Sheet 8: Grassmannians and coefficient systems
FLORIAN KRANHOLD

Topology 2, summer term 2019

1. ORIENTABILITY OF GRASSMANNIANS

Reminder 1.1. Let V be an n-dimensional R-vector space. GL(k,R) acts on Hom™ (R*, V) by
precomposition and we defined the Grassmannian Grg (V) := Hom™ (R*, V)/GL(k,R).

Remark 1.2. We define the oriented Grassmannian
Gr{ (V) := Hom™ (R*, V) /GL" (k, R).

As [GL(K,R) : GLT(k,R)] = 2, the projection pr : Grﬁ — Gry, is a double cover, in particular, a
closed smooth manifold. As Hom™ (R¥, V') is connected for k < n, the space Gr} (V) is connected.

Lemma 1.3. Let f: P — P be linear. Consider f*: Hom(P,Q) — Hom(P, Q). Then
det(f*) = det(f)Hm=(@),
The same holds for postcomposition g, : Hom(P, Q) — Hom(P, Q) for g: Q — Q.

Proof. Let (p1,...,pr) abasis for P and (q1, ..., ¢s) a basis for @ and identify Homg (P, Q) = P*®Q.
Then f* = f* ®idg where f* : P* — P* is just the dual. We know det(f*) = det(f). We have a
basis (q; ® p;)i,; for Homg(Q, P) and we see that

AN wioa) = AN Do)
= /J\ (/i\f*(p?)) ®q
= Ndet(n)- (Ao ) 00
sy AN e ). .

Proposition 1.4. Any orientation on V determines an orientation of Grz.

Proof. We construct an explicit section Gry — or(T'Gr}): Let P* € Grj and P := pr(P*). By
construction, we know that Tp+ Gr,}L = TpGry, and the latter is by EXERCISE VII.2 given as follows:
Choose a complementary subspace @ C V', we have an identification

Hom(P, Q) — TpGry, B — [t — [idp + tB]].

Given a representative A € Hom™ (R¥, V) of P+, we have a basis (p1,...,px) with p; = Ae; for
P and choose basis (q1,...,qn—t) for @ such that (p1,...,pk,q1,-..,qn—k) is positively oriented.
This gives as basis (p] ® ¢;) for Hom(P, Q) and therefore an orientation. We have to check that this
orientation is independent of the choice of A: For another representative A’, there is a S € GL™ (k, R)
such that A’ = AS. The basis (p,...,p}) has the same orientation and each consistent choice of
(915 - -+ 4,_4) also has the same orientation. Call the base changes Sp : p; — p; and Sq : ¢; — ¢;-
The map (p; @ qj) — (p;* ® q}) is precomposition with S;l and postcomposition with Sg, i.e.

¢ = (Sg)x 0 (Sp")* : Hom(P, Q) — Hom(P,Q), B+ Sg o Bo Sy*
By the previous LEMMA, we get the determinant

det() = det ((Sq)« o (Sp')*) = det(Sp")" % - det(Sg)" > 0. O



Proposition 1.5. If n is even, then this gives an orientation of Gry. If n is odd and k < n, then
Gry, is not orientable.

Proof. If n is even, we construct a section Gry, — or(T'Gry) in the same way: Define the orientation
of Hom(P, @) to be the induced by the basis (p1,...,Pk,q1,- .-, ¢n—k) coming from a representative
A: For another representative A’, there is now a T' € GL(k,R) such that A’ = AT. Let ¢ € {£1}
be its sign. If n is even, we see that

det(p) = det ((Tg)s o (Tp1)*) = e"*+* . | det(Tp1)|"~* - | det(Tg)|F > 0.

Now let n be odd and k < n. Then GL; is connected. If ¢ : Grj, — or(T'Gry) is a section, this
lifts to a section f : Gr, — or(T'Gry). If we write [A] for an equivalence class in Gr} and [A] for
an equivalence class in Gry, we get

1[A] = t[A] = t[-A] = {[-A].

On the other hand, the above section s on Gr; has the property s[A] = —s[—A], so it sometimes
coincide with  and sometimes does not. As Gr} is connected, this is not possible. O

2. COEFFICIENTS IN THE ORIENTATION BUNDLE
Proposition 2.1. Let M be a manifold and K C M compact. We have a canonical isomorphism
o : Hp(M, M\ K;or(M,A)) — Maps(K, A).
In particular, if M is closed and connected, we have an isomorphism H,,(M,or(M, A)) = A.
Proof. Let O% := H,,(M, M\ -;Z) and p : E := or(M, A) — M and OF := H,,(M, M \ -; E) and
let o : 11;(M) — Ab,z —— p~!(z) the corresponding coefficient system.
(1) We give a version of the universal coefficient theorem with coefficient system: Let x € M
and U C M a euclidean chart around x. By excision, we get
OL=q[, (U, U\{z}) and OF=H,U,U\{z}; A |5).
We use that &/|;; = /@ is constant and we get the map from the UCT
Ne: 0L @ x> H,(U,U\ {2})® g2 — H,, (U, U\ {2}; Zx) = OF.

