Sheet 9: Elementary homotopy theory FLORIAN KRANHOLD

Topology 2, summer term 2019

1. Monoid objects

Definition 1.1. Let C be a category with finite products (in particular, a terminal object *). A *monoid object* is a triple (X, μ, e) where $X \in ob(C)$ and $\mu : X \times X \longrightarrow X$ and $e : * \longrightarrow X$ with

A homomorphism $\varphi : (X, \mu, e) \longrightarrow (X', \mu', e')$ is a morphism $\varphi : X \longrightarrow X'$ such that $\varphi \circ e = e'$ and $\mu' \circ (\varphi \times \varphi) = \varphi \circ \mu$. This defines a category Mon(C).

Remark 1.2. Dually, if *C* has finite coproducts (in particular, an initial object \varnothing), a *comonoid* object is (Y, ν, c) with $\nu : Y \longrightarrow Y \sqcup Y$ and $c : Y \longrightarrow \varnothing$. Homomorphisms $\psi : (Y, \nu, c) \longrightarrow (Y', \nu', c')$ are maps $\psi : Y \longrightarrow Y'$ with $c' \circ \psi = c$ and $(\psi + \psi) \circ \nu = \nu' \circ \psi$. This defines a category Comon(*C*).

Proposition 1.3.

- A monoid structure on X is the same as a functor $F: C^{op} \longrightarrow Mon$ which lifts the functor $C(-, X): C^{op} \longrightarrow Set$ over $U: Mon \longrightarrow Set$.
- A comonoid structure on X is the same as a functor $G: C \longrightarrow Mon$ which lifts the functor $C(X, -): C \longrightarrow Set$ over $U: Mon \longrightarrow Set$.

Proof. For duality reasons, we only have to prove the first statement:

(I) Let (μ, e) be a monoid structure on X. We define a monoid structure on C(W, X) by

$$f_1 \star f_2 := \mu \circ (f_1, f_2),$$
$$e_{C(W,X)} := e \circ *_W \in C(W,X)$$

where $*_W : W \longrightarrow *$ denotes the terminal morphism. We check everthing which is necessary:

• Associativity. We see

$$(f_1 \star f_2) \star f_3 = \mu \circ [(\mu \circ (f_1, f_2)), f_3]$$

= $(\mu \circ (\mu \times 1_X)) \circ (f_1, f_2, f_3)$
= $(\mu \circ (1_X \times \mu)) \circ (f_1, f_2, f_3)$
= $f_1 \star (f_2 \star f_3).$

• Unitality. We see

$$f \star e_{C(W,X)} = \mu \circ (f, e \circ *_W) = \mu \circ (1_X \times e) \circ (f, *_W) = f$$

• For $g: V \longrightarrow W$, the map $g^*: C(W, X) \longrightarrow C(V, X)$ is a homomorphism. We see

$$g^*(e_{C(W,X)}) = e_{C(W,X)} \circ g = e \circ (*_W \circ g) = e \circ *_V = e_{C(V,X)}$$

by the uniqueness of the terminal arrow $V \longrightarrow *$. Moreover, we get

$$g^*(f_1 \star f_2) = \mu \circ (f_1, f_2) \circ g = \mu \circ (f_1g, f_2g) = (g^*f_1) \star (g^*f_2).$$

(II) Conversely, let C(W, X) carry a monoid structure $(\star, e_{C(W,X)})$ for each $W \in ob(C)$ and let the precompositions be homomorphisms. We define

$$e := e_{C(*,X)} \in C(*,X),$$
$$\mu := \operatorname{pr}_1 \star \operatorname{pr}_2 \in C(X^2,X).$$

