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1. Orientability of Grassmannians

Reminder 1.1. Let V be an n-dimensional R-vector space. GL(k,R) acts on Hominj(Rk, V ) by
precomposition and we defined the Grassmannian Grk(V ) := Hominj(Rk, V )/GL(k,R).

Remark 1.2. We define the oriented Grassmannian

Gr+
k (V ) := Hominj(Rk, V )/GL+(k,R).

As [GL(k,R) : GL+(k,R)] = 2, the projection pr : Gr+
k −→ Grk is a double cover, in particular, a

closed smooth manifold. As Hominj(Rk, V ) is connected for k < n, the space Gr+
k (V ) is connected.

Lemma 1.3. Let f : P −→ P be linear. Consider f? : Hom(P,Q) −→ Hom(P,Q). Then

det(f?) = det(f)dimR(Q).

The same holds for postcomposition g? : Hom(P,Q) −→ Hom(P,Q) for g : Q −→ Q.

Proof. Let (p1, . . . , pr) a basis for P and (q1, . . . , qs) a basis for Q and identify HomR(P,Q) ∼= P ∗⊗Q.
Then f? = f∗ ⊗ idQ where f∗ : P ∗ −→ P ∗ is just the dual. We know det(f∗) = det(f). We have a
basis (q∗

j ⊗ pi)i,j for HomR(Q,P ) and we see that∧
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Proposition 1.4. Any orientation on V determines an orientation of Gr+
k .

Proof. We construct an explicit section Gr+
k −→ or(TGr+

k ): Let P+ ∈ Gr+
k and P := pr(P+). By

construction, we know that TP+Gr+
k
∼= TPGrk and the latter is by Exercise VII.2 given as follows:

Choose a complementary subspace Q ⊆ V , we have an identification

Hom(P,Q) −→ TPGrk, B 7−→
[
t 7−→ [idP + tB]

]
.

Given a representative A ∈ Hominj(Rk, V ) of P+, we have a basis (p1, . . . , pk) with pi = Aei for
P and choose basis (q1, . . . , qn−k) for Q such that (p1, . . . , pk, q1, . . . , qn−k) is positively oriented.
This gives as basis (p∗

i ⊗ qj) for Hom(P,Q) and therefore an orientation. We have to check that this
orientation is independent of the choice of A: For another representative A′, there is a S ∈ GL+(k,R)
such that A′ = AS. The basis (p′

1, . . . , p
′
k) has the same orientation and each consistent choice of

(q′
1, . . . , q

′
n−k) also has the same orientation. Call the base changes SP : pi 7−→ p′

i and SQ : qj 7−→ q′
j .

The map (p∗
i ⊗ qj) 7−→ (p′

i
∗ ⊗ q′

j) is precomposition with S−1
P and postcomposition with SQ, i. e.

ϕ = (SQ)? ◦ (S−1
P )? : Hom(P,Q) −→ Hom(P,Q), B 7−→ SQ ◦B ◦ S−1

P

By the previous Lemma, we get the determinant

det(ϕ) = det
(
(SQ)? ◦ (S−1

P )?
)

= det(S−1
P )n−k · det(SQ)k > 0.
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Proposition 1.5. If n is even, then this gives an orientation of Grk. If n is odd and k < n, then
Grk is not orientable.

Proof. If n is even, we construct a section Grk −→ or(TGrk) in the same way: Define the orientation
of Hom(P,Q) to be the induced by the basis (p1, . . . , pk, q1, . . . , qn−k) coming from a representative
A: For another representative A′, there is now a T ∈ GL(k,R) such that A′ = AT . Let ε ∈ {±1}
be its sign. If n is even, we see that

det(ϕ) = det
(
(TQ)? ◦ (T−1

P )?
)

= εn−k+k · | det(T−1
P )|n−k · | det(TQ)|k > 0.

