Sheet 7: Knots, smooth structures and the Hopf invariant FLORIAN KRANHOLD

Topology 2, summer term 2019

1. Complements of torus knots

Remark 1.1. We will use the following describe the 3-sphere \mathbb{S}^3 :

$$\mathbb{S}^3 = \partial \mathbb{D}^4 \cong \partial (\mathbb{D}^2 \times \mathbb{D}^2) = (\mathbb{S}^1 \times \mathbb{D}^2) \cup (\mathbb{D}^2 \times \mathbb{S}^1) =: A \cup B.$$

Their intersection $A \cap B = \mathbb{S}^1 \times \mathbb{S}^1$ is a 2-torus.

Definition 1.2. For two coprime integers $p, q \in \mathbb{Z}$, we define the *torus knot* as the embedding

$$K_{p,q}: \mathbb{S}^1 \xrightarrow{z \longmapsto (z^p, z^q)} \mathbb{S}^1 \times \mathbb{S}^1 \longrightarrow \mathbb{S}^3.$$

Note that this is injective: There is no $1 \neq z \in \mathbb{S}^1$ with $z^p = 1$ and $z^q = 1$ as there are no $1 \leq k < p$ and $1 \leq l < q$ with kq + lp = 0.

Proposition 1.3. $\pi_1(\mathbb{S}^3 \setminus K_{p,q}) = \langle a, b \mid a^p = b^q \rangle.$

Proof. Throughout the proof, let $K := K_{p,q}$.

- (I) Let the complement inside the torus be $C := \mathbb{T}^2 \setminus K$. Now let $W := C \times (1 \varepsilon, 1]$. We can identify $W \cong W_A \subseteq A$ and $W \cong W_B \subseteq B$. We thicken $U := (A \setminus K) \cup W_B$ and $V := (B \setminus K) \cup W_A$. Then $U \simeq A$ and $V \simeq B$. Moreover, $U \cap V = C \times (1 \varepsilon, 1 + \varepsilon) \simeq C$. Then $U \cup V = \mathbb{S}^3 \setminus K$, so we found an open cover.
- (II) We have $\pi_1(U) = \mathbb{Z} = \pi_1(V)$ and we see that $U \cap V$ is just an annulus and its fundamental loop is a perturbation of the removed path $z \mapsto (z^p, z^q)$. Therefore $\pi_1(U \cap V) = \mathbb{Z}$ and the inclusions $i^U : U \cap V \longrightarrow U$ and $i^V : U \cap V \longrightarrow V$ induce multiplication with p resp. q. By SEIFERT-VAN KAMPEN, we get

$$\pi_1(\mathbb{S}^3 \setminus K) = \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V)$$

= pushout_**Grp** $\left(\mathbb{Z} \xleftarrow{p} \mathbb{Z} \xrightarrow{q} \mathbb{Z} \right)$
= $\langle a, b \mid a^p = b^q \rangle.$

Proposition 1.4. $H_1(\mathbb{S}^3 \setminus K_{p,q}; \mathbb{Z}) = \mathbb{Z}$ (without Alexander duality).

Proof. We know $H_1(-;\mathbb{Z}) = \pi_1^{ab}$ for connected arguments. As the abelianisation preserves colimits,

$$H_1(\mathbb{S}^3 \setminus K_{p,q}; \mathbb{Z}) = \text{pushout}_{\mathbf{Ab}} \left(\mathbb{Z} \xleftarrow{p}{\longrightarrow} \mathbb{Z} \xrightarrow{q} \mathbb{Z} \right) = \text{coker} \binom{p}{-q}.$$

To show that the latter is isomorphic to \mathbb{Z} , consider the sequence

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\binom{p}{-q}} \mathbb{Z}^2 \xrightarrow{(q \ p)} \mathbb{Z} \longrightarrow 0.$$

The map $(q \ p)$ is surjective by Bézout's LEMMA, the composite is 0 and if kq + lp = 0, then $q \mid l$ and $p \mid k$, so there are $a, b \in \mathbb{Z}$ with qb = l and pa = k. Then pq(a + b) = 0, so b = -a and $(k, l) = \binom{p}{-q} \cdot a$, so the sequence is exact and $\mathbb{Z} = \operatorname{coker}\binom{p}{-q}$.