Let us introduce $\operatorname{pr}^i : X^3 \longrightarrow X$ for $1 \le i \le 3$ and $\operatorname{pr}^{ij} : X^3 \longrightarrow X^2$ for $1 \le i < j \le 3$. Then $f := 1_X \times (\operatorname{pr}_1 \times \operatorname{pr}_2) : X^3 \longrightarrow X^2$ satisfies $\operatorname{pr}_1 \circ f = \operatorname{pr}^1$ and $\operatorname{pr}_2 \circ f = (\operatorname{pr}_1 \star \operatorname{pr}_2) \circ \operatorname{pr}^{23} = \operatorname{pr}^2 \star \operatorname{pr}^3$. We see that

$$\begin{split} \mu \circ (\mathbf{1}_X \times \mu) &= \left[\mathrm{pr}_1 \circ (\mathbf{1}_X \times (\mathrm{pr}_1 \star \mathrm{pr}_2)) \right] \star \left[\mathrm{pr}_2 \circ (\mathbf{1}_X \times (\mathrm{pr}_1 \star \mathrm{pr}_2)) \right] \\ &= \mathrm{pr}^1 \star \left((\mathrm{pr}_1 \star \mathrm{pr}_2) \circ \mathrm{pr}^{23} \right) \\ &= \mathrm{pr}^1 \star \mathrm{pr}^2 \star \mathrm{pr}^3 \\ &= \mu \circ (\mu \times \mathbf{1}_X). \end{split}$$

Now let $pr^1 : X \times * \longrightarrow X$ and $pr^2 : X \times * \longrightarrow *$. We get

$$\mu \circ (1_X \times e) = \left[\operatorname{pr}_1 \circ (1_X \times e) \right] \star \left[\operatorname{pr}_2 \circ (1_X \times e) \right]$$
$$= \operatorname{pr}^1 \star (e_{C(*,X)} \circ \operatorname{pr}^2)$$
$$= \operatorname{pr}^1 \star e_{C(X \times *,X)}$$
$$= \operatorname{pr}^1.$$

Proposition 1.4. If C has finite biproducts, every object admits both a unique monoid and a unique comonoid structure.

Proof. We know by EXERCISE IV.1 that there is a unique way to enrich C over **Mon**. This is the same as lifting each C(-, X) and C(X, -) over **Mon** \longrightarrow **Set**. \Box

Proposition 1.5. If X is a monoid object and Y is a comonoid object, the two induced monoid structures on C(Y, X) coincide and are abelian.

Proof. Let (\star, i) be the monoid structure coming from the monoid object (X, μ, e) and (\cdot, j) be the monoid structure coming from the comonoid object (Y, ν, c) . Let's write $(f, g) : Y \longrightarrow X \times X$ as before, but $[f, f'] : Y \sqcup Y \longrightarrow X$. First, we see that the satisfy the *interchange law*: By the universal property of product and coproduct, it is clear that

$$([f, f'], [g, g']) = [(f, g), (f', g')].$$

Therefore, we get

$$(f \star g) \cdot (f' \star g') = \left[(f \star g), (f' \star g') \right] \circ \nu$$
$$= \left[\mu \circ (f, g), \mu \circ (f', g') \right] \circ \nu$$
$$= \mu \circ \left[(f, g), (f', g') \right] \circ \nu$$
$$= \mu \circ \left([f, f'], [g, g'] \right) \circ \nu$$
$$= (f \cdot f') \star (g \cdot g')$$

The rest of the proof is the famous ECKMANN–HILTON ARGUMENT for each two unital structures satisfying the interchange law:

• $j = j \cdot j = (i \star j) \cdot (j \star i) = (i \cdot j) \star (j \cdot i) = i \star i = i$, so just write i = j = 1,

$$f \cdot g = (1 \star f) \cdot (g \star 1) = (1 \cdot g) \star (f \cdot 1) = g \star f = (g \cdot 1) \star (1 \cdot f) = (g \star 1) \cdot (1 \star f) = g \cdot f.$$

It is even true that we can *conclude* associativity from this without assuming it:

• $(f \cdot g) \star h = (f \cdot g) \cdot (1 \cdot h) = (f \cdot 1) \cdot (g \cdot h) = f \cdot (g \cdot h).$

Definition 1.6. An *H*-space is a monoid object in $Ho(Top_*)$. Dually, a *co-H*-space is a comonoid object in $Ho(Top_*)$.