Now let n be odd and k < n. Then GL+
k is connected. If t : Grk −→ or(TGrk) is a section, this

lifts to a section t̃ : Gr+
k −→ or(TGr+

k ). If we write [A] for an equivalence class in Gr+
k and JAK for

an equivalence class in Grk, we get

t̃[A] = tJAK = tJ−AK = t̃[−A].

On the other hand, the above section s on Gr+
k has the property s[A] = −s[−A], so it sometimes

coincide with t̃ and sometimes does not. As Gr+
k is connected, this is not possible.

2. Coefficients in the orientation bundle

Proposition 2.1. Let M be a manifold and K ⊆M compact. We have a canonical isomorphism

ϕ : Hm(M,M \K; or(M,A)) −→ Maps(K,A).

In particular, if M is closed and connected, we have an isomorphism Hm(M, or(M,A)) ∼= A.

Proof. Let OZ := Hm(M,M \ · ;Z) and p : E := or(M,A) −→M and OE := Hm(M,M \ · ;E) and
let A : Π1(M) −→ Ab, x 7−→ p−1(x) the corresponding coefficient system.

(i) We give a version of the universal coefficient theorem with coefficient system: Let x ∈ M
and U ⊆M a euclidean chart around x. By excision, we get

OZ
x
∼= Hm(U,U \ {x}) and OEx ∼= Hm(U,U \ {x}; A |U ).

We use that A |U = A x is constant and we get the map from the UCT

ηx : OZ
x ⊗A x ∼= Hm(U,U \ {x})⊗A x −→ Hm(U,U \ {x}; A x) = OEx .

As in Exercise VI.1, we use that Hm−1(U,U \ {x}) = 0 to see that ηx is an isomorphism.
Moreover, ηx is independent from the chart U as we do not identify A |U with the constant
functor A, but with A x, we make no choice of generators so far.

(ii) For each x ∈ K, we choose a generator ex ∈ OZ
x . Recall that A x = {±ex} ×Z∗ A. For

u ∈ OE(K) and x ∈ K there is a unique ax ∈ A with η−1
x (ux) = ex ⊗ [ex, ax]. We define

ϕ(u) : K −→ A, x 7−→ ax.

Note that ax does not depend on the choice of ex because in contrast to Exercise VI.1, the
generator occurs twice here: If e′

x = −ex, we get

e′
x ⊗ [e′

x, ax] = (−ex)⊗ [−ex, ax] = ex ⊗ [ex, ax].

Moreover, it is clear that ϕ(u+ u′) = ϕ(u) + ϕ(u′). One now checks the continuity of ϕ(u)
exactly as in Exercise VI.1.

(iii) Injectivity and surjectivity are again proven exactly as in Exercise VI.1: If ϕ(u) = 0,
then ux = 0 for all x ∈ K and Lemma 8.9 gives us u = 0. For the surjectivity, we use the
Mayer–Vietoris sequence, now with twisted coefficients.
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3. Cellular homology with local coefficients

Construction 3.1. Let X be a CW complex, let En be the set of n-cells and for each n-cell e
let χe : Dn −→ Xn ⊆ X be the characteristic map. Let ηe := χe|Sn−1 : Sn−1 −→ Xn−1 be the
attaching map and ze := χe(0) be the center of the cell. For an (n− 1)-cell e′ define

M(e, e′) :=
{
c ∈ π0(η−1

e (e′◦)); ze′ ∈ ηe(c)
}
.

Note that c ⊆ Sn−1 for each c ∈M(e, e′). We define

fe,c : Sn−1 −→ Sn−1/(Sn−1 \ c) ηe−→ Xn−1/(Xn−1 \ e′) ∼= Sn−1.

Now let A : Π1(X) −→ Ab be a coefficient system. We define

Ccell
n (X; A ) :=

⊕
e∈En

A ze

where we identify a summand e with the generator of A ze. As differentials we use

dne =
∑

e′∈En−1

∑
a∈M(e,e′)

deg(fe,c) · (A γc)(e)

where γc : I −→ X is a path from ze to ze′ arising as follows: Choose a path γc inside Dn from 0
to a preimage of ze′ inside c and let γc = χe ◦ γc.