2. Orientation and tangent bundles

Reminder 2.1. Let V be an m-dimensional \mathbb{R} -vector space. The set $Fr(V) := Fr_m(V)$ of bases $\mathcal{B} = (v_1, \ldots, v_m)$ behaves functorially: For each isomorphism $\varphi : V \longrightarrow W$, we have a map

$$\varphi: \operatorname{Fr}(V) \longrightarrow \operatorname{Fr}(W), (v_1, \dots, v_m) \longmapsto (\varphi(v_1), \dots, \varphi(v_m)).$$

We impose on it an equivalence relation: Two bases $\mathcal{B} = (v_1, \ldots, v_m)$ and $\mathcal{B}' = (v'_1, \ldots, v'_m)$ are equally oriented, if the determinant a of the base change

$$v_1' \wedge \dots \wedge v_m' = a \cdot (v_1 \wedge \dots \wedge v_m)$$

is positive. The quotient consists O_V of two equivalence classes $[\mathcal{B}]$ of bases. A choice of one is called *orientation* of V. The map φ_* respects this equivalence relation and thus gives rise to a bijection $O_{\varphi}: O_V \longrightarrow O_W$. For a choice of orientation, φ is called *orientation-preserving* if O_{φ} is based, and *orientation-reversing* if not.

Construction 2.2. Let $V \longrightarrow E \longrightarrow X$ be a real vector bundle, so assume we have charts $\varphi_i : E|_{U_i} \longrightarrow U_i \times V$ such that for all $p \in U_{ij}$, the coordinate changes $\varphi_{ij}(p) : V \longrightarrow V$ are linear automorphisms. We can build the *associated orientation bundle* $\mathbb{Z}^* \longrightarrow \operatorname{or}(E) \longrightarrow X$ by

$$\operatorname{or}(E) := \coprod_{i \in I} U_i \times \mathbb{Z}^* / \Big((p, [\mathcal{B}]) \sim (p, O_{\varphi_{ij}(p)}[\mathcal{B}]) \text{ for } p \in U_{ij} \Big).$$

This is a \mathbb{Z}^* -bundle over X, with trivialisations $\operatorname{or}(E)|_{U_i} \longrightarrow U_i \times \mathbb{Z}^*, [p, [\mathcal{B}]] \longrightarrow (p, [\mathcal{B}])$. We call E orientable, if $\operatorname{or}(E) \cong X \times \mathbb{Z}^*$. If each $\varphi_{ij}(p)$ has positive determinant, then $\operatorname{or}(E)$ is orientable.

Proposition 2.3. All complex vector bundles are orientable (as real vector bundles).

Proof. Being a complex vector bundle means that the transitions $\varphi_{ij}(p) : V \longrightarrow V$ are \mathbb{C} -linear. We show that \mathbb{C} -linear maps are always orientation-preserving (as \mathbb{R} -linear maps): We choose a \mathbb{C} -basis (v_1, \ldots, v_r) of V. As an \mathbb{R} -vector space, we have

$$V \cong \underbrace{\mathbb{R}\langle v_1, \dots, v_r \rangle}_{=:V_1} \oplus \underbrace{\mathbb{R}\langle iv_1, \dots, iv_r \rangle}_{=:V_2}.$$

Now let $\varphi: V \longrightarrow V$ be a \mathbb{C} -linear automorphism. Then there are $\varphi_{ab}: V_a \longrightarrow V_b$ such that

$$\varphi = \begin{pmatrix} \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{pmatrix}.$$

as \mathbb{R} -linear map, so det $(\varphi) = \varphi(\varphi_{11}) \det(\varphi_{22}) - \det(\varphi_{12}) \det(\varphi_{21})$. Now we use \mathbb{C} -linearity to get $\varphi(iv_k) = i\varphi(v_k)$, so $\varphi_{22} = \varphi_{11}$ and $\varphi_{21} = -\varphi_{12}$. Therefore

$$\det(\varphi) = \det(\varphi_{11})^2 + \det(\varphi_{12})^2 > 0.$$

Lemma 2.4. Fix a generator $o \in H_m(\mathbb{R}^m, \mathbb{R}^m \setminus \{0\}; \mathbb{Z})$ and for $x \in \mathbb{R}^m$ let $o_x \in H_m(\mathbb{R}^m, \mathbb{R}^m \setminus \{x\}; \mathbb{Z})$ be its translations. Now let $\varphi : V \longrightarrow V'$ be a diffeomorphism. For $x \in V$, we have

$$\varphi_* o_x = \operatorname{sgn}(\det(\mathrm{D}\varphi|_x)) \cdot o_{\varphi(x)}$$