2. LOOP SPACES

Reminder 2.1. Let A be locally compact and Y an arbitrary space. The *compact-open topology* is a topology on the set $\langle A, Y \rangle = \mathbf{Top}(A, Y)$ of continuous maps such that we have a bijection

$$\begin{split} \Phi &:= \Phi_{X,A,Y} : \mathbf{Top}(X \times A, Y) \longrightarrow \mathbf{Top}(X, \langle A, Y \rangle), \\ f &\longmapsto \Big(x \longmapsto \big(f_x : a \longmapsto f(x, a) \big) \Big), \\ \Big((x, a) \longmapsto g(x)(a) \Big) \longleftrightarrow g \end{split}$$

This means that the endofunctor $- \times A : \mathbf{Top} \longrightarrow \mathbf{Top}$ has a right adjoint $\langle A, - \rangle : \mathbf{Top} \longrightarrow \mathbf{Top}$. **Remark 2.2.** We see the following:

Remark 2.2. We see the following:

- (I) There is a based version. Let $(X, x_0), (A, a_0), (Y, y_0)$ be based.
 - Let $\langle A, Y \rangle_*$ be the subspace of based maps. This is again a based space with basepoint the constant map $c_{y_0} : a \longmapsto y_0$. We have

 $\mathbf{Top}_*(X, \langle A, Y \rangle_*) \subseteq \mathbf{Top}(X, \langle A, Y \rangle_*) \subseteq \mathbf{Top}(X, \langle A, Y \rangle).$

• We have a projection $\operatorname{pr} : X \times A \longrightarrow X \wedge A$ and $\operatorname{pr}^* : \operatorname{Top}(X \wedge A, Y) \longrightarrow \operatorname{Top}(X \times A, Y)$ is injective as pr is epic. Therefore, we have an inclusion

$$\mathbf{Top}_*(X \land A, Y) \subseteq \mathbf{Top}(X \land A, Y) \subseteq \mathbf{Top}(X \times A, Y).$$

It is easy to check that Φ restricts to a natural bijection

$$\Psi : \mathbf{Top}_*(X \land A, Y) \longrightarrow \mathbf{Top}_*(X, \langle A, Y \rangle_*)$$

so the endofunctor $-\wedge A$: $\mathbf{Top}_* \longrightarrow \mathbf{Top}_*$ has a right adjoint $\langle A, - \rangle_* : \mathbf{Top}_* \longrightarrow \mathbf{Top}_*$.

(II) Two maps $f, f': X \times A \longrightarrow Y$ are homotopic iff $\Phi(f), \Phi(f') =$ are homotopic: The map $H: X \times A \times I = X \times I \times A \longrightarrow Y$ is a homotopy between f and f' iff

$$\Phi_{X \times I, A, Y}(H) : X \times I \longrightarrow \langle A, Y \rangle$$

is a homotopy between $\Phi_{X,A,Y}(f)$ and $\Phi_{X,A,Y}$. Two based maps $f, f' : X \land A \longrightarrow Y$ are based homotopic iff $\Psi(f), \Psi(f') : X \longrightarrow \langle A, Y \rangle_*$ are based homotopic.

Proposition 2.3. The reduced suspension $\Sigma : \operatorname{Ho}(\operatorname{Top}_*) \longrightarrow \operatorname{Ho}(\operatorname{Top}_*)$ has a right adjoint Ω .

Proof. The sphere \mathbb{S}^1 is locally compact. Define the *loop space* $\Omega := \langle \mathbb{S}^1, - \rangle_* : \mathbf{Top}_* \longrightarrow \mathbf{Top}_*$. This is right adjoint to $- \wedge \mathbb{S}^1 = \Sigma$. Now as the natural identification respects based homotopies, this adjunction descends to the homotopy category:

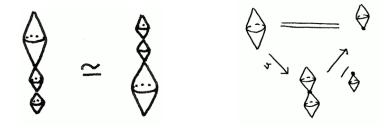
$$[\Sigma X, Y]_* = [X \land \mathbb{S}^1, Y]_* = [X, \Omega Y]_*.$$

Proposition 2.4. Let X be a space.