Proposition 3.2. The construction is well-defined. This means:
(i) The sum in dne is finite.

(ii) A γc does not depend on the choice involved for γc.

Proof. (i) For e′ ∈ En−1, the space η−1
e (e′◦) ⊆ Sn−1 is an open submanifold and each c ∈M(e, e′)

is open as a subspace c ⊆ η−1
e (e′◦) ⊆ Sn−1. Moreover, the set S := {ze′ ; e′ ∈ En−1} ⊆ Xn−1

is discrete, in particular closed. Let U := Sn−1 \ η−1
e (S) ⊆ Sn−1 open. Then we have an

open cover of Sn−1 by
{U} ∪ {c ∈M(e, e′) for some e′}.

As Sn−1 is compact, we find a finite subcover. Since U contains no preimage of a center,
there is a finite subfamily of (c) covering all preimages of centres. As the cs are pairwise
disjoint and each contains a preimage of a center, there are only finitely many c.

(ii) Since we are in Dn, all paths starting in 0 and having the same endpoint are homotopic, so
when fixing a preimage b of ze′ inside c, each path from 0 to b is fine. If c contains two images
b and b′ of ze′ , we can connect them by a path β : I −→ c ⊆ Sn−1 and ηe ◦ β : I −→ Xn−1
lifts over the interior of e′ and is therefore a null-homotopic loop. If we have to paths γa
resp. γ′

c ending in b resp. b′ Hence, then γ′
c ' γc ? β, so

γ′
c = χe ◦ γ′

a ' (χe ◦ γc) ? (χe ◦ β)︸ ︷︷ ︸
'∗

' γc.

Proposition 3.3. Consider the triple (Xn;Xn−1, Xn−2) and the corresponding boundary map

∂n : Hn(Xn, Xn−1; A ) δ1−→ Hn−1(Xn−1; A ) p−→ Hn−1(Xn−1, Xn−2; A )

Then we have isomorphisms ϕn : Ccell
n (X; A ) −→ Hn(Xn, Xn−1; A ) which are chain morphisms

with respect to ∂ and d, i. e.

Ccell
n (X; A ) Ccell

n−1(X; A )

Hn(Xn, Xn−1; A ) Hn−1(Xn−1, Xn−2; A ).

d

ϕn ϕn−1

∂n
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Proof. We follow Theorem VI.4.1 from Whitehead’s Elements of Homotopy Theory and Lemma
3.36 from Lück’s book Homologie und Mannigfaltigkeiten.

(i) Fix an n-cell e and the corresponding characteristic map χe : (Dn,Sn−1) −→ (Xn, Xn−1).
We have an induced coefficient system χ∗

eA : Π1(Dn) −→ Ab. As Dn is contractible, χ∗
eA

is trivial, so χ∗
eA (t) ∼= χ∗

eA (0) = A ze and χ∗
eA (α) = id for α : I −→ Dn. We have

(χe)∗ : A ze ∼= Hn(Dn,Sn−1; A ze) −→ Hn(Xn, Xn−1; A ).

Their direct sum gives a map

ϕn :=
⊕
e∈En

(χe)∗ : Ccell
n (X; A ) =

⊕
e∈En

A ze −→ Hn(Xn, Xn−1; A ).

(ii) We show that ϕn is an isomorphism: Consider U := Xn \ {ze; e ∈ En}. Then Xn−1 ↪−→ U is
a deformation retract. By the 5-lemma applied to the long exact sequence with coefficients,
we have an isomorphism

i : Hn(Xn, Xn−1; A ) −→ Hn(Xn, U ; A ).

Now let V := Xn \Xn−1 and W := V ∩ U . By excision, we have an isomorphism

j : Hn(V,W ; A ) −→ Hn(Xn, U ; A ).

