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1. Complements of torus knots

Remark 1.1. We will use the following describe the 3-sphere S3:

S3 = ∂D4 ∼= ∂(D2 × D2) = (S1 × D2) ∪ (D2 × S1) =: A ∪ B.

Their intersection A ∩ B = S1 × S1 is a 2-torus.

Definition 1.2. For two coprime integers p, q ∈ Z, we define the torus knot as the embedding

Kp,q : S1 S1 × S1 S3.
z 7−→(zp,zq)

Note that this is injective: There is no 1 6= z ∈ S1 with zp = 1 and zq = 1 as there are no 1 ≤ k < p
and 1 ≤ l < q with kq + lp = 0.

Proposition 1.3. π1(S3 \ Kp,q) = 〈a, b | ap = bq〉.

Proof. Throughout the proof, let K := Kp,q.

(i) Let the complement inside the torus be C := T2 \ K. Now let W := C × (1 − ε, 1]. We
can identify W ∼= WA ⊆ A and W ∼= WB ⊆ B. We thicken U := (A \ K) ∪ WB and
V := (B \ K) ∪ WA. Then U ' A and V ' B. Moreover, U ∩ V = C × (1 − ε, 1 + ε) ' C.
Then U ∪ V = S3 \ K, so we found an open cover.

(ii) We have π1(U) = Z = π1(V ) and we see that U ∩ V is just an annulus and its fundamental
loop is a perturbation of the removed path z 7−→ (zp, zq). Therefore π1(U ∩ V ) = Z and the
inclusions ıU : U ∩ V −→ U and ıV : U ∩ V −→ V induce multiplication with p resp. q. By
Seifert–van Kampen, we get

π1(S3 \ K) = π1(U) ∗π1(U∩V ) π1(V )

= pushoutGrp

(
Z Z Zp q

)
= 〈a, b | ap = bq〉.

Proposition 1.4. H1(S3 \ Kp,q;Z) = Z (without Alexander duality).

Proof. We know H1(−;Z) = πab
1 for connected arguments. As the abelianisation preserves colimits,

H1(S3 \ Kp,q;Z) = pushoutAb

(
Z Z Zp q

)
= coker

(
p

−q

)
.

To show that the latter is isomorphic to Z, consider the sequence

0 Z Z2 Z 0.

( p
−q

)
(q p)

The map (q p) is surjective by Bézout’s Lemma, the composite is 0 and if kq + lp = 0, then
q | l and p | k, so there are a, b ∈ Z with qb = l and pa = k. Then pq(a + b) = 0, so b = −a and
(k, l) =

(
p

−q

)
· a, so the sequence is exact and Z = coker

(
p

−q

)
.
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2. Orientation and tangent bundles

Reminder 2.1. Let V be an m-dimensional R-vector space. The set Fr(V ) := Frm(V ) of bases
B = (v1, . . . , vm) behaves functorially: For each isomorphism ϕ : V −→ W , we have a map

ϕ : Fr(V ) −→ Fr(W ), (v1, . . . , vm) 7−→ (ϕ(v1), . . . , ϕ(vm)).

We impose on it an equivalence relation: Two bases B = (v1, . . . , vm) and B′ = (v′
1, . . . , v′

m) are
equally oriented, if the determinant a of the base change

v′
1 ∧ · · · ∧ v′

m = a · (v1 ∧ · · · ∧ vm)

is positive. The quotient consists OV of two equivalence classes [B] of bases. A choice of one is
called orientation of V . The map ϕ∗ respects this equivalence relation and thus gives rise to a
bijection Oϕ : OV −→ OW . For a choice of orientation, ϕ is called orientation-preserving if Oϕ is
based, and orientation-reversing if not.

Construction 2.2. Let V −→ E −→ X be a real vector bundle, so assume we have charts
ϕi : E|Ui

−→ Ui × V such that for all p ∈ Uij , the coordinate changes ϕij(p) : V −→ V are linear
automorphisms. We can build the associated orientation bundle Z∗ −→ or(E) −→ X by

or(E) :=
∐

i∈I Ui × Z∗
/(

(p, [B]) ∼ (p, Oϕij(p)[B]) for p ∈ Uij

)
.

This is a Z∗-bundle over X, with trivialisations or(E)|Ui
−→ Ui × Z∗, [p, [B]] −→ (p, [B]). We call

E orientable, if or(E) ∼= X × Z∗. If each ϕij(p) has positive determinant, then or(E) is orientable.