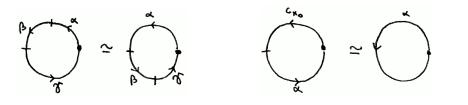
- (I) ΣX has a co-H-space structure,
- (II) ΩX has an H-space structure.

Proof.

(I) Recall that the coproduct in Ho(**Top**_{*}) is given by the wedge sum \lor . The comultiplication is given by the equatorial squeeze $\nu : \Sigma X \longrightarrow \Sigma X \lor \Sigma X$, the counit is just the terminal morphism $c : \Sigma X \longrightarrow *$. Associativity and unitality can proven pictorially by:



(II) The multiplication is given by the concatenation of paths $\mu : \Omega X \times \Omega X \longrightarrow \Omega X$, the unit is the based map $e : * \longrightarrow \Omega X, * \longmapsto c_{x_0}$. Associativity and unitality are proven in the same way we checked the group axioms for the $\pi_1(X)$:



Proposition 2.5.

- (I) If X is an H-space, then $\pi_1(X, e)$ is abelian.
- (II) $\pi_k(X, x_0)$ is abelian for each based (X, x_0) and $k \ge 2$.
- *Proof.* (I) We see $\pi_1(X, e) = [\Sigma S^0, X]_*$ and the left side is a comonoid, the right side is a monoid. The ECKMANN-HILTON ARGUMENT from the last exercise yields abelianity.
 - (II) We see $\pi_k(X, x_0) = [\Sigma^2 \mathbb{S}^{k-2}, X]_* = [\Sigma \mathbb{S}^{k-2}, \Omega X]_*$ and again, the left side is a comonoid, the right side is a monoid.

3. Π_1 -Action on higher homotopy groups

Reminder 3.1. Recall that $\pi_n(X, x_0) = [(I^n, \partial I^n), (X, x_0)]$. We have a Π_1 -action on $\pi_n(X, \cdot)$ as follows: Given a relative map $f : (I^n, \partial I^n) \longrightarrow (X, x_1)$ and a path $\alpha : I \longrightarrow X$ from x_1 to x_2 , we just choose *any* map $H : I^n \times I \longrightarrow X$ with:

- $H(-,0): (I^n, \partial I^n) \longrightarrow (X, x_1)$ is homotopic to f,
- $H(z, -): I \longrightarrow X$ is homotopic o α for each $z \in \partial I^n$.

Such an H always exists and we define

$$\alpha_{\#}f: (I^n, \partial I^n) \longrightarrow (X, x_2), z \longmapsto H(z, 1).$$

The homotopy type of $\alpha_{\#}f$ only depends on the homotopy type of f and α , not on the choice of H. Hence, we get a map

$$\Pi_1(X)(x_1, x_2) \times \pi_n(X, x_1) \longrightarrow \pi_n(X, x_2), ([\alpha], [f]) \longmapsto \alpha_{\#}[f] = [\alpha_{\#}f].$$

Proposition 3.2. Let X be a connected H-space. Then the Π_1 -action on π_n is trivial.

Proof. We have to see that for each two paths $\alpha, \beta : I \longrightarrow X$ from x_1 to x_2 , we have $\alpha_{\#} = \beta_{\#}$:

(I) Choose a path γ from e to x_1 . It is enough to show that $\gamma_{\#}^- \circ \beta_{\#}^- \circ \alpha_{\#} \circ \gamma_{\#} = id$, because

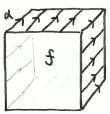
$$\alpha_{\#} = \beta_{\#} \circ \gamma_{\#} \circ \widetilde{\gamma_{\#}^{-}} \circ \beta_{\#}^{-} \circ \alpha_{\#} \circ \gamma_{\#} \circ \gamma_{\#}^{-}$$
$$= \beta_{\#} \circ \gamma_{\#} \circ \gamma_{\#}^{-}$$
$$= \beta_{\#}$$

This leaves us to show that if $\alpha: I \longrightarrow X$ is a loop based in e, then $\alpha_{\#} = \mathrm{id}_{\#}$.

