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1. COMPLEMENTS OF TORUS KNOTS
Remark 1.1. We will use the following describe the 3-sphere S?:
S* = oD* 2 9(D? x D?) = (S' xD*)u (D? x S') = AU B.
Their intersection AN B = S! x S! is a 2-torus.
Definition 1.2. For two coprime integers p,q € Z, we define the torus knot as the embedding

z—(2P,29)
_—

Kpq: S StxSt e—— §3.

Note that this is injective: There isno 1 # z € S! with 2”7 =1 and 29 = 1 as there areno 1 < k < p
and 1 <[ < g with k¢ + Ip = 0.

Proposition 1.3. 71(S*\ K, ;) = (a,b | a? = b?).

Proof. Throughout the proof, let K := K ,.

(1) Let the complement inside the torus be C := T? \ K. Now let W := C x (1 —¢,1]. We
can identify W = Wy C A and W = Wi C B. We thicken U := (A\ K)U Wg and
V:=(B\K)UW,4. Then U ~ A and V ~ B. Moreover, UNV =C x (1—¢,1+¢) ~C.
Then UUV = §3\ K, so we found an open cover.

(11) We have m1(U) =Z = 71 (V) and we see that U NV is just an annulus and its fundamental
loop is a perturbation of the removed path z — (2P, 29). Therefore m (U N V) = Z and the
inclusions ¥V : UNV — U and ¢+ : UNV — V induce multiplication with p resp. ¢. By
SEIFERT-VAN KAMPEN, we get

(S \ K) = m(U) %, wrvy T (V)
= pushoutg,, ( 7727 )

= {(a,b| a? = b?).

Proposition 1.4. H(S*\ K, ,;Z) = Z (without Alezander duality).

Proof. We know Hy(—;Z) = 73" for connected arguments. As the abelianisation preserves colimits,
H,(S*\ K, 4;7Z) = pushout 5, ( Z+E—7 "5 7 ) = coker(fq).

To show that the latter is isomorphic to Z, consider the sequence

(%)

0 zZ AN 0.

The map (g p) is surjective by BEzZOUT’S LEMMA, the composite is 0 and if kq + Ip = 0, then
q| ! and p |k, so there are a,b € Z with ¢gb = [ and pa = k. Then pg(a+b) =0, so b = —a and
(k1) = (fq) - a, so the sequence is exact and Z = coker(fq). O



2.  ORIENTATION AND TANGENT BUNDLES

Reminder 2.1. Let V be an m-dimensional R-vector space. The set Fr(V') := Fr,,, (V) of bases
B = (v1,...,vn) behaves functorially: For each isomorphism ¢ : V. — W, we have a map

o :Fr(V) — Fr(W), (v1,...,0m) — (p(v1), ..., 0(vm)).

We impose on it an equivalence relation: Two bases B = (v1,...,v) and B = (v],...,v],) are
equally oriented, if the determinant a of the base change

VIA-Av =a- (v A Avg)

is positive. The quotient consists Oy of two equivalence classes [B] of bases. A choice of one is
called orientation of V. The map ¢, respects this equivalence relation and thus gives rise to a
bijection O, : Oy — Ow. For a choice of orientation, ¢ is called orientation-preserving if O, is
based, and orientation-reversing if not.

Construction 2.2. Let V — E — X be a real vector bundle, so assume we have charts
@i : E|ly, — U; x V such that for all p € U;;, the coordinate changes ¢;;(p) : V. — V are linear
automorphisms. We can build the associated orientation bundle Z* — or(E) — X by

or(E) := Hic; Ui xZ /((p, (B]) ~ (p, Oy () [B]) for p € Uij)'
This is a Z*-bundle over X, with trivialisations or(E)|y, — U; x Z*, [p, [B]] — (p, [B]). We call
E orientable, if or(E) = X x Z*. If each ¢;;(p) has positive determinant, then or(E) is orientable.
Proposition 2.3. All complex vector bundles are orientable (as real vector bundles).

Proof. Being a complex vector bundle means that the transitions ¢;;(p) : V. — V are C-linear.
We show that C-linear maps are always orientation-preserving (as R-linear maps): We choose a
C-basis (v1,-..,v,) of V. As an R-vector space, we have

V2 Rvy,...,v) @R(ivy, ..., iv,) .

::V1 ::V2

Now let ¢ : V. — V be a C-linear automorphism. Then there are ¢gp : V, — V}, such that

_ [P11 P12
4 (@21 <P22> ’
as R-linear map, so det(y) = w(p11) det(pa2) — det(p12) det(p21). Now we use C-linearity to get
p(ivg) = ip(vg), SO paa = w11 and @1 = —p12. Therefore

det () = det(p11)? + det(p12)? > 0. O

Lemma 2.4. Fix a generatoro € H,,(R™ R™\{0}; Z) and for x € R™ let o, € H,,(R™ R™\{z};Z)
be its translations. Now let ¢ : V — V' be a diffeomorphism. For x € V, we have

©x0, = sgn(det(Dyp|;)) - 0p(z)-

Proof. (1) We start with the following general remark: Let A € GL(m,R) with e = sgn(det(A)) =
+1. As GL(m,R) = GL(m,R); U GL(m,R)_ has exactly two path components, there is a
path v : I — GL(m,R) from A to I. with I.(z) = (ex1,x2,...,Zm). As y(t)(x) # 0 for
x # 0, we get A ~ I. as self maps R™ \ {0} — R™ \ {0}. Therefore deg(A) = «.

