the same as a functor G : C — Mon which lifts the functor
C(X,—):C — Set over U : Mon — Set.

Proof. For duality reasons, we only have to prove the first statement:

(1) Let (u,€) be a monoid structure on X. We define a monoid structure on C(W, X)) by

Jix foi=po(fi, f2),
€c(W,X) = €0 Xy € C(W,X)

where *y : W — * denotes the terminal morphism. We check everthing which is necessary:

o Associativity. We see

(fi* f2) * fs=po [(wo (f1,f2)), f3]

= (po(px1x))o(f1, f2 f3)
= (po(Ix x p))o(f1,f2, f3)
= fix(f2* f3).

o Unitality. We see
fxecwx)y=po(fieoxw)=po(lx xe)o(f,*w)=f.
o Forg:V — W, the map g* : C(W,X) — C(V, X) is a homomorphism. We see
9*(60(W,x)) =eécw,x)°g=¢€o (xwog) =eoxy = €c(V,X)

by the uniqueness of the terminal arrow V' — . Moreover, we get

g (fix fa) = pmo (f1, fo) og=po(f1g, f29) = (9" f1) % (9" f2).



(1r) Conversely, let C'(W, X) carry a monoid structure (%, ec(w,x)) for each W € ob(C) and let
the precompositions be homomorphisms. We define
e = eg(xx) € O, X),
p:= pry * pry € C(X?, X).
Let us introduce pr? : X? — X for 1 <i < 3 and pr¥/ : X? — X2 for 1 <i < j < 3. Then
f:=1x x (pry X pry) : X3 — X? satisfies pr; o f = pr! and pry o f = (pry *x pry) o pr?® =
pr? « pr®. We see that
po (1x x p) = [pryo(1x x (pry *pry))] * [pry o (1x X (pry *pry))]

= pr' x ((pry * pry) o pr*)

= pr! % pr? x pr?

= po (uxlx).

Now let pr! : X x x — X and pr?: X x * — *. We get

po(lx xe)=[pryo(lx xe)]*[pryo(lx x€)]
=pr' x (ecx,x) 0 pr’)
= Pl“1 * €C(X x*,X)

= pI‘l. O

Proposition 1.4. If C has finite biproducts, every object admits both a unique monoid and a
unique comonoid structure.

Proof. We know by EXERCISE IV.1 that there is a unique way to enrich C' over Mon. This is the
same as lifting each C(—, X) and C'(X, —) over Mon — Set. O

Proposition 1.5. If X is a monoid object and Y is a comonoid object, the two induced monoid
structures on C(Y,X) coincide and are abelian.

Proof. Let (%,7) be the monoid structure coming from the monoid object (X, u,e) and (+,j) be
the monoid structure coming from the comonoid object (Y, v, c). Let’s write (f,g) : Y — X x X
as before, but [f, f'] : YUY — X. First, we see that the satisfy the interchange law: By the
universal property of product and coproduct, it is clear that

(If, 1,19, 97T) = [(f>9), (f', 9")]-

Therefore, we get

(fx9)-(f'xg) = [(f*9),(f *g)] ov
= [po(f.9)mo(f',g)]ov
= o [(f,9),(f" )}
=po (If. 9,97 ov
=(f-f)*g-9)
The rest of the proof is the famous ECKMANN-HILTON ARGUMENT for each two unital structures
satisfying the interchange law:

e j=j-j=(0xj) - (Gxi)=(i-§)*(j-i) =ixi=1,sojust write i = j =1,
o frg=Q0xf)-(gxl)=L-g)x(f-1)=gxf=(g-DxL-f)=(gx1)-Axf)=g-f.
It is even true that we can conclude associativity from this without assuming it:

o (frg)xh=(f-9)-(A-h)=(f-1)-(g-h)=[-(g-h) u

Definition 1.6. An H-space is a monoid object in Ho(Top, ). Dually, a co-H -space is a comonoid
object in Ho(Top,,).
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2. LOOP SPACES

Reminder 2.1. Let A be locally compact and Y an arbitrary space. The compact—open topology
is a topology on the set (A,Y) = Top(A,Y) of continous maps such that we have a bijection

O :=Px 4y :Top(X x A,Y) — Top(X, (4,Y)),
fr (2 (fo o f(@,0))),
(@.0) — g(@)(@)) =g
This means that the endofunctor — x A : Top — Top has a right adjoint (A, —) : Top — Top.