(II) Let $f: (I^n, \partial I^n) \longrightarrow (X, e)$. Consider the map

$$H^{n+1}: I^n \times I \longrightarrow X, (z,t) \longmapsto f(z) \cdot \alpha(t).$$

First of all, we see that if $z \in \partial I^n$, then $H(z,0) = H(z,1) = \mu(e,e) = e$ because the multiplication $\mu: (X \times X, (e,e)) \longrightarrow (X,e)$ is a based map. Now we check:



- 5
- Then $H(-,0) = \mu \circ (f \times e) \circ \operatorname{pr}_1^{-1} = \mu \circ (1_X \times e) \circ (f \operatorname{pr}_1^{-1})$ where $\operatorname{pr}_1 : X \times * \longrightarrow X$. We know that $\mu \circ (1_X \times e)$ is based homotopic to pr_1 , so the homotopy $H(-,0) \simeq f$ is a homotopy relative $f^{-1}(e) \supseteq \partial I^n$.
- For $z \in \partial I^n$, we have $H(z, -) = \mu \circ (e \times \alpha) \circ \operatorname{pr}_2^{-1} = \mu \circ (e \times 1_X) \circ (\alpha \operatorname{pr}_2^{-1})$. As above, the homotopy $H(z, -) \simeq \alpha$ is a homotopy relative $\alpha^{-1}(e) \supseteq \{0, 1\}$.

Therefore, H is an admissible function as above and we get

$$\alpha_{\#}[f] = [H(-,1)] = [f].$$

Reminder 3.3. Recall that $\pi_n(X, A, x_0) = [(I^n, \partial I^n, J^n), (X, A, x_0)]$ where

$$J^{n} := \partial I^{n} \setminus \left(I^{n-1} \times \{1\} \right) = \left(\partial I^{n-1} \times I \right) \cup \left(I^{n-1} \times \{0\} \right).$$

We have a connecting homomorpism

$$\delta_n : \pi_n(X, A, x_0) = [(I^n, \partial I^n, J^n), (X, A, x_0)] \longrightarrow [(I^{n-1}, \partial I^{n-1}), (X, A)] = \pi_{n-1},$$
$$[f] \longmapsto [f|_{I^{n-1} \times \{1\}}].$$

The extra assumption that $f|_{J_n} \equiv x_0$ ensures that $(\delta_n[f])|_{\partial I^{n-1}} \equiv x_0$. We have a $\pi_1(A, x_0)$ -action on $\pi_n(X, A, x_0)$ as follows: Given a relative map $f : (I^n, \partial I^n, J^n) \longrightarrow (X, A, x_0)$ and a path $\alpha : I \longrightarrow X$, choose any map $H : I^n \times I \longrightarrow X$ with:

- $H(-,0): (I^n, \partial I^n, J^n) \longrightarrow (X, A, x_0)$ is homotopic to f,
- $H(z,t) \in A$ for $z \in \partial I^n$,
- $H(z, -): I \longrightarrow A$ is homotopic to α for $z \in J^n$.

Again, such an H always exists and the relative homotopy type of

$$H(-,1): (I^n, \partial I^n, J^n) \longrightarrow (X, A, x_0)$$

does only depend on the homotopy type of f and α .

Proposition 3.4. δ_n is equivariant, i. e. we have $\delta_n(\alpha_{\#}[f]) = \alpha_{\#}(\delta_n[f])$.

Proof. Fix α and f and choose H as above. Consider the restriction to the green face

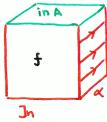
$$G(-,-) := H(-,1,-) : I^{n-1} \times I \longrightarrow A.$$

By construction, $G(-,0) \simeq f|_{I^{n-1} \times \{1\}} = \delta_n f$ and for $z \in \partial I^{n-1}$, we have $(z,1) \in J^n$, so we get

$$G(z, -) = H(z, 1, -) \simeq \alpha.$$

Thus, G is an admissible map for constructing $\alpha_{\#}\delta_n[f]$ and we get

$$\delta_n(\alpha_{\#}f) = [H(-,1,1)] = [G(-,1)] = \alpha_{\#}(\delta_n[f]).$$



4. The Hopf invariant, Part 2

Proposition 4.1. Let M be a closed and oriented m-manifold. Then the mapping degree as a map $\deg : \pi_m(M) \longrightarrow \mathbb{Z}$ is a homomorphism.