- Proof. (I) We start with the following general remark: Let $A \in \operatorname{GL}(m, \mathbb{R})$ with $\varepsilon = \operatorname{sgn}(\operatorname{det}(A)) = \pm 1$. As $\operatorname{GL}(m, \mathbb{R}) = \operatorname{GL}(m, \mathbb{R})_+ \sqcup \operatorname{GL}(m, \mathbb{R})_-$ has exactly two path components, there is a path $\gamma : I \longrightarrow \operatorname{GL}(m, \mathbb{R})$ from A to I_{ε} with $I_{\varepsilon}(x) = (\varepsilon x_1, x_2, \dots, x_m)$. As $\gamma(t)(x) \neq 0$ for $x \neq 0$, we get $A \simeq I_{\varepsilon}$ as self maps $\mathbb{R}^m \setminus \{0\} \longrightarrow \mathbb{R}^m \setminus \{0\}$. Therefore $\operatorname{deg}(A) = \varepsilon$.
 - (II) Now by translation, we may assume $x = \varphi(x) = 0$. By TAYLOR APPROXIMATION, there is a neighbourhood $U \subseteq V$ homeomorphic to \mathbb{B}^m such that

$$\left\|\varphi(x) - \mathbf{D}\varphi|_0(x)\right\| < \left\|\mathbf{D}\varphi|_0(x)\right\|$$

for all $x \in U$, so $0 \notin [\varphi(x), D\varphi|_0(x)]$. Therefore we have a homotopy

$$H: (U \setminus \{0\}) \times I \longrightarrow \mathbb{R}^m \setminus \{0\}, (x,t) \longmapsto t \cdot \varphi(x) + (1-t) \cdot \mathbf{D}\varphi|_0(x),$$

so $\varphi|_U \simeq \mathbf{D}\varphi|_0$. We finally get the diagram

$$\begin{array}{ccc} o & H_m(U, U \setminus \{0\}; \mathbb{Z}) \xrightarrow{\text{excision}} H_m(\mathbb{R}^m, \mathbb{R}^m \setminus \{0\}; \mathbb{Z}) & o \\ \downarrow & & & \downarrow^{(D\varphi|_0)_*} & \downarrow^{(D\varphi|_0)_*} & \downarrow \\ \varphi_* o & H_m(\varphi(U), \varphi(U) \setminus \{0\}; \mathbb{Z}) \xrightarrow{\text{excision}} H_m(\mathbb{R}^m, \mathbb{R}^m \setminus \{0\}; \mathbb{Z}) & \varepsilon \cdot o \end{array}$$

Proposition 2.5. Let M be a smooth manifold. There is a bundle isomorphism $\operatorname{or}(TM) \cong \operatorname{or}(M)$.

Proof. We find charts $(U_i, x_i)_{i \in I}$ of M such that U_i is convex. We define $\varepsilon_{ij} := \operatorname{sgn}(\det(\operatorname{D} x_{ij})) \in \mathbb{Z}^*$ (which is independent of the point where we evaluate). Then we can trivialise

$$\Phi_i: U_i \times \mathbb{Z}^* \longrightarrow \operatorname{or}(TM)|_{U_i}, (p, \pm 1) \longmapsto \left(p, [\pm \frac{\partial}{\partial x_i^1}, \frac{\partial}{\partial x_i^2}, \dots, \frac{\partial}{\partial x_i^m}]\right),$$

$$\Psi_i: U_i \times \mathbb{Z}^* \longrightarrow \operatorname{or}(M)|_{U_i}, \quad (p, \pm 1) \longmapsto \left(p, \pm (x_i)_*^{-1} o_{x_i(p)}\right)$$

and we define locally

$$f_i := \Psi_i \circ \Phi_i^{-1} : \operatorname{or}(TM)|_{U_i} \longrightarrow \operatorname{or}(M)|_{U_i}$$