Remark 2.2. We see the following:
(1) There is a based version. Let (X, x0), (4, ag), (Y, yo) be based.

e Let (A,Y). be the subspace of based maps. This is again a based space with basepoint
the constant map cy, : a — yo. We have

Top, (X, (A,Y).) C Top(X,(A,Y).) C Top(X,(A,Y)).

e We have a projection pr: X xA — XA A and pr* : Top(XAA,Y) — Top(X xA,Y)
is injective as pr is epic. Therefore, we have an inclusion

Top, (X NA,Y) C Top(X ANA,Y) C Top(X x A,Y).
It is easy to check that ® restricts to a natural bijection
¥ : Top, (X NAY) — Top, (X, (A, Y).),

so the endofunctor — A A : Top, — Top, has a right adjoint (A, —), : Top, — Top,.

(11) Two maps f, f': X x A — Y are homotopic iff ®(f),®(f’) = are homotopic: The map
H: X xAxI=XxIxA—Y isahomotopy between f and f’ iff

(I)XXI,A,Y(H) X x I — <A,Y>

is a homotopy between ®x 4y (f) and ®x 4 y. Two based maps f,f : X NA — Y are
based homotopic iff U(f), ¥(f'): X — (A,Y), are based homotopic.

Proposition 2.3. The reduced suspension Y. : Ho(Top,) — Ho(Top,) has a right adjoint .

Proof. The sphere S! is locally compact. Define the loop space  := (S, ). : Top, — Top,.
This is right adjoint to — A S! = ¥. Now as the natural identification respects based homotopies,
this adjunction descends to the homotopy category:

[EX,Y]. = [X ASY Y], = [X,QY].. O
Proposition 2.4. Let X be a space.

(1) XX has a co-H-space structure,
(1) QX has an H-space structure.

Proof.

(1) Recall that the coproduct in Ho(Top,) is given by the wedge sum V. The comultiplication
is given by the equatorial squeeze v : XX — XX V XX, the counit is just the terminal
morphism ¢ : X — *. Associativity and unitality can proven pictorially by:

@::%
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(11) The multiplication is given by the concatenation of paths p: QX x QX — QX the unit is
the based map e : * — QX, % — ¢;,. Associativity and unitality are proven in the same
way we checked the group axioms for the 71 (X):

(L = ol Cng L.
:'K‘ Akl X :
O
Proposition 2.5.
(1) If X is an H-space, then m1(X,e) is abelian.
(1) (X, x0) is abelian for each based (X, xg) and k > 2.
Proof. (1) Wesee m1(X,e) = [£S%, X]. and the left side is a comonoid, the right side is a monoid.

The ECKMANN-HILTON ARGUMENT from the last exercise yields abelianity.

(11) We see 74 (X, x0) = [82SF72, X]. = [£SF~2, QX]. and again, the left side is a comonoid, the
right side is a monoid. O

3. II{-ACTION ON HIGHER HOMOTOPY GROUPS

Reminder 3.1. Recall that 7, (X, z) = [(I",0I"), (X, x0)]. We have a IIj-action on 7, (X, ) as
follows: Given a relative map f : (I",0I") — (X, 1) and a path a : I — X from z; to z2, we
just choose any map H : I" x I — X with:

[

e H(—,0): (I",0I") — (X, 1) is homotopic to f,
e H(z,—):I — X is homotopicto « for each z € 9I". L7 5

Such an H always exists and we define

agf: (I",0I") — (X, x2),z — H(z,1).

The homotopy type of ax f only depends on the homotopy type of f and «, not on the choice of
H. Hence, we get a map

L (X) (21, 22) X 7 (X, 1) — w0 (X, 22), ([], [f]) — ag[f] = [apf].
Proposition 3.2. Let X be a connected H-space. Then the I11-action on m, is trivial.

Proof. We have to see that for each two paths a, 5 : I — X from z; to z2, we have ay = fyu:
(1) Choose a path v from e to z;. It is enough to show that Yy © ﬂq; o oy 0 vy = id, because

=id

oy = Py 0 Y4 0 Vy 06; O Qi O Y Oy
=PBpovsovy
= By
This leaves us to show that if o : I — X is a loop based in e, then ay = idy.
(1) Let f: (I™,0I") — (X, e). Consider the map
H" 1" < T — X, (2,t) — f(2) - a(t).

