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1. Monoid objects

Definition 1.1. Let C be a category with finite products (in particular, a terminal object ∗). A
monoid object is a triple (X,µ, e) where X ∈ ob(C) and µ : X ×X −→ X and e : ∗ −→ X with
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X2 X

1X ×µ

µ×1X µ

µ
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1X ×e

pr1
µ

e×1X

pr2

A homomorphism ϕ : (X,µ, e) −→ (X ′, µ′, e′) is a morphism ϕ : X −→ X ′ such that ϕ ◦ e = e′ and
µ′ ◦ (ϕ× ϕ) = ϕ ◦ µ. This defines a category Mon(C).

Remark 1.2. Dually, if C has finite coproducts (in particular, an initial object ∅), a comonoid
object is (Y, ν, c) with ν : Y −→ Y tY and c : Y −→ ∅. Homomorphisms ψ : (Y, ν, c) −→ (Y ′, ν′, c′)
are maps ψ : Y −→ Y ′ with c′ ◦ ψ = c and (ψ + ψ) ◦ ν = ν′ ◦ ψ. This defines a category Comon(C).

Proposition 1.3.
• A monoid structure on X is the same as a functor F : Cop −→Mon which lifts the functor
C(−, X) : Cop −→ Set over U : Mon −→ Set.

• A comonoid structure on X is the same as a functor G : C −→Mon which lifts the functor
C(X,−) : C −→ Set over U : Mon −→ Set.

Proof. For duality reasons, we only have to prove the first statement:
(i) Let (µ, e) be a monoid structure on X. We define a monoid structure on C(W,X) by

f1 ? f2 := µ ◦ (f1, f2),
eC(W,X) := e ◦ ∗W ∈ C(W,X)

where ∗W : W −→ ∗ denotes the terminal morphism. We check everthing which is necessary:
• Associativity. We see

(f1 ? f2) ? f3 = µ ◦
[
(µ ◦ (f1, f2)), f3

]
= (µ ◦ (µ× 1X)) ◦ (f1, f2, f3)
= (µ ◦ (1X × µ)) ◦ (f1, f2, f3)
= f1 ? (f2 ? f3).

• Unitality. We see

f ? eC(W,X) = µ ◦ (f, e ◦ ∗W ) = µ ◦ (1X × e) ◦ (f, ∗W ) = f.

• For g : V −→W , the map g∗ : C(W,X) −→ C(V,X) is a homomorphism. We see

g∗(eC(W,X)) = eC(W,X) ◦ g = e ◦ (∗W ◦ g) = e ◦ ∗V = eC(V,X)

by the uniqueness of the terminal arrow V −→ ∗. Moreover, we get

g∗(f1 ? f2) = µ ◦ (f1, f2) ◦ g = µ ◦ (f1g, f2g) = (g∗f1) ? (g∗f2).



2

(ii) Conversely, let C(W,X) carry a monoid structure (?, eC(W,X)) for each W ∈ ob(C) and let
the precompositions be homomorphisms. We define

e : = eC(∗,X) ∈ C(∗, X),
µ := pr1 ? pr2 ∈ C(X2, X).

Let us introduce pri : X3 −→ X for 1 ≤ i ≤ 3 and prij : X3 −→ X2 for 1 ≤ i < j ≤ 3. Then
f := 1X × (pr1 × pr2) : X3 −→ X2 satisfies pr1 ◦ f = pr1 and pr2 ◦ f = (pr1 ? pr2) ◦ pr23 =
pr2 ? pr3. We see that

µ ◦ (1X × µ) =
[
pr1 ◦ (1X × (pr1 ? pr2))

]
?

[
pr2 ◦ (1X × (pr1 ? pr2))

]
= pr1 ?

(
(pr1 ? pr2) ◦ pr23)

= pr1 ? pr2 ? pr3

= µ ◦ (µ× 1X).

Now let pr1 : X × ∗ −→ X and pr2 : X × ∗ −→ ∗. We get

µ ◦ (1X × e) =
[
pr1 ◦ (1X × e)

]
?

[
pr2 ◦ (1X × e)

]
= pr1 ? (eC(∗,X) ◦ pr2)
= pr1 ? eC(X×∗,X)

= pr1.

Proposition 1.4. If C has finite biproducts, every object admits both a unique monoid and a
unique comonoid structure.

Proof. We know by Exercise IV.1 that there is a unique way to enrich C over Mon. This is the
same as lifting each C(−, X) and C(X,−) over Mon −→ Set.