As in EXERCISE VI.1, we use that H,,, _1(U,U \ {z}) = 0 to see that 7, is an isomorphism.
Moreover, 7, is independent from the chart U as we do not identify .7 | with the constant
functor A, but with 7z, we make no choice of generators so far.

(11) For each x € K, we choose a generator e, € OZ. Recall that &z = {+e,} xz« A. For
u € OF(K) and = € K there is a unique a, € A with 1,1 (u,) = e, ® [ex, a;]. We define

ou) : K — Az — ay.

Note that a, does not depend on the choice of e, because in contrast to EXERCISE VI.1, the
generator occurs twice here: If e/, = —e,, we get

6; ® [6;,0@] = (7696) & [7690;04:5] =e; [emaz]~

Moreover, it is clear that p(u + u’) = p(u) + ¢(u’). One now checks the continuity of p(u)
exactly as in EXERCISE VI.1.

(111) Injectivity and surjectivity are again proven exactly as in EXERCISE VI.1: If ¢(u) = 0,
then u, = 0 for all x € K and LEMMA 8.9 gives us u = 0. For the surjectivity, we use the
Mayer—Vietoris sequence, now with twisted coefficients. O
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3. CELLULAR HOMOLOGY WITH LOCAL COEFFICIENTS

Construction 3.1. Let X be a CW complex, let E, be the set of n-cells and for each n-cell e
let x. : D™ — X,, € X be the characteristic map. Let 7. := Xe|gn-1 : S*—1 — X,,_; be the
attaching map and z. := x.(0) be the center of the cell. For an (n — 1)-cell ¢’ define

M(e,e') := {c € mo(n. " (€°)); zer € Me(c)} .
Note that ¢ C S"~! for each ¢ € M(e,€’). We define
foe: ST —S"H/(S" T\ e) X5 X, 1 /(X \ €) =S
Now let o/ : II1(X) — Ab be a coefficient system. We define

CeNX; ) = @ ol ze

eekE,

where we identify a summand e with the generator of «7z.. As differentials we use

dne = Z Z deg(fe,c) : ('Q{P)’c)(e)

e'€E,_1a€M(e,e’)

where 7. : I — X is a path from z. to z./ arising as follows: Choose a path 7%, inside D™ from 0
to a preimage of 2./ inside ¢ and let v, = x. 0 7,.

Proposition 3.2. The construction is well-defined. This means:

(1) The sum in dye is finite.
(11) /. does not depend on the choice involved for 7,.

Proof. (1) Fore' € E,_1, thespace n,1(e/°) C S~ is an open submanifold and each ¢ € M (e, e’)
is open as a subspace ¢ C 7, 1(e’®) C S"~1. Moreover, the set S := {2¢/; ¢’ € E,_1} C X, 1
is discrete, in particular closed. Let U := S" !\ n1(S) C S"~! open. Then we have an
open cover of S*~! by

{UYU{c e M(e,e') for some €'}.

As S*! is compact, we find a finite subcover. Since U contains no preimage of a center,
there is a finite subfamily of (¢) covering all preimages of centres. As the cs are pairwise
disjoint and each contains a preimage of a center, there are only finitely many c.

(11) Since we are in D™, all paths starting in 0 and having the same endpoint are homotopic, so
when fixing a preimage b of z.s inside ¢, each path from 0 to b is fine. If ¢ contains two images
b and ¥’ of z., we can connect them by a path 8: 1 — cC S tandn.oB8:1 — X,,_;
lifts over the interior of ¢’ and is therefore a null-homotopic loop. If we have to paths 7,
resp. 7. ending in b resp. b’ Hence, then 7, ~7_ % 3, so

’YQZXeoW;:(Xeoic)*(Xeoﬂ)g'Yo O
N

ok

Proposition 3.3. Consider the triple (X,,; X,,—1, Xn—2) and the corresponding boundary map

an : Hn(Xannfhd) & anl(anl; ﬁ) L) anl(anlaanﬁ d)

Then we have isomorphisms ¢, : CSNX; o) — Hp(Xp, X—1;97) which are chain morphisms
with respect to 0 and d, 1. e.