First of all, we see that if z € 9I™, then H(z,0) = H(z,1) = p(e,e) = e because the
multiplication p : (X x X, (e,e)) — (X, e) is a based map. Now we check:
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e Then H(—,0) = po(f xe)opr; " =po(lx xe)o (fpr;') where pr; : X x x — X.
We know that po (1x X e) is based homotopic to pry, so the homotopy H(—,0) ~ f
is a homotopy relative f~1(e) D 9I"™.

e For z € 9I"™, we have H(z,—) = po(ex a)opryt = po (e x 1x)o (apry'). As above,
the homotopy H(z, —) ~ « is a homotopy relative a~!(e) 2 {0, 1}.

Therefore, H is an admissible function as above and we get
ay(fl = [H(=, 1] = [f]. 0
Reminder 3.3. Recall that 7, (X, A, zo) = [(I™, 01", J"), (X, A, x0)] where
Jri=0I"\ (I " x {1}) = (a1 ' x I) U (I""" x {0}).
We have a connecting homomorpism
On 2 (X, A, o) = [(IM, 017, "), (X, A, o)) — [(I" 71, 01"71), (X, A)] = mpa,
[f] = [flm-1xqy] -

The extra assumption that f|;, = xg ensures that (0,[f])|grn—1 = x9. We have a 71 (A, zg)-action
on 7,(X, A, zp) as follows: Given a relative map f : (I",0I",J") — (X, A, xo) and a path
a: I — X, choose any map H : I" x I — X with:

n A 7

e H(—,0): (I™,0I",J") — (X, A, x0) is homotopic to f, 4——-/
e H(z,t) € Afor z € 0I™,

e H(z,—):1 — A is homotopic to « for z € J". ¥ /

X

Again, such an H always exists and the relative homotopy type of 3
H(—,1):(I",0I",J") — (X, A, x0) 5
does only depend on the homotopy type of f and «.
Proposition 3.4. d,, is equivariant, i. e. we have 0, (ax[f]) = ax(d,[f]).
Proof. Fix o and f and choose H as above. Consider the restriction to the green face
G(—,—):=H(—,1,-): I"" ' x I — A.
By construction, G(—,0) =~ f[/n-1x41} = 6, f and for z € AI"1, we have (z,1) € J", so we get
G(z,—)=H(z,1,-) =~ a.

Thus, G is an admissible map for constructing 40, [f] and we get

on(agf) = [H(=1,1)] = [G(=,1)] = ax(0n[f]). u



4. THE HOPF INVARIANT, PART 2

Proposition 4.1. Let M be a closed and oriented m-manifold. Then the mapping degree as a map
deg : m,, (M) — Z is a homomorphism.

Proof. Let f,g : S™ — M. We know that [f] + [g] has the homotopy type of (f V g)o v
where v : S — S™ Vv §™ is the equatorial squeeze. If we identify H,,(S™) = Z{[S™]) and
H,,(S™ Vv S™) = Z{[S™]1, [S™]2), we have a sequence

(f+g)*
Hop(S™) — 2 Ho(smvsm) —Y9 5 g )

Z([S™]) — 0 Z([S™]1, [S™]2) e Z([M]) .

Therefore, we get

(fVg) ov)[S™] = (fVg)s (™1 +[S™]2) = f+[S™] + g«[S™] = (deg(f) + deg(g)) - [M]. O

Proposition 4.2. The Hopf invariant h : w4, _1(S**) — Z is a homomorphism.

Proof. Let f,g:S*~! — §?". Consider the space Xfi, := e*™ Ly, S*" with 4n-cell B¢4, and
2n-cell afyg, and also X gy, = (e V el™) Upy, S with 4n-cells B, By and 2n-cell apyg.

(1) We have canonical inclusions i : X — X¢y4 and i, : X; — Xy, sending the 2n-cells
ay, g to agpyg and By to B} and 3, to B;. Therefore, we get itapvg = ayp and izapy, = ag
as well as i35} = B and iy 8; = B,. Note that i} + i} : HY(Xpyg) — H™(Xy) & H™(g)
is injective. We see

(i} +i5)ay, = aF +af = hBy + heBy = ({7 +iy) (hy - B} + hyBy)
so we conclude o, = hyf} 4 hefy.

(11) By collapsing e~ x {0} C e®™ — X, ,, we get a projection
pr: Xf+g — Xf\/g.

Apparently pr,Bsy, = B} + By, so pr*ﬂ} = pr'f; = Bf4y in cohomology. As pr is a
homeomorphism on the 2n-cells, we have pr*a’ = a. We conclude

o, = prasug = pr* (B + hyBl) = (hy + hy) - By O
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