We have to see that $f_j|_{U_{ij}} = f_i|_{U_{ij}}$: First, we see for $p \in U_{ij}$ by the LEMMA that

$$(x_j)_*^{-1}o_{x_j(p)} = \varepsilon_{ij} \cdot (x_j)_*^{-1} (x_{ij})_* o_{x_i(p)} = \varepsilon_{ij} \cdot (x_i)^{-1} o_{x_i(p)}.$$

Therefore, we get

$$f_{j}\left(p, \left[\frac{\partial}{\partial x_{i}^{1}}, \dots, \frac{\partial}{\partial x_{i}^{m}}\right]\right) = f_{j}\left(p, \left[\varepsilon_{ij} \cdot \frac{\partial}{\partial x_{j}^{1}}, \dots, \frac{\partial}{\partial x_{j}^{m}}\right]\right)$$
$$= \Psi_{j}(p, \varepsilon_{ij})$$
$$= (p, \varepsilon_{ij} \cdot (x_{j})_{*}^{-1}o_{x_{j}(p)})$$
$$= (p, (x_{i})_{*}^{-1}o_{x_{i}(p)})$$
$$= f_{i}\left(p, \left[\frac{\partial}{\partial x_{i}^{1}}, \dots, \frac{\partial}{\partial x_{i}^{m}}\right]\right).$$

Corollary 2.6. All complex manifolds are orientable.

Proof. For complex manifolds, the chart changes are biholomorphic, so the differentials are \mathbb{C} -linear. Hence the tangent bundle can be enhanced to a complex vector bundle, which is orientable by PROPOSTION 2.3.

3. TANGENT SPACE OF THE GRASSMANNIANS

Reminder 3.1. Let M be a smooth m-manifold and $p \in M$. Choose a chart (U, x) and define

$$T_pM:=\{\alpha:(-\varepsilon,\varepsilon)\longrightarrow M \text{ smooth}; \, \alpha(0)=p\}/\sim$$

where $\alpha \sim \beta$ iff $(x \circ \alpha)'(0) = (x \circ \beta)'(0)$. We have a canonical bijection

$$T_p M \longrightarrow \mathbb{R}^m, [\alpha] \longmapsto (x \circ \alpha)'(0)$$

Remark 3.2 (Coordinate free identification). For a based chart $x : (U, p) \longrightarrow (W, 0)$ with $W \subseteq V$ in some \mathbb{R} -vector space open, one has an isomorphism

$$V \longrightarrow T_p M, v \longmapsto [t \longmapsto x^{-1}(tv)] = \mathbf{D}x^{-1}|_0(v).$$

Proposition 3.3. Let $P \in Gr_k(\mathbb{R}^n)$. Choose a complementary $Q \subseteq \mathbb{R}^n$. We have an isomorphism

$$\Phi: \operatorname{Hom}(P,Q) \longrightarrow T_P \operatorname{Gr}_k(\mathbb{R}^n), B \longmapsto [t \longmapsto \operatorname{im}(\operatorname{id}_P + tB)].$$

Proof. This is just an application of EXERCISE V.2 where we found charts

$$\varphi^{-1} : \operatorname{Hom}(P,Q) \longrightarrow U_P \subseteq \operatorname{Gr}_k(\mathbb{R}^n), B \longmapsto \operatorname{im}(\operatorname{id}_P + B).$$

4. The Hopf invariant

Reminder 4.1. Let n > 1 and $f : \mathbb{S}^{2n-1} \longrightarrow \mathbb{S}^n$ be a map. We consider the pushout $X_f := e^n \sqcup_f \mathbb{S}^n$. It has one 0-, one *n*- and one 2*n*-cell and since all differentials vanish, we get $H^n(X_f) = \mathbb{Z}\langle \alpha \rangle$ and $H^{2n}(X_f) = \mathbb{Z}\langle \beta \rangle$. There is a $h_f \in \mathbb{Z}$ such that $\alpha^2 = h_f \cdot \beta$. We call h_f Hopf invariant. It does not depend on the homotopy type of f, whence we get a map

$$h: [\mathbb{S}^{2n-1}, \mathbb{S}^n] \longrightarrow \mathbb{Z}$$

Proposition 4.2. If n is odd, then $h_f = 0$ for all $f : \mathbb{S}^{2n-1} \longrightarrow \mathbb{S}^n$.