Proposition 2.3. All complex vector bundles are orientable (as real vector bundles).

Proof. Being a complex vector bundle means that the transitions ϕij(p) : V −→ V are C-linear.
We show that C-linear maps are always orientation-preserving (as R-linear maps): We choose a
C-basis (v1, . . . , vr) of V . As an R-vector space, we have

V ∼= R〈v1, . . . , vr〉︸ ︷︷ ︸
=:V1

⊕R〈iv1, . . . , ivr〉︸ ︷︷ ︸
=:V2

.

Now let ϕ : V −→ V be a C-linear automorphism. Then there are ϕab : Va −→ Vb such that

ϕ =
(

ϕ11 ϕ12
ϕ21 ϕ22

)
,

as R-linear map, so det(ϕ) = ϕ(ϕ11) det(ϕ22) − det(ϕ12) det(ϕ21). Now we use C-linearity to get
ϕ(ivk) = iϕ(vk), so ϕ22 = ϕ11 and ϕ21 = −ϕ12. Therefore

det(ϕ) = det(ϕ11)2 + det(ϕ12)2 > 0.

Lemma 2.4. Fix a generator o ∈ Hm(Rm,Rm\{0};Z) and for x ∈ Rm let ox ∈ Hm(Rm,Rm\{x};Z)
be its translations. Now let ϕ : V −→ V ′ be a diffeomorphism. For x ∈ V , we have

ϕ∗ox = sgn(det(Dϕ|x)) · oϕ(x).

Proof. (i) We start with the following general remark: Let A ∈ GL(m,R) with ε = sgn(det(A)) =
±1. As GL(m,R) = GL(m,R)+ t GL(m,R)− has exactly two path components, there is a
path γ : I −→ GL(m,R) from A to Iε with Iε(x) = (εx1, x2, . . . , xm). As γ(t)(x) 6= 0 for
x 6= 0, we get A ' Iε as self maps Rm \ {0} −→ Rm \ {0}. Therefore deg(A) = ε.

(ii) Now by translation, we may assume x = ϕ(x) = 0. By Taylor approximation, there is a
neighbourhood U ⊆ V homeomorphic to Bm such that∥∥ϕ(x) − Dϕ|0(x)

∥∥ <
∥∥Dϕ|0(x)

∥∥
for all x ∈ U , so 0 6∈ [ϕ(x), Dϕ|0(x)]. Therefore we have a homotopy

H : (U \ {0}) × I −→ Rm \ {0}, (x, t) 7−→ t · ϕ(x) + (1 − t) · Dϕ|0(x),
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so ϕ|U ' Dϕ|0. We finally get the diagram

o Hm(U, U \ {0};Z) Hm(Rm,Rm \ {0};Z) o

ϕ∗o Hm(ϕ(U), ϕ(U) \ {0};Z) Hm(Rm,Rm \ {0};Z) ε · o

ϕ∗ (Dϕ|0)∗

excision

(Dϕ|0)∗

excision

Proposition 2.5. Let M be a smooth manifold. There is a bundle isomorphism or(TM) ∼= or(M).

Proof. We find charts (Ui, xi)i∈I of M such that Ui is convex. We define εij := sgn(det(Dxij)) ∈ Z∗

(which is independent of the point where we evaluate). Then we can trivialise

Φi : Ui × Z∗ −→ or(TM)|Ui
, (p, ±1) 7−→

(
p, [± ∂

∂x1
i
, ∂

∂x2
i
, . . . , ∂

∂xm
i

]
)

,

Ψi : Ui × Z∗ −→ or(M)|Ui , (p, ±1) 7−→
(
p, ±(xi)−1

∗ oxi(p)
)

and we define locally
fi := Ψi ◦ Φ−1

i : or(TM)|Ui −→ or(M)|Ui

We have to see that fj |Uij = fi|Uij : First, we see for p ∈ Uij by the Lemma that

(xj)−1
∗ oxj(p) = εij · (xj)−1

∗ (xij)∗oxi(p) = εij · (xi)−1oxi(p).

Therefore, we get

fj

(
p, [ ∂

∂x1
i
, . . . , ∂

∂xm
i

]
)

= fj

(
p, [εij · ∂

∂x1
j
, . . . , ∂

∂xm
j

]
)

= Ψj(p, εij)
= (p, εij · (xj)−1

∗ oxj(p))
= (p, (xi)−1

∗ oxi(p))

= fi

(
p, [ ∂

∂x1
i
, . . . , ∂

∂xm
i

]
)

.

