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1. Precomposition and postcomposition

Proposition 1.1. For g : Sn−1 −→ Sk−1 based, (Σg)∗ : πk(X) −→ πn(X) is a homomorphism.

Proof. For l ≥ 1, let Φl : [Sl, X]∗ −→ [Sl−1, ΩX]∗ be the adjunction. We already checked that this
is an isomorphism of groups when considering the multiplication coming from the monoid structure
on ΩX on the right hand side. Moreover, we know that

[Sk, X]∗ [Sn, X]∗

[Sk−1, ΩX]∗ [Sn−1, ΩX]∗,

(Σg)∗

Φk Φn

g∗

the bottom map is by Exercise IX.1 a homomorphism. Thus, (Σg)∗ is also a homomorphism.

Proposition 1.2. Let f : Sn −→ Sn be of degree d. Then

πk−1(Sn−1) πk(Sn) πk(Sn).Σ f∗

·d

Proof. Let Σg ∈ im(Σ : πk−1(Sn−1) −→ πk(Sn)). By the first part of the exercise, (Σg)∗ is a
homomorphism. Thus,

f∗[Σg] = (Σg)∗[f ] = (Σg)∗(d · [id]) = d · (Σg)∗[id] = d · [Σg].

2. The Hopf map

Proposition 2.1. Consider the conjugations

κn : S2n−1 ⊆ Cn −→ S2n−1, (z1, . . . , zn) 7−→ (z1, . . . , zn),
κn : CP n −→ CP n, [z0 : · · · : zn] 7−→ [z0 : · · · : zn].

Then deg(κn) = deg(κn) = (−1)n.

Proof. (i) We see S2n−1 ⊆ R2n and detR(κn) = (−1)n. Thus, deg(κn) = (−1)n.
(ii) Consider the collapsing

r : CP n −→ CP n/CP n−1 ∼= S2n ∼= (Cn)∞,

[z : 1] 7−→ z,

[z : 0] 7−→ ∞.

Then r induces an isomorphism in H2n. Moreover, we have a self map l : (Cn)∞ −→ (Cn)∞

which extends the conjugation Cn −→ Cn. Apparently r ◦ κn = l ◦ r, so deg(κn) = deg(l).
We can calculcate deg(l) locally: All z ∈ Cn are regular with l−1(z) = {z}, so

deg(l) = sg det (Dl|z) = (−1)n.

Proposition 2.2. For the Hopf map η : S3 −→ S2 and the antipode α : S2 −→ S2, we have αη ' η.

Proof. The Hopf map is defined by S3 ⊆ C2 −→ CP 1 = S2, (z, w) 7−→ [z, w]. Thus, ηκ2 = κ1η.
Moreover, deg(κ1) = −1, so as deg : [S2,S2] −→ Z is an isomorphism, we get κ1 ' α. Likewise,
deg(κ2) = 1, so as deg : [S3,S3] −→ Z is an isomorphism, we get κ2 ' id. Thus, we get

η = η ◦ id ' η ◦ κ2 = κ1 ◦ η ' α ◦ η.
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Remark 2.3. The last two Propositions give counterexamples for the statements in Exercise
1 when dropping the suspension condition:

(i) The precomposition η∗ : π2(S2) −→ π3(S2) is not a homomorphism because

η∗ (−[id]) = [αη] = [η] 6= −[η] = −η∗[id].

(ii) The postcomposition α∗ : π3(S2) −→ π3(S2) is not multiplication with its degree

α∗[η] = [αη] = [η] 6= −[η] = deg(α) · [η].

Proposition 2.4. 2 · [Ση] = 0. In particular, π4(S3) ∈ {Z/2, 0}.

Proof. We use that Σ is a homotopy functor and that the suspension Σ : πk(X) −→ πk+1(ΣX) as
well as the precomposition (Ση)∗ are homomorphisms. Thus, we get

[Ση] = [Σ(αη)] = (Ση)∗Σ[α] = (Ση)∗ (−Σ[id]) = −(Ση)∗Σ[id] = −[Ση].

By Freudenthal’s suspension theorem, we know that Σ : π3(S2) −→ π4(S3) is surjective, so
π4(S3) is generated by Ση. As the latter has 2-torsion, we get either π4(S3) = Z/2 or π4(S3) = 0.

3. The relative Hurewicz homomorphism

Reminder 3.1. Fix a generator [α] ∈ Hn(Dn,Sn−1;Z) and define the Hurewicz map

hurX,A : πn(X, A, ∗) −→ Hn(X, A;Z), [f ] 7−→ f∗[α].

These maps are homorphisms and natural and the absolute Hurewicz map hurX arises from the
case A = ∗. Using naturality and the collapsing q : (X, A) −→ (X/A, ∗), we have

πn(X, A, ∗) Hn(X, A ;Z)

πn(X/A, ∗) Hn(X/A, ∗ ;Z).

hurX,A

πn(q) Hn(q)

hurX/A

Reminder 3.2 (Quotient theorem). Let A ↪−→ X be a cofibration and let A be p-connected and
(X, A) be q-connected. Then q : (X, A) −→ (X/A, ∗) is a (p + q + 1)-equivalence, meaning:

• q∗ : πk(X, A) −→ πk(X/A, ∗) is an isomorphism for k ≤ p + q,
• q∗ : πp+q+1(X, A) −→ πp+q+1(X/A, ∗) is an epimorphism.

Proposition 3.3. Let n ≥ 2 and (X, A) be (n − 1)-connected and A simply connected. Then the
relative Hurewicz map πn+1(X, A, ∗) −→ Hn+1(X, A;Z) is surjective.

Proof. (i) By naturality of the Hurewicz map, we can replace ı : A ↪−→ X by the cofibration
A ↪−→ cyl(ı): By the 5-lemma, the inclusion (X, A) ↪−→ (cyl(ı), A) induces isomorphisms in
both homology and homotopy. Thus, we can wlog assume that A ↪−→ X is a cofibration.

(ii) We know that in the above square (with n + 1 instead of n), Hn+1(q) is an isomorphism.
Moreover, X/A is (n−1)-connected, so the absolute Hurewicz map hurX/A : πn+1(X/A, ∗) −→
Hn+1(X/A, ∗ ;Z) is surjective. By the Quotient theorem, the map πn+1(q) is also
surjective. Hence, also hurX,A is surjective.

Example 3.4. Let (X, A) = (CP ∞ × S1, ∗ × S1):
• A is only 0-connected. The map πk(A) −→ πk(X) is an isomorphism for k ∈ {0, 1}, so

π1(X, A) = 0, so (X, A) is 1-connected.
• We have π3(X) = π3(CP ∞) × π3(S1) = 0 and π2(A) = π2(S1) = 0, so π3(X, A) = 0 by the

long exact sequence.
• We have H3(A) = 0, so H3(X) ⊆ H3(X, A). Moreover, we have H3(X) = Z

〈
[CP 2] × [S1]

〉
,

in particular, H3(X, A) 6= 0.
We conclude that hurX,A : π3(X, A) −→ H3(X, A) is not surjective.
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4. π1-action on π2(X, A, ∗)

Reminder 4.1. The relative homotopy group πk(X, A) is . . . :
• undefined for k = 0,
• just a set for k = 1,
• a group for k = 2, write the operation multiplicatively,
• an abelian group for k = 3, write the operation additively.

Proposition 4.2. Let a, b ∈ π2(X, A) and denote the boundary by ∂ : π2(X, A) −→ π1(A). Then

(∂b)#a = b−1ab.

Proof. The homotopy is given by the following “movie”, where the green arrow is the loop ∂b:
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