Proposition 1.5. If X is a monoid object and Y is a comonoid object, the two induced monoid
structures on C(Y,X) coincide and are abelian.

Proof. Let (?, i) be the monoid structure coming from the monoid object (X,µ, e) and (·, j) be
the monoid structure coming from the comonoid object (Y, ν, c). Let’s write (f, g) : Y −→ X ×X
as before, but [f, f ′] : Y t Y −→ X. First, we see that the satisfy the interchange law: By the
universal property of product and coproduct, it is clear that(

[f, f ′], [g, g′]
)

=
[
(f, g), (f ′, g′)

]
.

Therefore, we get

(f ? g) · (f ′ ? g′) =
[
(f ? g), (f ′ ? g′)

]
◦ ν

=
[
µ ◦ (f, g), µ ◦ (f ′, g′)

]
◦ ν

= µ ◦
[
(f, g), (f ′, g′)

]
◦ ν

= µ ◦
(
[f, f ′], [g, g′]

)
◦ ν

= (f · f ′) ? (g · g′)

The rest of the proof is the famous Eckmann–Hilton argument for each two unital structures
satisfying the interchange law:
• j = j · j = (i ? j) · (j ? i) = (i · j) ? (j · i) = i ? i = i, so just write i = j = 1,
• f · g = (1 ? f) · (g ? 1) = (1 · g) ? (f · 1) = g ? f = (g · 1) ? (1 · f) = (g ? 1) · (1 ? f) = g · f .

It is even true that we can conclude associativity from this without assuming it:
• (f · g) ? h = (f · g) · (1 · h) = (f · 1) · (g · h) = f · (g · h).

Definition 1.6. An H-space is a monoid object in Ho(Top∗). Dually, a co-H-space is a comonoid
object in Ho(Top∗).
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2. Loop spaces

Reminder 2.1. Let A be locally compact and Y an arbitrary space. The compact–open topology
is a topology on the set 〈A, Y 〉 = Top(A, Y ) of continous maps such that we have a bijection

Φ := ΦX,A,Y : Top(X ×A, Y ) −→ Top(X, 〈A, Y 〉),

f 7−→
(
x 7−→

(
fx : a 7−→ f(x, a)

))
,(

(x, a) 7−→ g(x)(a)
)
←−[ g

This means that the endofunctor −×A : Top −→ Top has a right adjoint 〈A,−〉 : Top −→ Top.

Remark 2.2. We see the following:
(i) There is a based version. Let (X,x0), (A, a0), (Y, y0) be based.

• Let 〈A, Y 〉∗ be the subspace of based maps. This is again a based space with basepoint
the constant map cy0 : a 7−→ y0. We have

Top∗(X, 〈A, Y 〉∗) ⊆ Top(X, 〈A, Y 〉∗) ⊆ Top(X, 〈A, Y 〉).

• We have a projection pr : X×A −→ X∧A and pr∗ : Top(X∧A, Y ) −→ Top(X×A, Y )
is injective as pr is epic. Therefore, we have an inclusion

Top∗(X ∧A, Y ) ⊆ Top(X ∧A, Y ) ⊆ Top(X ×A, Y ).

It is easy to check that Φ restricts to a natural bijection

Ψ : Top∗(X ∧A, Y ) −→ Top∗(X, 〈A, Y 〉∗),

so the endofunctor − ∧A : Top∗ −→ Top∗ has a right adjoint 〈A,−〉∗ : Top∗ −→ Top∗.
(ii) Two maps f, f ′ : X × A −→ Y are homotopic iff Φ(f),Φ(f ′) = are homotopic: The map

H : X ×A× I = X × I ×A −→ Y is a homotopy between f and f ′ iff

ΦX×I,A,Y (H) : X × I −→ 〈A, Y 〉

is a homotopy between ΦX,A,Y (f) and ΦX,A,Y . Two based maps f, f ′ : X ∧ A −→ Y are
based homotopic iff Ψ(f),Ψ(f ′) : X −→ 〈A, Y 〉∗ are based homotopic.

Proposition 2.3. The reduced suspension Σ : Ho(Top∗) −→ Ho(Top∗) has a right adjoint Ω.

Proof. The sphere S1 is locally compact. Define the loop space Ω := 〈S1,−〉∗ : Top∗ −→ Top∗.
This is right adjoint to − ∧ S1 = Σ. Now as the natural identification respects based homotopies,
this adjunction descends to the homotopy category:

[ΣX,Y ]∗ = [X ∧ S1, Y ]∗ = [X,ΩY ]∗.