Proof. Let $f, g: \mathbb{S}^m \longrightarrow M$. We know that [f] + [g] has the homotopy type of $(f \lor g) \circ \nu$ where $\nu: \mathbb{S}^m \longrightarrow \mathbb{S}^m \lor \mathbb{S}^m$ is the equatorial squeeze. If we identify $H_m(\mathbb{S}^m) = \mathbb{Z}\langle [\mathbb{S}^m] \rangle$ and $H_m(\mathbb{S}^m \lor \mathbb{S}^m) = \mathbb{Z}\langle [\mathbb{S}^m]_1, [\mathbb{S}^m]_2 \rangle$, we have a sequence

Therefore, we get

$$((f \lor g) \circ \nu)[\mathbb{S}^m] = (f \lor g)_* ([\mathbb{S}^m]_1 + [\mathbb{S}^m]_2) = f_*[\mathbb{S}^m] + g_*[\mathbb{S}^m] = (\deg(f) + \deg(g)) \cdot [M]. \quad \Box$$

Proposition 4.2. The Hopf invariant $h: \pi_{4n-1}(\mathbb{S}^{2n}) \longrightarrow \mathbb{Z}$ is a homomorphism.

Proof. Let $f, g: \mathbb{S}^{4n-1} \longrightarrow \mathbb{S}^{2n}$. Consider the space $X_{f+g} := e^{4n} \sqcup_{f+g} \mathbb{S}^{2n}$ with 4n-cell β_{f+g} and 2n-cell α_{f+g} , and also $X_{f\vee g} = (e^{4n} \vee e^{4n}) \sqcup_{f\vee g} \mathbb{S}^{2n}$ with 4n-cells β'_f, β'_g and 2n-cell $\alpha_{f\vee g}$.

(I) We have canonical inclusions $i_f : X_f \hookrightarrow X_{f \vee g}$ and $i_g : X_g \hookrightarrow X_{f \vee g}$ sending the 2*n*-cells α_f, α_g to $\alpha_{f \vee g}$ and β_f to β'_f and β_g to β'_g . Therefore, we get $i_f^* \alpha_{f \vee g} = \alpha_f$ and $i_g^* \alpha_{f \vee g} = \alpha_g$ as well as $i_f^* \beta'_f = \beta_f$ and $i_g^* \beta'_g = \beta_g$. Note that $i_f^* + i_g^* : H^{4n}(X_{f \vee g}) \longrightarrow H^{4n}(X_f) \oplus H^{4n}(g)$ is injective. We see

$$(i_{f}^{*}+i_{g}^{*})\alpha_{f\vee g}^{2}=\alpha_{f}^{2}+\alpha_{g}^{2}=h_{f}\beta_{f}+h_{g}\beta_{g}=(i_{f}^{*}+i_{g}^{*})\left(h_{f}\cdot\beta_{f}'+h_{g}\beta_{g}'\right),$$

so we conclude $\alpha_{f\vee g}^2 = h_f \beta'_f + h_g \beta'_g$.

(II) By collapsing $e^{4n-1} \times \{0\} \subseteq e^{4n} \longrightarrow X_{f+g}$, we get a projection

$$\mathrm{pr}: X_{f+g} \longrightarrow X_{f \vee g}.$$

Apparently $\operatorname{pr}_*\beta_{f+g} = \beta'_f + \beta'_g$, so $\operatorname{pr}^*\beta'_f = \operatorname{pr}^*\beta'_g = \beta_{f+g}$ in cohomology. As pr is a homeomorphism on the 2*n*-cells, we have $\operatorname{pr}^*\alpha' = \alpha$. We conclude

$$\alpha_{f+g}^2 = \operatorname{pr}^* \alpha_{f \vee g} = \operatorname{pr}^* (h_f \beta_f' + h_g \beta_g') = (h_f + h_g) \cdot \beta_{f+g}.$$