Proof. We have $2\alpha^2 = 0$ by graded commutativity. As $H^{2n}(X_f)$ is free, we get $\alpha^2 = 0 = 0 \cdot \beta$. \Box

Proposition 4.3. Consider the Whitehead square $\omega : \mathbb{S}^{2n-1} \xrightarrow{f} \mathbb{S}^n \vee \mathbb{S}^n \xrightarrow{\nabla} \mathbb{S}^n$ where the first map is the attaching map of the 2n-cell of $\mathbb{S}^n \times \mathbb{S}^n$. Then $h_{\omega} = 1 + (-1)^n$.

Proof. By definition, $\mathbb{S}^n \times \mathbb{S}^n = e^{2n} \sqcup_f (\mathbb{S}^n \vee \mathbb{S}^n)$, so by the universal property, there is a map $g: \mathbb{S}^n \times \mathbb{S}^n \longrightarrow X$ such that

As the outer and the left square are pushouts, also the right square is a pushout. As i is a neighbourhood deformation retract, this gives us a Mayer–Vietoris sequence

 $\cdots \longrightarrow H^{k-1}(\mathbb{S}^n \vee \mathbb{S}^n) \xrightarrow{\delta^*} H^k(X_{\omega}) \xrightarrow{j^* + g^*} H^k(\mathbb{S}^n) \oplus H^k(\mathbb{S}^n \times \mathbb{S}^n) \xrightarrow{i^* - \nabla^*} H^k(\mathbb{S}^n \vee \mathbb{S}^n) \xrightarrow{\delta^*} \cdots$

Hence, $g^*: H^{2n}(X_{\omega}) \longrightarrow H^{2n}(\mathbb{S}^n \times \mathbb{S}^n)$ is an iso, so we may assume $g^*\beta = [\mathbb{S}^n] \times [\mathbb{S}^n]$. We see

$$h_{\omega} \cdot ([\mathbb{S}^n] \times [\mathbb{S}^n]) = h_{\omega} \cdot g^* \beta = (g^* \alpha)^2,$$

so we are left to see what $g^* \alpha \in H^n(\mathbb{S}^n \times \mathbb{S}^n)$ is. To do this, we determine $j^* + g^*$ by using exactness in the following situation:

$$\begin{array}{cccc} H^{n}(X_{\omega}) & \xrightarrow{j^{*}+g^{*}} & H^{n}(\mathbb{S}^{n}) \oplus H^{n}(\mathbb{S}^{n} \times \mathbb{S}^{n}) & \xrightarrow{\nabla^{*}-i^{*}} & H^{n}(\mathbb{S}^{n} \vee \mathbb{S}^{n}) \\ \\ \| & & \| & \\ & \langle \alpha \rangle & \xrightarrow{\left(\begin{array}{c} a \\ b \\ c \end{array} \right)} & \langle [\mathbb{S}^{n}], 1 \times [\mathbb{S}^{n}], [\mathbb{S}^{n}] \times 1 \rangle & \xrightarrow{\left(\begin{array}{c} 1 & -1 & 0 \\ 1 & 0 & -1 \end{array} \right)} & \langle [\mathbb{S}^{n}]_{1}, [\mathbb{S}^{n}]_{2} \rangle \,. \end{array}$$

Then $(\nabla^* - i^*)(j^* + g^*) = 0$ immediately gives us a - b = 0 and a - c = 0, so b = c. On the other hand, as $\ker(\nabla^* - i^*) \subseteq \operatorname{im}(j^* + g^*)$, we get $b, c = \pm 1$. Therefore

$$g^* \alpha = b \cdot (1 \times [\mathbb{S}^n]) + c \cdot ([\mathbb{S}^n] \times 1) = \pm \left((1 \times [\mathbb{S}^n]) + ([\mathbb{S}^n] \times 1) \right).$$

and $(g^*\alpha)^2 = (1 \times [\mathbb{S}^n])([\mathbb{S}^n] \times 1) + ([\mathbb{S}^n] \times 1)(1 \times [\mathbb{S}^n]) = (1 + (-1)^n) \cdot ([\mathbb{S}^n] \times [\mathbb{S}^n]).$

Corollary 4.4. $[\mathbb{S}^{2n-1}, \mathbb{S}^n] \neq 0$ for *n* even.