Proposition 2.4. Let X be a space.
(i) ΣX has a co-H-space structure,

(ii) ΩX has an H-space structure.

Proof.
(i) Recall that the coproduct in Ho(Top∗) is given by the wedge sum ∨. The comultiplication

is given by the equatorial squeeze ν : ΣX −→ ΣX ∨ ΣX, the counit is just the terminal
morphism c : ΣX −→ ∗. Associativity and unitality can proven pictorially by:
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(ii) The multiplication is given by the concatenation of paths µ : ΩX × ΩX −→ ΩX, the unit is
the based map e : ∗ −→ ΩX, ∗ 7−→ cx0 . Associativity and unitality are proven in the same
way we checked the group axioms for the π1(X):

Proposition 2.5.
(i) If X is an H-space, then π1(X, e) is abelian.

(ii) πk(X,x0) is abelian for each based (X,x0) and k ≥ 2.

Proof. (i) We see π1(X, e) = [ΣS0, X]∗ and the left side is a comonoid, the right side is a monoid.
The Eckmann–Hilton argument from the last exercise yields abelianity.

(ii) We see πk(X,x0) = [Σ2Sk−2, X]∗ = [ΣSk−2,ΩX]∗ and again, the left side is a comonoid, the
right side is a monoid.

3. Π1-action on higher homotopy groups

Reminder 3.1. Recall that πn(X,x0) = [(In, ∂In), (X,x0)]. We have a Π1-action on πn(X, ·) as
follows: Given a relative map f : (In, ∂In) −→ (X,x1) and a path α : I −→ X from x1 to x2, we
just choose any map H : In × I −→ X with:

• H(−, 0) : (In, ∂In) −→ (X,x1) is homotopic to f ,

• H(z,−) : I −→ X is homotopicto α for each z ∈ ∂In.

Such an H always exists and we define

α#f : (In, ∂In) −→ (X,x2), z 7−→ H(z, 1).

The homotopy type of α#f only depends on the homotopy type of f and α, not on the choice of
H. Hence, we get a map

Π1(X)(x1, x2)× πn(X,x1) −→ πn(X,x2), ([α], [f ]) 7−→ α#[f ] = [α#f ].

Proposition 3.2. Let X be a connected H-space. Then the Π1-action on πn is trivial.

Proof. We have to see that for each two paths α, β : I −→ X from x1 to x2, we have α# = β#:
(i) Choose a path γ from e to x1. It is enough to show that γ−

# ◦ β
−
# ◦ α# ◦ γ# = id, because

α# = β# ◦ γ# ◦
=id︷ ︸︸ ︷

γ−
# ◦ β

−
# ◦ α# ◦ γ# ◦ γ−

#

= β# ◦ γ# ◦ γ−
#

= β#

This leaves us to show that if α : I −→ X is a loop based in e, then α# = id#.

(ii) Let f : (In, ∂In) −→ (X, e). Consider the map

Hn+1 : In × I −→ X, (z, t) 7−→ f(z) · α(t).

First of all, we see that if z ∈ ∂In, then H(z, 0) = H(z, 1) = µ(e, e) = e because the
multiplication µ : (X ×X, (e, e)) −→ (X, e) is a based map. Now we check:
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• Then H(−, 0) = µ ◦ (f × e) ◦ pr−1
1 = µ ◦ (1X × e) ◦ (fpr−1

1 ) where pr1 : X × ∗ −→ X.
We know that µ ◦ (1X × e) is based homotopic to pr1, so the homotopy H(−, 0) ' f
is a homotopy relative f−1(e) ⊇ ∂In.
• For z ∈ ∂In, we have H(z,−) = µ ◦ (e×α) ◦ pr−1

2 = µ ◦ (e× 1X) ◦ (αpr−1
2 ). As above,

the homotopy H(z,−) ' α is a homotopy relative α−1(e) ⊇ {0, 1}.
Therefore, H is an admissible function as above and we get

α#[f ] = [H(−, 1)] = [f ].

Reminder 3.3. Recall that πn(X,A, x0) = [(In, ∂In, Jn), (X,A, x0)] where

Jn := ∂In \
(
In−1 × {1}

)
=

(
∂In−1 × I

)
∪

(
In−1 × {0}

)
.