(11) Now by translation, we may assume z = ¢(x) = 0. By TAYLOR APPROXIMATION, there is a
neighbourhood U C V homeomorphic to B™ such that

[¢(z) = Deglo()]| < [[Deplo()
for all z € U, s0 0 € [p(x), Dy|o(x)]. Therefore we have a homotopy
H: (UNA{0}) x I — R™\A{0}, (2,t) ¥t - p(2) + (1 — 1) - Deplo(),
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50 ¢|y ~ Dyplo. We finally get the diagram

0 H, (U, U\ {0};z) =280 g (R™ R™\ {0};Z) o

wumwo)* l@w\o)*

@0 Hm(p(U),p(U)\{0};2Z) Hp(R™,RTA{0}Z) e-0 O

Proposition 2.5. Let M be a smooth manifold. There is a bundle isomorphism or(TM) = or(M).

excision

Proof. We find charts (U;, x;);er of M such that U; is convex. We define ¢;; := sgn(det(Dz;;)) € Z*
(which is independent of the point where we evaluate). Then we can trivialise

P, :U; x 7 — OT(TM)

v (0, 21) — (o llr 2o 5251
W, : U x Z" — or(M)|y,, (p,+1) — (p, :l:(xi);loxi(p))

and we define locally
fii=V;0 (I>i_1 cor(TM)|y, — or(M)]y,

We have to see that f;|v,, = filu,;: First, we see for p € Uy; by the LEMMA that
(Ij)Il%j(p) = €5 (Ij)Il(Iij)*Ox,i(p) =& - (Ii)ilowi(p%

Therefore, we get

f]( 7[321a7%]) :f] (pa[eljﬁva%?]>
= V;(p, &)
= (p, Eij * (xj)leoxj(p))

= (p, ()5 ' 00,(p))
= i (p. 125571

i

Corollary 2.6. All complex manifolds are orientable.

Proof. For complex manifolds, the chart changes are biholomorphic, so the differentials are C-linear.
Hence the tangent bundle can be enhanced to a complex vector bundle, which is orientable by
PROPOSTION 2.3. O

3. TANGENT SPACE OF THE GRASSMANNIANS
Reminder 3.1. Let M be a smooth m-manifold and p € M. Choose a chart (U, z) and define
T,M :={a: (—¢,e) — M smooth; a(0) = p}/ ~
where a ~ 3 iff (z 0 @)’ (0) = (x 0 8)’(0). We have a canonical bijection
T,M — R™, [a] — (z o a)'(0).

Remark 3.2 (Coordinate free identification). For a based chart « : (U,p) — (W,0) with W C V
in some R-vector space open, one has an isomorphism

V — T,M,v+— [t — 2 *(tv)] = Dz~ o(v).
Proposition 3.3. Let P € Gri(R™). Choose a complementary Q C R™. We have an isomorphism
¢ : Hom(P, Q) — TpGri(R"), B — [t — im(idp + ¢ B)].
Proof. This is just an application of EXERCISE V.2 where we found charts

¢~ ' :Hom(P,Q) — Up C Grp(R"™), B+ im(idp + B). O



4. THE HOPF INVARIANT

Reminder 4.1. Let n > 1 and f : S*"~! — S" be a map. We consider the pushout X := e"LI;S".
It has one 0-, one n- and one 2n-cell and since all differentials vanish, we get H"(Xy) = Z{«) and
H?"(X ;) = Z(B). There is a hy € Z such that o® = hy - 8. We call hy Hopf invariant. It does not
depend on the homotopy type of f, whence we get a map

h: Sl S" — Z.

Proposition 4.2. If n is odd, then hy =0 for all f :S*"~1 — S™.

Proof. We have 202 = 0 by graded commutativity. As H?>"(Xy) is free, we get o> =0=0-3. O
Proposition 4.3. Consider the Whitehead square w : S?"~1 Jysrvst Y st where the first
map is the attaching map of the 2n-cell of S* x S™. Then h, =1+ (=1)".

Proof. By definition, S" x S" = 2" Li; (S™ V S™), so by the universal property, there is a map
g:S™ x S" — X such that

§2n—1 ! SRS v sn

| I |

e — S x S” T>XW'
As the outer and the left square are pushouts, also the right square is a pushout. As i is a
neighbourhood deformation retract, this gives us a Mayer—Vietoris sequence

v

L BMU(ST VST = HE(XL) TES HMS™) @ HE(ST x5 5 HRET Vst s

Hence, g* : H*"(X,,) — H?"(S™ x S") is an iso, so we may assume g*3 = [S"] x [S"]. We see

w (8" x [8"]) = he - g"B = (9°a)?,
so we are left to see what g*a € H™(S"™ x S™) is. To do this, we determine j* + g* by using exactness
in the following situation:

H™(X,,) — 9 g (S) @ H(S" x §1) — = H(S" vV S)

H | H
(

a) —)> ([S"], 1 [S"], [S"] < 1) m([S"]h[S”]zf
1 0 -1

/N
o oe

0 immediately gives us a —b =0 and a — ¢ = 0, so b = ¢. On the other

Then (V* —i*)(5* + g*) =
i*) Cim(5* + g*), we get b,c = £1. Therefore

hand, as ker(V* —
gra=b-(1x [S"]) +c- (8] x 1) = £ (1 x [§"]) + (I8"] x 1)).

and (g"a)? = (1 x [S"])([S"] x 1) + ([S"] x (1 x [S"]) = (1 + (=1)") - ([8"] x [S"]). H

Corollary 4.4. [S?"~1/S"] # 0 for n even.
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