We have (V,W ) ∼=
∐
e∈En

(Bn,Bn \ {0}), so we f :
∐
e∈En

(Dn,Sn−1) −→ (V,W ) by scaling
with 1/2 and then applying χe, which induces by additivity an isomorphism

f∗ :
⊕
e∈En

Hn(Dn,Sn−1; A ze) = Hn

( ∐
e∈En

(Dn,Sn−1); A
)
−→ Hn(V,W ; A ).

Finally, we see that ϕn = i−1 ◦ j ◦ f∗, so indeed ϕn is an isomorphism.

(iii) We show that ϕ∗ is a chain map: For each e ∈ En and e′ ∈ En−1, the map

Hn−1(Sn−1; A ze) Hn−1(Sn−1; A ze′)

Hn−1(Xn−1; A ) Hn−1(Xn−1, Xn−2; A ) Hn−1(Dn−1,Sn−2; A ze′)

ψe,e′

ηe

p pre′ ◦ϕ−1
n−1

/Sn−2

is by construction the morphism
∑
c∈M(e,e′) deg(fe,c) · (Aγe,c), so for

he,e′ := (/Sn−2)−1 ◦ ψe,e′ ◦ δ2 : Hn(Dn,Sn−1; A ze) −→ Hn−1(Dn−1,Sn−2; A ze′),

we get
⊕

e,e′ he,e′ = dn. Therefore, we get the diagram

⊕
e∈En

Hn(Dn,Sn−1; A ze) Hn(Xn, Xn−1; A )

⊕
e∈En

Hn−1(Sn−1; A ze) Hn−1(Xn−1; A )

⊕
e′∈En−1

Hn−1(Sn−1; A ze′)

⊕
e′∈En−1

Hn−1(Dn−1,Sn−2; A ze′) Hn−1(Xn−1, Xn−2; A )

ϕn⊕
e
δ2

dn

∂n

δ1⊕
e
(ηe)∗⊕

e,e′ ψe,e′

p⊕
e′ (/Sn−2)−1

ϕn−1
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4. H∗(RPm;Sm ×Z∗ A)

Proposition 4.1. Consider the standard CW decomposition for RPm and the bundle Sm −→ RPm.
Then the cellular chain complex with coefficients in Sm ×Z∗ A is of the form

C∗(RPm;Sm ×Z∗ A) = A
2←− A 0←− A 2←− A←− · · · ,

in particular, we get

Hk(RPm;Sm ×Z∗ A) =


A/2A for k even, k < m

A for k = m even,
tors2(A) for k ≤ m odd,
0 else.

Proof. Call the coefficient system A , so we have A (x) = A for each x ∈ RPm.
• We have one cell en in each dimension. For each n ≥ 1, let the two preimages of e◦

n−1 be
c+, c− ⊆ Sn−1 ⊆ Dn. Let x±

n := (±1, 0, . . . , 0) ∈ Dn be the two preimages of the 0-cell.
• For each n, we consider α : I −→ Dn, t 7−→ tx+

n from 0n to x+
n . Moreover, the half circle

β : I −→ Dn, t 7−→ (eπi·t, 0, . . . , 0) has the two properties χe ◦ β = e1 (with orientation) and
α ? β is a path from 0 to x−

n . Finally, we define the paths

δ±(t) := ±
(

1− t, 0, . . . , 0,
√

2t− t2
)
.

δ± is a path from x±
n to the preimage of zen−1 inside c± and χe◦δ+ = χe◦δ− =: ε. Pictorially,

• Now we choose our paths γc+ and γc− by setting

γc+ := α ? δ+

γc−
:= α ? β ? δ−.

Then γc+ = (χeα) ? ε and γen,c− = (χeα) ? e1 ? ε. Hence, we get

A γc+ = −A γc− .

Recall that deg(fen,c±) = (±1)n, whence the boundary operator has the form dolden =
(1 + (−1)n) · en−1. Now we have one extra sign, so we get den = (1 + (−1)n+1) · en−1.
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