Corollary 2.6. All complex manifolds are orientable.

Proof. For complex manifolds, the chart changes are biholomorphic, so the differentials are C-linear.
Hence the tangent bundle can be enhanced to a complex vector bundle, which is orientable by
Propostion 2.3.

3. Tangent space of the Grassmannians

Reminder 3.1. Let M be a smooth m-manifold and p ∈ M . Choose a chart (U, x) and define

TpM := {α : (−ε, ε) −→ M smooth; α(0) = p}/ ∼

where α ∼ β iff (x ◦ α)′(0) = (x ◦ β)′(0). We have a canonical bijection

TpM −→ Rm, [α] 7−→ (x ◦ α)′(0).

Remark 3.2 (Coordinate free identification). For a based chart x : (U, p) −→ (W, 0) with W ⊆ V
in some R-vector space open, one has an isomorphism

V −→ TpM, v 7−→ [t 7−→ x−1(tv)] = Dx−1|0(v).

Proposition 3.3. Let P ∈ Grk(Rn). Choose a complementary Q ⊆ Rn. We have an isomorphism

Φ : Hom(P, Q) −→ TP Grk(Rn), B 7−→ [t 7−→ im(idP + tB)] .

Proof. This is just an application of Exercise V.2 where we found charts

ϕ−1 : Hom(P, Q) −→ UP ⊆ Grk(Rn), B 7−→ im(idP + B).
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4. The Hopf invariant

Reminder 4.1. Let n > 1 and f : S2n−1 −→ Sn be a map. We consider the pushout Xf := entf Sn.
It has one 0-, one n- and one 2n-cell and since all differentials vanish, we get Hn(Xf ) = Z〈α〉 and
H2n(Xf ) = Z〈β〉. There is a hf ∈ Z such that α2 = hf · β. We call hf Hopf invariant. It does not
depend on the homotopy type of f , whence we get a map

h : [S2n−1,Sn] −→ Z.

Proposition 4.2. If n is odd, then hf = 0 for all f : S2n−1 −→ Sn.

Proof. We have 2α2 = 0 by graded commutativity. As H2n(Xf ) is free, we get α2 = 0 = 0 · β.

Proposition 4.3. Consider the Whitehead square ω : S2n−1 f−→ Sn ∨ Sn ∇−→ Sn where the first
map is the attaching map of the 2n-cell of Sn × Sn. Then hω = 1 + (−1)n.

Proof. By definition, Sn × Sn = e2n tf (Sn ∨ Sn), so by the universal property, there is a map
g : Sn × Sn −→ X such that

S2n−1 Sn ∨ Sn Sn

en Sn × Sn Xω.

f ∇

i j

g

As the outer and the left square are pushouts, also the right square is a pushout. As i is a
neighbourhood deformation retract, this gives us a Mayer–Vietoris sequence

· · · Hk−1(Sn ∨ Sn) Hk(Xω) Hk(Sn) ⊕ Hk(Sn × Sn) Hk(Sn ∨ Sn) · · ·δ∗ j∗+g∗ i∗−∇∗
δ∗

Hence, g∗ : H2n(Xω) −→ H2n(Sn × Sn) is an iso, so we may assume g∗β = [Sn] × [Sn]. We see

hω · ([Sn] × [Sn]) = hω · g∗β = (g∗α)2,

so we are left to see what g∗α ∈ Hn(Sn ×Sn) is. To do this, we determine j∗ +g∗ by using exactness
in the following situation:

Hn(Xω) Hn(Sn) ⊕ Hn(Sn × Sn) Hn(Sn ∨ Sn)

〈α〉 〈[Sn], 1 × [Sn], [Sn] × 1〉 〈[Sn]1, [Sn]2〉 .

j∗+g∗ ∇∗−i∗

(
a
b
c

) ( 1 −1 0
1 0 −1

)
Then (∇∗ − i∗)(j∗ + g∗) = 0 immediately gives us a − b = 0 and a − c = 0, so b = c. On the other
hand, as ker(∇∗ − i∗) ⊆ im(j∗ + g∗), we get b, c = ±1. Therefore

g∗α = b · (1 × [Sn]) + c · ([Sn] × 1) = ± ((1 × [Sn]) + ([Sn] × 1)) .

and (g∗α)2 = (1 × [Sn])([Sn] × 1) + ([Sn] × 1)(1 × [Sn]) = (1 + (−1)n) · ([Sn] × [Sn]).

Corollary 4.4. [S2n−1,Sn] 6= 0 for n even.
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