Ot X ) ———— O (X o)

o] Jenes

Hn(Xna anﬁ ﬂ) ? anl(anlu Xn72§ ﬂ)



Proof. We follow THEOREM VI1.4.1 from Whitehead’s Elements of Homotopy Theory and LEMMA
3.36 from Liick’s book Homologie und Mannigfaltigkeiten.

(1)

(1)

(111)

Fix an n-cell e and the corresponding characteristic map y, : (D", S"71) — (X, X,i_1).
We have an induced coefficient system x3.o/ : II1(D") — Ab. As D" is contractible, x}.</
is trivial, so x4 (t) = x;/(0) = &z, and x; /(o) =id for a : [ — D™. We have

(Xe)s t P ze 2 Hy (D™, S o 2) — Hp (X, Xn—1; ).
Their direct sum gives a map

on = D (o) : O ) = @) Fze — Hul X, Xomi; ).

eckE, eckE,

We show that ¢, is an isomorphism: Consider U := X, \ {z.; e € E,}. Then X,,_1 < U is
a deformation retract. By the 5-lemma applied to the long exact sequence with coefficients,
we have an isomorphism

i Hy(Xn, Xn-1;9) — Hy (X, U; ).
Now let V := X,, \ X,,_; and W := V NU. By excision, we have an isomorphism
JH, (VW) — Hp(X,,U; o).
We have (V,W) = HeeEn (B™,B™\ {0}), so we f : HeeEn (D", S™ 1) — (V, W) by scaling
with 1/2 and then applying x., which induces by additivity an isomorphism
for @ Ha(D", 8" 2) = Hn< 11 (D”,S”‘U;d) — H, (V,W; ).
e€E, e€E,

Finally, we see that ¢, =i~ o jo f,, so indeed ¢,, is an isomorphism.

We show that ¢, is a chain map: For each e € F,, and ¢’ € E,,_1, the map

Hn—l(Xn—l;%) T> Hn—l(Xn—laXn—Q;d) —1> Hn—l(DnilaSni%'dZe/)

prefoga;_l
is by construction the morphism 3_ ¢ s ¢y deg(fe,c) - (Ave,c), so for
Bee = (/S"2) 7 0the e 08y s Hy (D™, S" s a7 2,) — Hy (D", S"2 o 200),

we get @e’e, he,er = dyp. Therefore, we get the diagram

®€€En Hn(Dn,Sn—l; dze) # HTL(X’IHX’Vl—l;”Q{)

|@. % g

@e(ﬂe)*
Becp, Ha1(S"z) —=—— Hp1(Xp1597)

J/®e,e' we,e,
@e’EEn,l Hn—l(Sn_l;vQ{Ze’) P

|@®.vs
@e'eE",l Hn—l(Dn_la Sn_Q; 'fQ{Ze’) % Hn—l(Xn—la Xn—Q; 'Q{)

dn
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4. H.(RP™;S™ xz. A)

Proposition 4.1. Consider the standard CW decomposition for RP™ and the bundle S™ — RP™.
Then the cellular chain complex with coefficients in S™ Xz« A is of the form

C.(RP™S™ xz. A) = A Al A Ae— o,
in particular, we get

A/J2A for k even, k <m

Hi(RP™;S™ Xz« A) = A for k=m even,
torsa(A)  for k <m odd,
0 else.

Proof. Call the coefficient system o7, so we have <7 (z) = A for each z € RP™.

e We have one cell e, in each dimension. For each n > 1, let the two preimages of e; _; be
cy,c. CS"LC D™ Let 2 := (£1,0,...,0) € D" be the two preimages of the 0-cell.

e For each n, we consider o : I — D"t — tz} from 0,, to z;7. Moreover, the half circle
Bl — D"t (™ 0,...,0) has the two properties x. o 3 = e; (with orientation) and
o [ is a path from 0 to =, . Finally, we define the paths

5E(t) ::ﬁ:(l—t,o,...,o,\/%—ﬂ).

6% is a path from zF to the preimage of z.,_, inside ¢t and x.00+ = .08~ =: ¢. Pictorially,

P‘tim&‘- d 4+ tc“‘ 4
nside C

+
c
-
'\prdwp%t ok ze,,
wside <
e Now we choose our paths 7., and 7._ by setting
Ve, = ax* 5t
Yo =axfBx6.
Then v., = (xe®) *€ and e, .. = (Xxe@) * €1 x €. Hence, we get

%’VC+ = _%A/C, .

Recall that deg(fe, .) = (£1)", whence the boundary operator has the form d°de, =
(1+ (=1)") - e,_1. Now we have one extra sign, so we get de,, = (1 + (=1)"*1).¢, ;. O
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