We have a connecting homomorpism

δn : πn(X,A, x0) = [(In, ∂In, Jn), (X,A, x0)] −→ [(In−1, ∂In−1), (X,A)] = πn−1,

[f ] 7−→
[
f |In−1×{1}

]
.

The extra assumption that f |Jn
≡ x0 ensures that (δn[f ])|∂In−1 ≡ x0. We have a π1(A, x0)-action

on πn(X,A, x0) as follows: Given a relative map f : (In, ∂In, Jn) −→ (X,A, x0) and a path
α : I −→ X, choose any map H : In × I −→ X with:

• H(−, 0) : (In, ∂In, Jn) −→ (X,A, x0) is homotopic to f ,
• H(z, t) ∈ A for z ∈ ∂In,
• H(z,−) : I −→ A is homotopic to α for z ∈ Jn.

Again, such an H always exists and the relative homotopy type of

H(−, 1) : (In, ∂In, Jn) −→ (X,A, x0)

does only depend on the homotopy type of f and α.

Proposition 3.4. δn is equivariant, i. e. we have δn(α#[f ]) = α#(δn[f ]).

Proof. Fix α and f and choose H as above. Consider the restriction to the green face

G(−,−) := H(−, 1,−) : In−1 × I −→ A.

By construction, G(−, 0) ' f |In−1×{1} = δnf and for z ∈ ∂In−1, we have (z, 1) ∈ Jn, so we get

G(z,−) = H(z, 1,−) ' α.

Thus, G is an admissible map for constructing α#δn[f ] and we get

δn(α#f) = [H(−, 1, 1)] = [G(−, 1)] = α#(δn[f ]).
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4. The Hopf invariant, Part 2

Proposition 4.1. Let M be a closed and oriented m-manifold. Then the mapping degree as a map
deg : πm(M) −→ Z is a homomorphism.

Proof. Let f, g : Sm −→ M . We know that [f ] + [g] has the homotopy type of (f ∨ g) ◦ ν
where ν : Sm −→ Sm ∨ Sm is the equatorial squeeze. If we identify Hm(Sm) = Z〈[Sm]〉 and
Hm(Sm ∨ Sm) = Z〈[Sm]1, [Sm]2〉, we have a sequence

Hm(Sm) Hm(Sm ∨ Sm) Hm(M)

Z〈[Sm]〉 Z〈[Sm]1, [Sm]2〉 Z〈[M ]〉 .

ν∗

(f+g)∗

(f∨g)∗

(1
1
) f∗+g∗

Therefore, we get(
(f ∨ g) ◦ ν

)
[Sm] = (f ∨ g)∗ ([Sm]1 + [Sm]2) = f∗[Sm] + g∗[Sm] =

(
deg(f) + deg(g)

)
· [M ].

Proposition 4.2. The Hopf invariant h : π4n−1(S2n) −→ Z is a homomorphism.

Proof. Let f, g : S4n−1 −→ S2n. Consider the space Xf+g := e4n tf+g S2n with 4n-cell βf+g and
2n-cell αf+g, and also Xf∨g = (e4n ∨ e4n) tf∨g S2n with 4n-cells β′

f , β
′
g and 2n-cell αf∨g.

(i) We have canonical inclusions if : Xf ↪−→ Xf∨g and ig : Xg ↪−→ Xf∨g sending the 2n-cells
αf , αg to αf∨g and βf to β′

f and βg to β′
g. Therefore, we get i∗fαf∨g = αf and i∗gαf∨g = αg

as well as i∗fβ′
f = βf and i∗gβ

′
g = βg. Note that i∗f + i∗g : H4n(Xf∨g) −→ H4n(Xf )⊕H4n(g)

is injective. We see

(i∗f + i∗g)α2
f∨g = α2

f + α2
g = hfβf + hgβg = (i∗f + i∗g)

(
hf · β′

f + hgβ
′
g

)
,

so we conclude α2
f∨g = hfβ

′
f + hgβ

′
g.

(ii) By collapsing e4n−1 × {0} ⊆ e4n ↪−→ Xf+g, we get a projection

pr : Xf+g −→ Xf∨g.

Apparently pr∗βf+g = β′
f + β′

g, so pr∗β′
f = pr∗β′

g = βf+g in cohomology. As pr is a
homeomorphism on the 2n-cells, we have pr∗α′ = α. We conclude

α2
f+g = pr∗αf∨g = pr∗(hfβ

′
f + hgβ

′
g) = (hf + hg) · βf+g.
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